Advancing medical image segmentation via pseudo-labeling of public datasets

Показати скорочений опис матеріалу

dc.contributor.author Mishchenko, Roman
dc.date.accessioned 2023-07-14T07:37:44Z
dc.date.available 2023-07-14T07:37:44Z
dc.date.issued 2023
dc.identifier.citation Mishchenko Roman. Advancing medical image segmentation via pseudo-labeling of public datasets. Ukrainian Catholic University, Faculty of Applied Sciences, Department of Computer Sciences. Lviv 2023, 36 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/3947
dc.description.abstract Our study explores the difficulties and possible resolutions in the domain of medical image segmentation, with a special emphasis on utilizing unlabeled public datasets to improve tumor segmentation. We suggest a strategy that incorporates pseudolabeling methodologies with real-world data to enhance the learning potential of segmentation models. Yet, the findings imply that while improvements in model performance exist, they are not substantial. The research underscores the paramount importance of data quality over quantity, emphasizing that image characteristics influence the effectiveness of the process more than the total number of images. uk
dc.language.iso en uk
dc.title Advancing medical image segmentation via pseudo-labeling of public datasets uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис