Face reenactment with GANs using landmark representation of a face

Показати скорочений опис матеріалу

dc.contributor.author Kosarevych, Ivan
dc.date.accessioned 2024-02-15T09:20:34Z
dc.date.available 2024-02-15T09:20:34Z
dc.date.issued 2020
dc.identifier.citation Kosarevych, Ivan. Face reenactment with GANs using landmark representation of a face / Kosarevych, Ivan; Supervisor: Volodymyr Karpiv; Ukrainian Catholic University, Department of Computer Sciences. – Lviv: 2020. – 48 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/4512
dc.language.iso en uk
dc.title Face reenactment with GANs using landmark representation of a face uk
dc.type Preprint uk
dc.status Публікується вперше uk
dc.description.abstracten Face reenactment is an emerging technology that attracts high interest in recent years. It aims at generating face with the identity of one person (known as target) and facial expression from another (source). Many existing methods are limited to reenact a predefined personality of either source or target. In this study, we present the approach that is agnostic to the identity of source and target and observes only a single image of each of them. Our method is based on recently introduced Gen- erative adversarial networks (GANs). We experimentally find a proper GAN loss for our system. An accurate expression transfer from a source person is essential for face reenactment. In this study, we examine different approaches to achieve it and design a landmark loss function based on our novel landmark detector. uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис