Polyp detection and segmentation from endoscopy images

Показати скорочений опис матеріалу

dc.contributor.author Kokshaikyna, Mariia
dc.date.accessioned 2022-07-20T12:43:02Z
dc.date.available 2022-07-20T12:43:02Z
dc.date.issued 2022
dc.identifier.citation Kokshaikyna, Mariia. Polyp detection and segmentation from endoscopy images / Mariia Kokshaikyna; Supervisors: Oles Dobosevych, Mariia Dobko; Ukrainian Catholic University, Faculty of Applied Sciences, Department of Computer Sciences. – Lviv 2022. – 42 p. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/3158
dc.description.abstract Endoscopy is a widely used clinical procedure for the detection of different diseases in internal gastrointestinal tract’s organs such as the stomach and colon. Modern endoscopes allow getting high-quality video during the procedure. Computer-assisted methods might support medical specialists in detecting or segmenting anomaly regions on the picture. Many datasets are available and methods to detect polyp regions have been proposed. One kind of task is polyps segmentation on images and videos. The best results in semantic segmentation of polyps are now achieved with fully supervised approaches. In this thesis, we describe experiments with CaraNet model. We checked robustness on cross-validation on several publicly available datasets and small private dataset, tried a few modifications of attention layer in order to improve performance, presented and discussed results. uk
dc.language.iso en uk
dc.title Polyp detection and segmentation from endoscopy images uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис