Learning Discriminative Context-Aware Keypoints Representations for Resolving Ambiguous Matches

Показати скорочений опис матеріалу

dc.contributor.author Viniavskyi, Ostap
dc.date.accessioned 2021-09-09T09:23:48Z
dc.date.available 2021-09-09T09:23:48Z
dc.date.issued 2021
dc.identifier.citation Viniavskyi, Ostap. Learning Discriminative Context-Aware Keypoints Representations for Resolving Ambiguous Matches: Bachelor Thesis: manuscript / Ostap Viniavskyi; Supervisor: PhD James Pritts; Ukrainian Catholic University, Department of Computer Sciences. – Lviv: 2021. – 40 p.: ill. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/2874
dc.description.abstract In the feature matching problem, local keypoint representations are often not sufficiently distinctive to disambiguate repetitive textures. State-of-the-art matching pipelines encode global information and embed context into keypoint descriptors to resolve this issue. In this thesis, we evaluate the failure modes of the state-ofthe- art method for image matching. We identify the problem that including global context to keypoint representations can sometimes eliminate their distinctiveness. We propose to enhance the learning of the state-of-the-art pipeline by adding a metric learning component to its objective function. By learning more distinctive global context-aware keypoint descriptors, we recover the filtered matches without the loss in matching precision. uk
dc.language.iso en uk
dc.title Learning Discriminative Context-Aware Keypoints Representations for Resolving Ambiguous Matches uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис