Clustering online-marketplace customers’ heterogeneous data applying unsupervised learning methods

Show simple item record

dc.contributor.author Hrytsiuk, Kostiantyn
dc.date.accessioned 2023-07-05T13:17:36Z
dc.date.available 2023-07-05T13:17:36Z
dc.date.issued 2022
dc.identifier.citation Hrytsiuk Kostiantyn. Clustering online-marketplace customers’ heterogeneous data applying unsupervised learning methods. Bachelor Thesis. Ukrainian Catholic University, Faculty of Applied Sciences, Department of Computer Sciences. Lviv 2022, 51 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/3907
dc.description.abstract The commonchallengeinunderstandingtheinsightsfromtheonlinecustomers’ data istheirsegmentation.Sincetheyhavebothcontinuousandcategoricalfea- tures,thereisnostraightforwardwaytoobtainvaluableclustersbuiltonfeaturesof differenttypes. In thiswork,wewanttocompareexistingalgorithmsforclusteringmixeddata and theapplicationofdifferentmethodstomeasurenon-euclidiandistancesbe- tween datapoints.Theeffectivenessofeach"algorithm-distancemeasure"pair will beevaluatedonthereal-lifesubscriptioncustomersdataset. uk
dc.language.iso en uk
dc.title Clustering online-marketplace customers’ heterogeneous data applying unsupervised learning methods uk
dc.type Preprint uk
dc.status Публікується вперше uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account