Reinforcement Learning Agents in Procedurally-generated Environments with Sparse Rewards

Показати скорочений опис матеріалу

dc.contributor.author Nahirnyi, Oleksii
dc.date.accessioned 2022-07-22T10:01:28Z
dc.date.available 2022-07-22T10:01:28Z
dc.date.issued 2022
dc.identifier.citation Nahirnyi, Oleksii. Reinforcement Learning Agents in Procedurally-generated Environments with Sparse Rewards / Oleksii Nahirnyi; Supervisor: Dr. Pablo Maldonado; Ukrainian Catholic University, Faculty of Applied Sciences, Department of Computer Sciences. – Lviv 2022. – 45 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/3165
dc.description.abstract Solving sparse-reward environments is one of the most considerable challenges for state-of-the-art (SOTA) Reinforcement Learning (RL). Recent usage of sparse-rewards in procedurally-generated environments (PGE) to more adequately measure agent’s generalization capabilities via randomization makes this challenge even harder. Despite some progress of newly created exploration-based algorithms in MiniGrid PGEs, the task remains open for research in terms of improving sample complexity. We contribute to solving this task by creating a new formulation of exploratory intrinsic reward. We base this formulation on a thorough review and categorization of other methods in this area. Agent that optimizes an RL objective with such a formulation performs better than SOTA methods in some small or medium sized PGEs. uk
dc.language.iso en uk
dc.subject reinforcement learning uk
dc.subject exploration uk
dc.subject sparse rewards uk
dc.subject procedurally-generated environment uk
dc.subject intrinsic reward uk
dc.title Reinforcement Learning Agents in Procedurally-generated Environments with Sparse Rewards uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис