Memory-oriented optimization techniques in General Purpose GPU programming

Показати скорочений опис матеріалу

dc.contributor.author Pasternak, Nazar
dc.date.accessioned 2024-02-14T09:34:09Z
dc.date.available 2024-02-14T09:34:09Z
dc.date.issued 2022
dc.identifier.citation Pasternak, Nazar. Memory-oriented optimization techniques in General Purpose GPU programming / Pasternak, Nazar; Supervisor: Oleg Farenyuk; Ukrainian Catholic University, Department of Computer Sciences. – Lviv: 2022. – 41 p.
dc.identifier.uri https://er.ucu.edu.ua/handle/1/4416
dc.language.iso en uk
dc.title Memory-oriented optimization techniques in General Purpose GPU programming uk
dc.type Preprint uk
dc.status Публікується вперше uk
dc.description.abstracten Effective utilization of the GPU parallel execution potential for GPGPU solutions requires an extensive understanding of the internal GPU memory model. GPU’s memory latency hiding techniques differ from those of the CPU, due to substantial design differences. In this thesis, we review the specifics of the GPU memory hierarchy, identify potential memory bottlenecks of GPGPU programs and address them using the CUDA programming model. We provide examples of such solutions along with corresponding performance measurements. As a demonstration of the proposed optimizations, we provide the implementation of the Parallel Failureless Aho-Corasick algorithm for pattern-matching and measure the performance speedup each optimization resulted in. Optimizations discussed in this paper result in almost 2x performance speedup of highly memory-dependant PFAC algorithm. uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис