dc.contributor.author |
Hryniv, Rostyslav
|
|
dc.contributor.author |
Homa, Monika
|
|
dc.date.accessioned |
2021-06-30T12:13:47Z |
|
dc.date.available |
2021-06-30T12:13:47Z |
|
dc.date.issued |
2020-08-18 |
|
dc.identifier.citation |
Homa M. and Hryniv R., Spectra of PT-symmetric operators under rank-one perturbations // J. Phys. A: Math. Theor. 2020. V. 53 -- paper id 375202 (15pp), https://doi.org/10.1088/1751-8121/aba8d1 |
uk |
dc.identifier.uri |
https://er.ucu.edu.ua/handle/1/2714 |
|
dc.description.abstract |
We study the spectra of PT-symmetric Hamiltonians H that are rank-one perturbations of a self-adjoint PT-symmetric Hamiltonian H0. We show that the discrete spectrum of H may include any number of complex–conjugate pairs of complex numbers of arbitrary algebraic multiplicity. |
uk |
dc.language.iso |
en |
uk |
dc.publisher |
IOP Publishing |
uk |
dc.subject |
|
|
dc.subject |
PT-symmetry |
|
dc.subject |
rank-one perturbations |
|
dc.subject |
non-real eigenvalues |
|
dc.title |
Spectra of PT-symmetric operators under rank-one perturbations |
uk |
dc.title |
|
|
dc.type |
Article |
uk |
dc.status |
Опублікований і розповсюджений раніше |
uk |
dc.identifier.doi |
https://doi.org/10.1088/1751-8121/aba8d1 |
|
dc.description.abstracten |
We study the spectra of PT-symmetric Hamiltonians H that are rank-one perturbations of a self-adjoint PT-symmetric Hamiltonian H0. We show that the discrete spectrum of H may include any number of complex–conjugate pairs of complex numbers of arbitrary algebraic multiplicity. |
uk |