Hidden state refinement for optical flow forecasting

Показати скорочений опис матеріалу

dc.contributor.author Babenko, Anton
dc.date.accessioned 2023-07-13T10:28:18Z
dc.date.available 2023-07-13T10:28:18Z
dc.date.issued 2023
dc.identifier.citation Babenko Anton. Hidden state refinement for optical flow forecasting. Master Thesis. Ukrainian Catholic University, Faculty of Applied Sciences, Department of Computer Sciences. Lviv 2023, 43 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/3930
dc.description.abstract In recent years the topic of optical flow has become well-spread due to computation power support and optical flow estimation applications used on mobile phones and edge devices: video editors, frame stabilizations, and autonomous driving feature providers. This work analyzes multiple approaches to optical flow estimation and finds the main problems of the optical flow methods: slow convergence and long execution of the prediction algorithm. We propose to solve the slow convergence and long execution time with hidden state refinement to provide the initialization for optical flow estimation based on several previous frames and their hidden state transformations, which imitates the pixel movement at the hidden state level. The proposed method uses CNN, LSTM, and Transformer blocks which help to achieve the optical flow estimation and hidden state refinement to speed up the system. We used Sintel, KITTY-15, FlyingChairs, FlyingThings, HD1K, DAVIS, and YouTubeVOS datasets for our experiment. uk
dc.language.iso en uk
dc.title Hidden state refinement for optical flow forecasting uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис