Safe Augmentation: Learning Task-Specific Transformations from Data

Показати скорочений опис матеріалу

dc.contributor.author Baran, Irynei
dc.date.accessioned 2019-02-13T09:24:02Z
dc.date.available 2019-02-13T09:24:02Z
dc.date.issued 2019
dc.identifier.citation Baran, Irynei. Safe Augmentation: Learning Task-Specific Transformations from Data : Master Thesis : manuscript / Irynei Baran ; Supervisor Arseny Kravchenko ; Ukrainian Catholic University, Department of Computer Sciences. – Lviv : [s.n.], 2019. – 23 p. : ill. uk
dc.identifier.uri http://er.ucu.edu.ua/handle/1/1312
dc.language.iso en uk
dc.subject Data augmentation uk
dc.subject Deep learning uk
dc.subject Image classification uk
dc.subject Image segmentation uk
dc.title Safe Augmentation: Learning Task-Specific Transformations from Data uk
dc.type Preprint uk
dc.status Публікується вперше uk
dc.description.abstracten Data augmentation is widely used as a part of the training process applied to deep learning models, especially in the computer vision domain. Currently, common data augmentation techniques are designed manually. Therefore they require expert knowledge and time. Moreover, optimal augmentations found for one dataset, often do not transfer to other datasets as effectively. We propose a simple novel method that can automatically learn task-specific data augmentation techniques called safe augmentations that do not break the data distribution and can be used to improve model performance. Moreover, we provided a new training pipeline for using safe augmentations for different computer vision tasks. Our method works both with image classification and image segmentation and achieves significantly better accuracy on CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet and Cityscapes datasets comparing to other augmentation techniques. uk


Долучені файли

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис