Music Generation Powered by Artificial Intelligence

Показати скорочений опис матеріалу

dc.contributor.author Shyshkin, Oleh
dc.date.accessioned 2019-02-19T16:04:10Z
dc.date.available 2019-02-19T16:04:10Z
dc.date.issued 2019
dc.identifier.citation Shyshkin, Oleh. Semantic segmentation for visual indoor localization : Master Thesis : manuscript / Oleh Shyshkin ; Supervisor Juan Pablo Maldonado Lopez, Dr. ; Ukrainian Catholic University, Department of Computer Sciences. – Lviv : [s.n.], 2019. – 26 p. : ill. uk
dc.identifier.uri http://er.ucu.edu.ua/handle/1/1337
dc.language.iso en uk
dc.subject Music Generation uk
dc.subject TCN based models uk
dc.subject PerformanceRNN uk
dc.title Music Generation Powered by Artificial Intelligence uk
dc.type Preprint uk
dc.status Публікується вперше uk
dc.description.abstracten Music is an essential part of human life in our days. Despite a long history of the phenomena people still explore it and expand the new horizons. For the last ten years quality of computer-generated music significantly improved. State of the art machine learning models like PerformanceRNN can perform music close to a human level. However, it is hard to deal with a generation of long-term music for the systems. In work, we apply a TCN model to a generation music task and evaluate the quality of the music. We show that the models have a significantly better performance than a baseline model for a long-term music generation task. However, it has own weak points in musicality and time generation. We also discuss possible options to resolve the issues. uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис