Показати скорочений опис матеріалу
dc.contributor.author | Hryniv, Rostyslav | |
dc.contributor.author | Homa, Monika | |
dc.date.accessioned | 2021-06-30T12:13:47Z | |
dc.date.available | 2021-06-30T12:13:47Z | |
dc.date.issued | 2020-08-18 | |
dc.identifier.citation | Homa M. and Hryniv R., Spectra of PT-symmetric operators under rank-one perturbations // J. Phys. A: Math. Theor. 2020. V. 53 -- paper id 375202 (15pp), https://doi.org/10.1088/1751-8121/aba8d1 | uk |
dc.identifier.uri | https://er.ucu.edu.ua/handle/1/2714 | |
dc.description.abstract | We study the spectra of PT-symmetric Hamiltonians H that are rank-one perturbations of a self-adjoint PT-symmetric Hamiltonian H0. We show that the discrete spectrum of H may include any number of complex–conjugate pairs of complex numbers of arbitrary algebraic multiplicity. | uk |
dc.language.iso | en | uk |
dc.publisher | IOP Publishing | uk |
dc.subject | ||
dc.subject | PT-symmetry | |
dc.subject | rank-one perturbations | |
dc.subject | non-real eigenvalues | |
dc.title | Spectra of PT-symmetric operators under rank-one perturbations | uk |
dc.title | ||
dc.type | Article | uk |
dc.status | Опублікований і розповсюджений раніше | uk |
dc.identifier.doi | https://doi.org/10.1088/1751-8121/aba8d1 | |
dc.description.abstracten | We study the spectra of PT-symmetric Hamiltonians H that are rank-one perturbations of a self-adjoint PT-symmetric Hamiltonian H0. We show that the discrete spectrum of H may include any number of complex–conjugate pairs of complex numbers of arbitrary algebraic multiplicity. | uk |