Real-time inverse kinematics and inverse dynamics from motion capture

Показати скорочений опис матеріалу

dc.contributor.author Zabava, Kateryna
dc.date.accessioned 2021-06-30T10:07:02Z
dc.date.available 2021-06-30T10:07:02Z
dc.date.issued 2021
dc.identifier.citation Zabava, Kateryna. Real-time inverse kinematics and inverse dynamics from motion capture / Kateryna Zabava; Supervisor: Dr. Valeriya Gritsenko; Ukrainian Catholic University, Department of Computer Sciences. – Lviv : [s.n.], 2021. – 45 p.: ill. uk
dc.identifier.uri https://er.ucu.edu.ua/handle/1/2709
dc.description.abstract This work applies machine learning to solving inverse dynamics and inverse kinematics tasks from the motion capture data. This approach may simplify the calculation process and help do scientific simulations as part of a physics engine that describes the neural control of human motion and decodes movement intent in individuals with neural damage. The existing algorithm has to be modified for every experiment and takes a significant amount of time to execute. It is also sensitive to noise and missing data, and it is not a real-time calculation. We propose a solution of inverse kinematics tasks with neural networks. Here we report accuracy results both on clean data and noisy data. We also apply a similar approach for the inverse dynamics task. The approach shows high accuracy on clean data, but this accuracy decreases if applied to the noisy data. uk
dc.language.iso en uk
dc.subject inverse dynamics uk
dc.subject inverse kinematics uk
dc.subject motion estimation uk
dc.subject motion capture uk
dc.subject machine learning uk
dc.subject real-time calculations uk
dc.subject joint moments uk
dc.subject dynamics uk
dc.subject neural networks uk
dc.title Real-time inverse kinematics and inverse dynamics from motion capture uk
dc.type Preprint uk
dc.status Публікується вперше uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис