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Abstract

Human-centric applications are ubiquitous in the modern world. Myriads of edu-
cational, entertainment, e-commerce, and other applications require understanding
the measurements of the human body in the image. The deep-learning methods
for solving human-centric problems usually rely on supervised learning approaches
and need tons of labeled data to excel.

Label acquisition for 3D Computer Vision tasks and specifically for the human
mesh estimation task became even more difficult and error-prone compared to 2D
tasks due to the inherent complexity of working with an additional dimension. That
is where the synthetic data steps in, allowing researchers to obtain much more cost-
efficient and pixel-perfect annotations.

In this work, we utilize the existing Latent Diffusion Model for conditional image
generation and create a method for synthesizing a large dataset of humans with 3D
mesh labels obtained without the involvement of a human annotator. Further, we
show the effectiveness of using such a synthetic dataset and its superiority compared
to other synthetic data obtained from the game engines. The implementation of the
proposed approach can be accessed on the GitHub1.

1https://github.com/viniavskyi-ostap/synth-smplerx

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/
https://github.com/viniavskyi-ostap/synth-smplerx
https://github.com/viniavskyi-ostap/synth-smplerx
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Chapter 1

Introduction

1.1 Motivation

Methods that try to detect and describe humans in the images are central to the
Computer Vision field. Human recognition tasks in Computer Vision range from
bounding box detection, 2D pose estimation, and semantic segmentation that try to
understand the position and semantics of humans in the image to more complicated
tasks like 3D detection, 3D pose estimation, and recovery of human avatars that try
to uncover 3D geometry of human body in the image.

A significant part of the success of the methods that solve these tasks is attributed
to large labeled datasets used to train supervised models. One such example can be
the Microsoft COCO dataset [Lin et al., 2015] introduction, which led to consider-
able success in the 2D human pose estimation task. Yet, obtaining the large labeled
datasets is usually quite expensive and time-consuming. It can only be affordable
for large companies or labs, limiting their abundance in more niche tasks.

An even bigger problem persists for 3D understanding tasks since labeling of 3D
data is even more time-consuming and error-prone. For instance, the task of 3D pose
estimation leaves a lot of ambiguity for human annotators, especially if only a single
view of the labeling target is available. Another example can be the labeling of the
DensePose dataset [Ho, Jain, and Abbeel, 2020], which established mapping from
the human body’s pixels to the prepared in advance avatar. The labeling process
was highly sophisticated and, in the end, produced only very sparse annotations.
This shows the need for another alternative solution for labeling the images with 3D
annotations, particularly images of humans.

Significant progress in the field of 3D vision was achieved thanks to synthetic
data. The promising approach for collecting large 3D annotated datasets is utilizing
advances in the graphics pipeline and creating synthetic humans from the renders
of human 3D models. These approaches [Patel et al., 2021a, Black et al., 2023a Erfa-
nian Ebadi et al., 2022, Yan et al., 2021] allow the collection of complete information
about the 3D data present in the image from the human pose and shape to pixel-wise
mapping from the image to the surface of the human mesh. The major downside is
the quality of the renders, the complexity of creating human models in diverse sce-
narios, and the complexity of clothing human avatars.

Deep Generative models have quite a long history of usage as a tool for syn-
thesizing additional training data since the success of Generative Adversarial Net-
works (GANs) [Goodfellow et al., 2014] or generating realistic augmentations for ex-
isting data. Nevertheless, the human generation task was not feasible until recently.
The Denoising Diffusion Probabilistic (DDPM) [Ho, Jain, and Abbeel, 2020] mod-
els pushed the boundary of what is possible for human generation, with large-scale
models like Stable Diffusion [Rombach et al., 2022] capable of generating realistic
humans in diverse poses, shapes, clothing, lighting, etc.
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In this work, we describe the possible applications of Deep Generative models
for generating diverse datasets of humans with annotations provided by the con-
ditional generation process. We propose the approach for generating humans with
various poses, shapes, and clothing and use the generated datasets to train human
pose and shape recognition models.

1.2 Contributions

The contributions of this work are the following:

• We explore the limitations of current datasets, both real-world and synthetic,
that are used for training human pose and shape estimation models.

• We propose a controllable human generation approach that preserves the dis-
tribution of real-world images and, at the same time, allows the collection of
3D labels. The method is fully automatic and does not require any involvement
on the annotator side.

• We solve the downstream task of human mesh estimation using only our syn-
thetic data and evaluate results compared to methods that use other real-world
and synthetic data.

• We show that our synthetic dataset achieves comparable or better results than
the methods trained on other synthetic datasets obtained from the 3D game en-
gines. This showcases that expensive synthetic human data acquisition through
modeling humans in the game engines can be replaced by the cheap generation
using Deep Generative models.

1.3 Structure Of The Thesis

The thesis is structured as follows. In Chapter 2, we introduce the task of human
pose and shape estimation and describe the SMPL-family [Loper et al., 2015] of para-
metric 3D human models. We also describe the theoretical basis of diffusion models
and the possibilities for introducing control in the generation process. In Chapter
3, we review the related works, discussing the existing datasets for human recog-
nition tasks and how they can be utilized for the human mesh estimation task. We
also review existing approaches that generate humans and utilize synthetic data for
specific tasks. We describe the downstream task of particular interest to us - human
pose and shape estimation. In Chapter 4, we describe our methodology for con-
trollable human generation in detail, while in Chapter 5, we provide the details of
experiments and quantitative and qualitative results. Finally, we conclude our work
and propose directions for future research in Chapter 6.
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Chapter 2

Theoretical background

The recognition of people in images is a long-standing problem in the area of com-
puter vision. Simpler tasks aim at estimating the position of the human in the image
or the skeletal structure of the human body projected onto the image. These are tasks
of human detection and 2D human joint estimation, respectively.

More sophisticated approaches try to estimate the 2D projections of human joints
and the 3D position of a human skeleton or even recover a full 3D mesh of the human
body surface in the image, in other words, a human avatar. At first sight, estimating
a 3D structure from a single image might seem like an ill-posed problem. However,
due to the constrained nature of the human body, this can be done quite successfully
[Baradel et al., 2024].

2.1 Parametric human body models

Representing the human body surface as a free-form 3D mesh offers benefits such
as almost unlimited expressivity, allowing us to capture the smallest details of the
human body. Yet, such representation is hard to estimate and maintain if we, for
example, want to track the movement of the human body in time.

The 3D mesh with 10,000 3D vertices and predefined topology has 30,000 degrees
of freedom, which must be calculated during the estimation stage or stored indepen-
dently for each time step. Also, the slight movement of the human body will require
recalculating a large portion of vertices locations, which further complicates work-
ing with such a representation.

Since the locations of many vertices are correlated, we can derive an underlying
representation of a much smaller size that will effectively capture the distribution of
possible human bodies. Also, we need to define a transformation from such repre-
sentation to the 3D mesh to be able to recover the full mesh effectively.

In this work, we choose to work with the SMPL [Loper et al., 2015] parametric
human body model and its successor representation SMPL-X [Pavlakos et al., 2019],
which are de facto standards for the parametric human body modeling. SMPL de-
composes the parameters into two sets: pose and shape, which control the pose of
the human skeleton and the shape of the human body independent of the current
pose. SMPL-X adds to the previous model by making expressive hands and faces.
This is achieved by including fingers in the underlying skeleton and adding addi-
tional parameters to control facial expression.

2.1.1 SMPL and SMPL-X models

The Skinned Multi-Person Linear model (SMPL) is created to represent the human
bodies of various shapes and poses using a small set of parameters. The main ad-
vantage of SMPL is that it decomposes the shape and pose, allowing one to control
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both independently. Also, it accounts for the shape deformations resulting from the
changes to the pose.

SMPL defines a single mesh topology consisting of N = 6890 vertices and F =
10475 faces connecting the vertices. It also defines an underlying skeleton consisting
of K = 24 joints. Pose parameters θ⃗ ∈ R3K stand for three rotation parameters in each
skeleton joint, where rotation of the root joint (pelvis) defines the global rotation of
mesh with respect to the camera, and other joints store rotations relative to the parent
joint in the kinematic tree. Positions of the mesh vertices are derived via the Linear
Blend Skinning (LBS) process, which calculates the rotation of each vertex as a linear
combination of rotations of predefined joints for this particular vertex.

The shape is controlled by the parameters β⃗ ∈ RS, which add shape-dependent
correctives to the template mesh. The shape parametrization was derived through
the PCA [Shlens, 2014] on the large collection of human meshes normalized to the
neutral pose. The principal components define the so-called shape blendshapes,
while coefficients near those principal components are our parameters β⃗. S is cho-
sen to be up to 300 since such a number of principal components is enough to capture
most of the variance in human shapes. In practice, we use the reduced representa-
tion, where S = 10. Also, SMPL defines pose blendshapes, which add shape correc-
tives dependent on the human pose. This is needed to alleviate the negative effects
of the LBS process, such as the candy wrapper problem.

FIGURE 2.1: SMPL mapping stages. Taken from [Loper et al., 2015]

More formally, SMPL defines a mapping from pose and shape parameters to the
final posed and shaped mesh M(β⃗, θ⃗; Φ) : R|⃗θ|×|β⃗| 7→ R3N , where Φ are constants
learned from the data. Φ includes several distinct entities: T̄ - template mesh in nor-
malized, so-called T-pose, and mean shape, W ∈ RN×K - sparse LBS weights matrix
that defines the influence of joints rotations on the vertex rotations, J(β⃗) : R|β⃗| 7→
R3K - regression parameters for inferring locations of joints from shape parameters,
BS(β⃗) : R|β⃗| 7→ R3N - shape blend shape parameters, BP (⃗θ) : R|⃗θ| 7→ R3N - pose
blendshapes.

The SMPL mapping can be broken down into several distinct stages as depicted
in Figure 2.1. We start with the template mesh T̄ and add pose blendshapes to it to
obtain shaped mesh TS(β⃗)

TS(β⃗) = T̄ + BS(β⃗) (2.1)

From this shaped mesh, we regress joint locations J, effectively making the joints
dependent only on the shape parameters.

Next, we add pose-dependent correctives to the shaped mesh

TP(β⃗, θ⃗) = TS(β⃗) + BP (⃗θ) = T̄ + BS(β⃗) + BP (⃗θ) (2.2)
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Using rotation parameters, we first deform skeleton joint locations to the target
pose, and then through the process of LBS, we obtain the final locations of the posed
and shape mesh:

M(β⃗, θ⃗) = W(TP(β⃗, θ⃗), J(β⃗), θ⃗,W) (2.3)

Individual vertex location is computed as follows:

t′i =
K

∑
k=1

wk,iG′
k (⃗θ, J)(t̄i + bS,i(β⃗) + bP,i (⃗θ)) (2.4)

G′
k (⃗θ, J) = Gk (⃗θ, J)Gk (⃗θ

∗, J)−1 (2.5)

Gk (⃗θ, J) = ∏
j∈A(k)

[
exp(ω⃗j) jj

0⃗ 1

]
, (2.6)

where Gk (⃗θ, J) and G′
k (⃗θ, J) are transformations of individual joints with respect

to the world origin and parent joint location respectively, j ∈ A(k) - child joints for
parent joint k, exp(ω⃗i) - mapping from the axis-angle rotation representation to the
rotation matrix.

SMPL-X model adds to the SMPL model by introducing facial expression param-
eters ψ⃗ ∈ R10, which are derived analogously to the shape parameters for the human
body and are accompanied by the face expression blendshapes. Also, SMPL-X ex-
tends the skeleton with 30 new joints: 15 for each hand, allowing control of the pose
of individual fingers. 90 new rotation parameters are often redundant to control the
hand pose. Thus, the hand pose is further coded via PCA into lower dimensional
space. In all other ways, SMPL-X is analogous to the original SMPL model.

2.1.2 Limitations of SMPL

The SMPL model is derived to represent various human poses and shapes by uti-
lizing only a relatively small set of disentangled pose and shape parameters. Yet,
because of its constrained nature, the SMPL is limited in representing all possible
poses and shapes.

Moreover, regressing SMPL parameters from the image is a complex task. SMPL
representation is inherently a 3D representation; thus, to estimate the correct mesh
parameters for the person on the image, we also need to possess the correct camera
information to be able to project the derived mesh onto the image accurately. Most
of the existing state-of-the-art approaches [Zhang et al., 2021, Cai et al., 2023] assume
a simplified camera model by using the weak-perspective camera or setting the focal
length of the perspective camera to a large constant value. This results in predictions
that are quite accurate in the 3D pose while having poor alignment of the projected
avatar with the true human silhouette. This limitation will become important when
we try to learn a controllable human generator from predefined SMPL avatars. The
problem can be seen in the Figure 2.2

SMPL limitations also include entangled shape parameters and the possibility of
generating invalid avatars from the valid input parameters. The former means that
individual shape parameters do not influence a particular part of the body but can
change the whole avatar simultaneously. For example, if we want to derive from
the current avatar mesh with the same shape except for waist width, we will likely
need to change all the shape parameters at once. The latter means that not all SMPL
parameters lead to the valid meshed of humans. For instance, some rotation of joints
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FIGURE 2.2: Silhouette alignment problem of mesh predicted by
SMPLer-X [Cai et al., 2023]. Input image (right), color-coded render

of mesh (middle), overlay of image and mesh (right)

can lead to unrealistic bending of human parts, or the overall parameter setting can
lead to human meshing with self-collisions. Thus, sampling of SMPL parameters
cannot be done uniformly over the parameter space; rather, it needs more elegant
approaches.

FIGURE 2.3: DensePose Representation. The template mesh is split
into multiple parts, and unwrap UV coordinates are defined for each

body part. Taken from [Güler, Neverova, and Kokkinos, 2018]

2.1.3 DensePose

DensePose [Güler, Neverova, and Kokkinos, 2018] is a 2.5D representation connect-
ing 2D images and 3D human meshed, particularly the SMPL model. DensePose
does not directly represent the human in the image with the SMPL parameters and
corresponding camera to project the constructed avatar. In contrast, it provides a bi-
nary silhouette mask of the human and defines a mapping from each human pixel to
the template mesh, which is the SMPL template mesh. Moreover, DensePose splits
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the avatar into several parts and defines for each image pixel to which body part it
belongs and where it is located specifically on that body part. The latter uses UV
coordinates of the UV unwrap of the particular body part from the template mesh.
The process is visualized in the Figure 2.3.

Also, the authors train the model to predict the body-part index (I) and corre-
sponding coordinates in the unwrapped space (UV), creating a DensePose-IUV rep-
resentation of the human in the image. The model was trained on manually collected
correspondences between images and template mesh through a tedious labeling pro-
cess. The released model has quite accurate predictions of body part index but lacks
accuracy in predicting UV maps. Thus, the DensePose index is usually the only
thing from two used for human representations [Chang et al., 2023].

The main advantage of DensePose is that we can have pixel-accurate human
representation predicted on the in-the-wild images of humans. At the same time, we
can easily convert any SMPL human mesh to the DensePose render, which will be
useful later when we want to generate humans in a controllable way. The difference
between the DensePose part index and the DensePose rendered from the estimated
avatar is shown in Figure 2.4.

FIGURE 2.4: DensePose representation. From left to right: input
image, predicted DensePose part index, overlay of DensePose with
image, overlay of estimated avatar and image, estimated avatar ren-

dered to the DensePose part index

2.2 Conditional Image Generation

This section explains the basics of controllable or conditional image generation. Most
of the approaches utilize recent progress made around Denoising Diffusion Proba-
bilistic Models [Ho, Jain, and Abbeel, 2020] and Latent Diffusion Models [Rombach
et al., 2022].

2.2.1 Diffusion Models

Denoising Diffusion Probabilistic Models [Ho, Jain, and Abbeel, 2020] revolution-
ized the field of generative modeling of images. They allow for generating images
of higher fidelity compared to Generative Adversarial Networks [Goodfellow et al.,
2014] and don’t suffer from the mode collapse problem and unstable training com-
mon for GANs.

Diffusion Models define two processes: forward and backward. In the forward
process, the input data, image in our case, is noised by adding random Gaussian
noise according to the predefined schedule β1, . . . , βT. More formally, the forward
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noising process for the initial data point x0 is defined as follows:

q (x1:T | x0) :=
T

∏
t=1

q (xt | xt−1) , q (xt | xt−1) := N
(

xt;
√

1 − βtxt−1, βtI
)

(2.7)

The reverse process starts with a sample from standard Normal distribution
p (xT) = N (xT; 0, I) and transforms noise into data point by the learned Gaussian
transition. Again, the reverse process is defined as:

pθ (x0:T) := p (xT)
T

∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (xt−1; µθ (xt, t) , Σθ (xt, t)) ,

(2.8)
where θ are the learnable parameters of the network.

The model parameters are optimized by minimizing the VLB on the negative
log-likelihood:

E [− log pθ (x0)] ≤ Eq

[
− log

pθ (x0:T)

q (x1:T | x0)

]
= Eq

[
− log p (xT)− ∑

t≥1
log

pθ (xt−1 | xt)

q (xt | xt−1)

]
=: L

(2.9)

2.3 Latent diffusion models

Learning the diffusion model in the image space is prohibitively slow for high-
resolution images. Authors of the Latent Diffusion Model [Rombach et al., 2022]
proposed mapping the input images to the compressed latent space of decreased
resolution and then learning the diffusion model over the distribution of images in
the latent space. The mapping to the latent space is performed by the Variational
Autoencoder (VAE) [Kingma and Welling, 2019], which was trained to preserve lo-
cal detail in the image. In this way, VAE is responsible for compressing low-level
details in the image. At the same time, the Diffusion model learns semantics and ob-
ject composition in the image, which it is best suited for. The prominent architecture
from the family of Latent Diffusion Models is Stable Diffusion, which we utilize in
our work.

2.4 Conditioning Diffusion Models

With the introduction of diffusion models, multiple methods for their conditioning
were introduced. Classifier-guided diffusion models [Dhariwal and Nichol, 2021]
allowed for higher fidelity generation by utilizing a separate classifier model, which
was used during the inference process to steer the denoising path into the direc-
tion that maximized the likelihood of one of the classes. This allowed to have two-
fold advantages: class label conditioning and improved generation quality with the
tradeoff of decreased variability. On the contrary, classifier-free guidance [Ho and
Salimans, 2022] removed the necessity of training a separate classifier by introducing
free-form text conditioning into the diffusion model.

Text conditioning was introduced using a pretrained CLIP model [Radford et al.,
2021], which greatly aligns text features with visual ones. Stable Diffusion model
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utilizes cross-attention [Vaswani et al., 2023] mechanism to introduce CLIP text fea-
tures into the denoising model.

FIGURE 2.5: ControlNet architecture. Spatial features from the con-
trol modality are added pointwise with the spatial features of denois-
ing UNet in the decoder. Taken from [Zhang, Rao, and Agrawala,

2023]

2.4.1 Image Conditioning

Introducing the image as a condition to the generation process can be done similarly
to the text condition. IP-Adapter [Ye et al., 2023] was the first one to achieve great
results with such an approach without retraining the foundational text-to-image Sta-
ble Diffusion model. They encoded conditional images with the CLIP vision model
and then transformed the features into tokens of the same dimensionality as text
tokens in the original text conditioning. Then, they trained only the cross-attention
layer that infused conditional image features into the denoising model.
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IP-Adapter is useful for capturing the style and rough context of the input condi-
tional image but cannot control the precise location and appearance of the generated
scene due to the highly compressed nature of the CLIP image features.

2.4.2 Adding spatial control to the denoising process

In contrast to the IP-Adapter, such methods as ControlNet [Zhang, Rao, and Agrawala,
2023] and T2I-adapter [Mou et al., 2023] took different mechanisms to introduce con-
ditions into the denoising UNet model [Ronneberger, Fischer, and Brox, 2015]. They
propagate spatial features into the UNet skip connections, making them effective
at aligning generated content with a given control. The mechanism of ControlNet
introducing features into the Stable Diffusion is visualized in Figure 2.5. They also
are adapter methods, which means they don’t require retraining the full diffusion
model from scratch and usually can be combined with other adapters.

2.4.3 Other conditioning possibilities

There exist multiple other possibilities for introducing conditions into the Diffusion
Model that we introduce here. The most naive one is concatenating the conditioning
modality to the noise image that is fed to the denoising model. In this way, StableD-
iffusion [Rombach et al., 2022] achieves depth-conditional generation and inpainting
capabilities for the model. The inpainting in this way can be seen as a conditional
generation, where only part of the image is visible and is provided as a condition. In
such a setup, the model requires full fine-tuning, requiring enormous resources and
a time budget for each new conditioning modality.

One of the solutions to alleviate this problem is using LoRAs [Hu et al., 2021] to
fine-tune only low-rank approximation matrices, which are added to the weights.
Such an approach allows for decreasing computation and memory requirements for
the model training at the cost of decreased controllability and model expressivity.
Also, mixing multiple conditions with different LoRAs will not be as trivial as it is
with adapter-based methods.

Considering the above, we do not further examine fine-tuning-based methods
for conditional generation with DDPM; instead, we rely solely on adapter-based
approaches. On the other hand, in this work, we explore different modalities that
might be useful for generating images of humans in a controllable manner.
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Chapter 3

Related works

In this chapter, we explore the works related to this study. The chapter will be di-
vided into three parts. Firstly, we start with an overview of the existing real-world
and synthetic datasets for human recognition tasks, specifically for human pose and
shape estimation. We identify their strong and weak points, which can be later al-
leviated in our process of creating a synthetic dataset. Next, we proceed with the
overview of the methods that generate synthetic humans similar to ours. We finish
with the exploration of the human avatar estimation method that we will use as a
basis for our experiments.

3.1 Existing datasets overview

Learning human mesh estimation models is a complex task that requires lots of train-
ing data. In the most naive scenario, one will directly predict SMPL [Loper et al.,
2015] parameters of the human avatar from the image and optimize the model to-
ward predicting ground truth parameters. This requires the knowledge of the true
parameters, which are hard to obtain for real-world data. The other alternatives are
to utilize existing datasets with ground truth 2D or 3D joints labeled or other visual
clues like virtual markers [Ma et al., 2023]. In such a process, the loss will be calcu-
lated between visual clues of predicted and projected, if needed, avatar and the true
visual clues. The gradients will be propagated to the SMPL parameters of the pre-
dicted avatar through the processes of avatar creation and camera projection, which
are fully differentiable.

3.1.1 Real-world datasets

Multiple datasets exist that provide 3D annotations for images of humans, but they
come with several limitations. Many methods use 3D information acquisition de-
vices like RDBG cameras, LIDAR scanners, or inertial measurement units (IMU) to
obtain 3D geometry of the scene and, specifically, the poses and shapes of humans.
For instance, the Human3.6m [Ionescu et al., 2014] dataset consists of 3.6 million hu-
man poses captured by the motion capture system. The dataset is captured in a con-
strained environment with 11 actors acting in one of seventeen scenarios. The 3DPW
[Marcard et al., 2018] provides in-the-wild videos with 3D human skeletons anno-
tated from both video and IMU attached to the human. With 60 video sequences,
the diversity of the data is still minimal. The MPI-INF-3DHP [Mehta et al., 2017]
provides another 1.3 million frames from 14 cameras simultaneously capturing ac-
tors in the lab environments. The above datasets provide only 3D human skeletons,
thus containing minimal information about the body shape. Also, their capturing
methodology restricts them to very limited scenarios, clothing types, and lighting
conditions.
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FIGURE 3.1: Rendered images (top row) from AGORA dataset [Patel
et al., 2021a] and corresponding overlay of avatars (bottom row)

Several datasets provide full avatar reconstruction of the human body obtained
either from complex and expensive capturing systems - CAPE [Ma et al., 2020] or
EHF [Pavlakos et al., 2019] and have the same pitfalls as the datasets with 3D pose, or
use pseudo ground truth data optimized from visual cues and often suffer from the
severe inaccuracies. An example of the latter is the NeuralAnnot [Moon, Choi, and
Lee, 2022, Moon et al., 2023], which labels avatars from the ground truth annotations
like 2D and 3D joints in the other datasets.

3.1.2 Synthetic data from 3D engines

The promising approach for collecting large 3D annotated datasets is utilizing ad-
vances in the graphics pipeline and creating synthetic humans from the renders of
human 3D models. These approaches allow the collection of complete information
about the 3D data present in the image, from the human pose and shape to pixel-
wise mapping from the image to the surface of the human mesh. The significant
downsides are the quality of the renders, the complexity of creating human models
in diverse scenarios, and the complexity of clothing human avatars.

Some available datasets, which we collect from commonly used academic bench-
marks, like AGORA [Patel et al., 2021a], Surreal [Patel et al., 2021a], PeopleSansPeo-
ple [Erfanian Ebadi et al., 2022] provide hundreds of thousands of fully annotated
images, but suffer from the problems mentioned above with quality and diversity.
Ultrapose [Yan et al., 2021] utilizes commercial software for generating higher qual-
ity images, capturing 1 Billion points mapping from the images to 3D avatars for the
task of DensePose estimation, but does not release their dataset. Examples of scenes
with humans and corresponding true avatars from the AGORA dataset can be seen
in Figure 3.1.

3.2 Synthetic human generation

High-fidelity human generation through generative modeling was not possible un-
til the introduction of StyleGAN Human [Fu et al., 2022] based on StyleGAN-V2
[Karras et al., 2020] architecture for unconditional human generation. The method
can generate clothed humans, but the versatility of poses is quite limited, and the
generation quality is relatively low, often introducing strong visible artifacts such as
deformed faces and hands.

Introduction of text-to-image Latent Diffusion Models [Rombach et al., 2022,
Podell et al., 2023] trained on a large dataset of internet images LAION [Black et



3.3. SMPLer-X 13

FIGURE 3.2: Text prompt from the FIRST approach [Huang et al.,
2023] (top row) and corresponding generated image (bottom row)

al., 2023a] paired with the text description enabled high-quality generation of versa-
tile objects and scenes including humans. Synthetic data generated through condi-
tional generation utilizing diffusion models was shown to boost the performance of
the models in several tasks. For example, [Azizi et al., 2023, Sariyildiz et al., 2023,
Shipard et al., 2023, Tian et al., 2023] show how synthetic data can improve the per-
formance of the classification models, but are limited to only this problem.

The conditional generation of humans is also utilized to advance other tasks
through the generation of synthetic data. Recent method SewFormer [Liu et al.,
2023] used text-to-image translation to improve the quality of their rendered dataset
for sewing pattern prediction. In this way, they are able to obtain a dataset with
several millions of entries and train a model that achieves state-of-the-art in the pur-
sued task. On the other hand, FIRST [Huang et al., 2023] introduced a million-entry
synthetic dataset for text-driven fashion synthesis, allowing for a highly controlled
human generation process through detailed text descriptions. Yet, many essential
tasks like DensePose prediction or human 3D pose and shape estimation still lack
the attention of researchers and are bottlenecked by relatively small and not diverse
datasets.

3.3 SMPLer-X

Lastly, we review the state-of-the-art method for human SMPL-X mesh estimation
called SMPLer-X [Cai et al., 2023]. We chose this method for the experiments part
since it establishes a foundational model for the single human avatar estimation
task. The method unifies training on multiple datasets, both real-world and syn-
thetic, with different ground truth labels that include 2D and 3D joints and true
SMPL-X avatar parameters. This establishes a convenient framework for testing
multiple backbone models, providing different visual clues as ground truth data, as
well as comparing the performance of our synthetic dataset against other datasets
often used in the community.

SMPLer-X introduces a simple architecture based on the ViT backbone [Dosovit-
skiy et al., 2021]. The image is split into multiple patches that are flattened into the
tokens. Additionally, learnable task tokens are concatenated to the input, represent-
ing pose, shape, and camera prediction tokens. Significantly, SMPLer-X does not
directly predict SMPL-X parameters but first predicts the person’s root-relative 3D
joints, which are then sent to the avatar parameters prediction head. Furthermore,
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FIGURE 3.3: SMPLer-X architecture. Taken from [Cai et al., 2023]

separate branches are utilized to predict the hands and face joints and landmarks.
The high-level architecture of the SMPLer-X model can be seen in Figure 3.3.

SMPLer-X uses several loss functions to learn the model parameters. Firstly, it
introduces loss in the SMPL-X parameters space for pose, shape, and expression
parameters separately:

Lpose = ∑
i
|θi − θ̂i|

Lshape = ∑
i
|β − β̂i|

Lexpr = ∑
i
|ψ − ψ̂i|,

(3.1)

where θ, β, ψ are ground truth and θ̂, β̂, ψ̂ are predicted pose, shape and expression
parameters respectively. SMPLer-X also introduced loss function over the predicted
joints both in 3D and 2D.

L3D = ∑
i
||j3D

i − ĵ3D
i ||1

L2D = ∑
i
||j2D

i − ĵ2D
i ||1,

(3.2)

where j3D, j2D are ground truth and ĵ3D, ĵ2D are predicted 3D and 2D joints re-
spectively.

The joint loss function is calculated twice over the initial joint predictions and
the joints extracted from the built SMPL-X avatar.

The main contribution of SMPLer-X is unifying training on multiple datasets,
some of which have only 2D or 3D ground truth joints available. In such cases,
parameter loss functions are deactivated, and only joint loss functions are used for
training. SMPLer-X provides a comprehensive study of the quality of the datasets
used for the avatar estimation problem, as well as the scaling laws for the data points
used for training.

Unifying tens of datasets into one training is a tedious process, which requires
lots of data preparations and loss function balancing in the training phase. We hy-
pothesize that we can achieve results comparable to the SMPLer-X model with much
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simpler training on purely synthetic data, where all ground truth data is always
available.

3.4 Motivation for synthetic dataset creation

To sum up this chapter, we state the need for the creation of another synthetic dataset
for the human mesh recovery task. Current real-world datasets provide either in-
complete annotations for human avatar estimation or obtain their labels from the
sub-optimal optimization process. Existing synthetic datasets provide full annota-
tions and images perfectly aligned with them. Yet, they are expensive to obtain and
severely lack diversity.

At the same time, in-the-wild human pose and shape estimation from a single
image is a highly ambiguous task. Different 3D poses project to the similar 2D poses
in the image. Moreover, human bodies are often occluded by the wide clothing,
other people, or simply other objects. Thus, we need a dataset that simultaneously
provides complete labels, meaning that ground truth 3D human mesh is available
and is diverse and realistic enough to capture the real-world distribution of human
images. In this work, we show that such a dataset can be created with the means of
conditional generation utilizing Latent Diffusion Models.
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Chapter 4

Method

In this chapter, we describe the proposed approach for a controllable human genera-
tion with the intent of creating a synthetic labeled dataset for the task of human mesh
estimation. We start by explaining the chosen conditional image generation process
and move to the description of the label sampling process. Finally, we conclude
the chapter with the method for assessing the quality of the synthetically created
dataset.

More formally, our goal is to generate a dataset D:

D = {(x1, y1), (x2, y2), ..., (xm, ym)},

consisting of m image-label pairs where labels are ground truth SMPL-X avatar pa-
rameters. Most human mesh estimation methods [Cai et al., 2023] follow a top-down
approach, where first, humans are detected in the image with the off-the-shelf de-
tector. Then, avatar estimation is done on the tight crop around the detected person.
In this work, we follow this paradigm and focus only on a single human generation,
as such images will be enough to train a mesh estimation model that works in a
top-down manner.

Given a conditional generative model G(y) capable of generating images xi from
a condition yi, we start with sampling the labels yi ∼ Y from some label distribution
Y. Assuming that the produced image xi follows the yi, we can generate a dataset
D suitable for supervised learning on the downstream task. As our base genera-
tive model, we choose the Stable Diffusion 1.5 [Rombach et al., 2022] model, which
allows for high-quality controllability. Specifically, we use the Realistic Vision v5.1
[SG_161222, 2023] checkpoint of Stable Diffusion, which was fine-tuned for the real-
istic human generation.

4.1 Conditional image generation

First, we develop a methodology for controllable human generation from the SMPL-
X avatar using the adapter-based method of ControlNet [Zhang, Rao, and Agrawala,
2023]. We chose ControlNet for its ability to add spatial control to the generation pro-
cess in such a way that full retraining of the model is not required. Also, ControlNet
does not require large quantities of training data as is used in the training of the base
model. Usually, a few hundred thousand image-control pairs are enough to achieve
great results.

ControlNet is a method for spatial conditioning, meaning that it is excellent at
controlling the location and shape of the desired objects in the generated image. This
results from its conditioning mechanism, where spatial feature maps from Control-
Net are added point-wise to the spatial feature maps in the denoising UNet decoder.
Thus, to achieve conditioning from the SMPL-X human avatar, we need to render
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it to a 2D image. The rendering should also preserve some information about the
human’s 3D pose in the image.

The typical ControlNet training pipeline is straightforward in its nature. Given
a dataset of unlabeled images, we predict the conditional modality using an off-the-
shelf predictor and use it as a control input to the ControlNet. This approach works
well for such modalities as 2D human pose, semantic segmentation, or edges in
the image because state-of-the-art predictors provide estimates that are well-aligned
with the visual clues in the input image.

We follow such a training paradigm for SMPL-X avatars, where we utilize the
state-of-the-art avatar predictor for control estimation and show that it is sub-optimal
to do so. Next, we rely on the intermediate representation of the DensePose for
ControlNet training and show its superiority compared to the training on the direct
avatar estimates.

4.1.1 Color-coded rendering

We start with the naive ControlNet training approach. Given an unlabeled human
images dataset, we label it with a state-of-the-art avatar predictor SMPLer-X to form
image-control pairs. To preserve the information about human pose after the render-
ing, we color-code the avatar vertices with unique RGB colors that change smoothly
over the avatar surface. For this purpose, we directly map the X, Y, and Z coordi-
nates of the avatar vertices in the mean pose to the red, green, and blue channels of
RGB color. We call this representation a color-coded avatar render or CC-avatar for
short.

Such an approach does not provide a satisfactory result. As mentioned in Chap-
ter 2, human mesh estimation models suffer from a poor alignment problem with
the true human silhouette in the image. This results in the effect that our dataset for
ControlNet training has avatar renders that are quite severely misaligned with the
humans in the image. Consequently, ControlNet training becomes unstable, and the
resulting adapter model produces poor-quality final generations.

An example of training pairs for ControlNet with CC-avatars as an input condi-
tion can be seen in the first two columns of Figure 4.1. The image generated with
such a ControlNet model can be seen in the third column. It has severe misalign-
ments, especially in the shoulders, head, and arms of the human body.

FIGURE 4.1: Conditional image generation from CC-avatars. Left
to right: original image, estimated CC-avatar, generation from esti-

mated CC-avatar, overlay of the generated image with its control

4.1.2 DensePose intermediate representation

DensePose can be used as an intermediate representation for building a conditional
human generation model. Training ControlNet from the DensePose modality is
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FIGURE 4.2: Conditional image generation from DensePose. Left to
right: original image, estimated DensePose using [Güler, Neverova,
and Kokkinos, 2018], generation from estimated DensePose, overlay

of the generated image with its control

FIGURE 4.3: Conditional image generation from avatar rendered to
DensePose. Left to right: original image, estimated SMPL-X avatar
rendered to DensePose, generation from avatar DensePose, overlay

of the generated image with its control

much more appealing than from color-coded avatar render since there exists a pre-
dictor [Güler, Neverova, and Kokkinos, 2018] that can accurately estimate the Dense-
Pose part index. This predictor was trained on manually labeled correspondences
between the human body in the image and template mesh. Since no avatar estima-
tion is involved in predicting DensePose, such a part index map is well aligned with
the true silhouette of the human in the image.

The power of the DensePose-based ControlNet is that it can generate images
both from DensePose predicted directly by the neural network [Güler, Neverova,
and Kokkinos, 2018], as well as from 3D human mesh. This is because any SMPL or
SMPL-X avatar can be rendered into the DensePose representation, as the mapping
of mesh vertices to different body parts is completely pre-defined. The reverse state-
ment is not true since the mapping from the predicted DensePose to the SMPL-X
avatar parameters is not trivial. Figure 4.2 showcases the first scenario, where the
first two columns represent the training pairs for the DensePose-based ControlNet.
The second scenario is of high interest to us, as it allows mapping from the SMPL-X
avatar to the generated image that is well aligned with its control (see Figure 4.3).

To summarize, our ControlNet training and then conditional human generation
process for synthetic dataset creation looks as follows:

• Predict DensePose part indices on the unlabeled human dataset utilizing accu-
rate predictor.

• Train ControlNet adapter model for conditional human generation based on
well-aligned DensePose modality.

• Given any SMPL or SMPL-X avatar, render it to the DensePose and provide
it as input to the ControlNet to generate the human image accurately aligned
with the avatar.



4.1. Conditional image generation 19

One might argue that when rendering an avatar to the DensePose part indices
map, we might lose lots of 3D information about the human pose. Yet, we show that
due to the constrained nature of the human body and the text and image prompting
that we explain next, we can generate quite accurately aligned human images with
the provided avatar label both in 2D and 3D.

4.1.3 Handling occlusions

FIGURE 4.4: Handling occlusions in the generated images: original
DensePose prediction (top left), DensePose rendered from avatar pre-
diction (bottom left), generation w/o occlusion awareness (bottom
right), generation w/ occlusion awareness (top right) - right foot is

properly occluded

Another aspect we should consider is the occlusion of the human body by the
surrounding objects. The DensePose predictor [Güler, Neverova, and Kokkinos,
2018] learned to predict background in places where the human body is occluded,
except for self-occlusions or occlusions by the human cloth. This property is trans-
ferred to the ControlNet, which generates images from the DensePose. On the other
hand, avatars are always given in full length, if not limited by the image size. Thus,
when rendered, DensePose produced from the avatar ignores any occlusion. All this
results in the undesired effect that human bodies are always generated unobstructed
by our pipeline because avatars are always rendered to full, unoccluded DensePose
masks, and ControlNet learned that if the input control is full, the generation should
be unoccluded as well.

To alleviate this issue, we transfer occlusions from the original DensePose esti-
mate on the image to the DensePose obtained from the avatar. We keep DensePose
rendered from the avatar only in the area under the dilated original DensePose es-
timate. This accounts for small misalignments in both masks and simultaneously
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removes large chunks of rendered DensePose masks that should be occluded. The
effect can be seen in the figure 4.4.

4.2 Label generation process

FIGURE 4.5: Conditional human generation pipeline that preserves
the distribution of a base dataset. Top: We obtain the SMPL-X param-
eters from the state-of-the-art human mesh estimation method and
transform them to the occluded DensePose representation. Bottom:
Pose and shape condition are fused via ControlNet, while other as-
pects are encoded into the generation via cross-attention mechanism

from the original image and text prompt

4.2.1 Obtaining real-world labels distribution

Here, we describe the label generation process. We chose to sample the parameters
of the SMPL-X [Pavlakos et al., 2019] avatar from the SMPL [Loper et al., 2015] family
of parametric human body models, as it conveniently captures all the information
about the pose and shape of the human body, hands, and facial expression. Knowing
the true avatar associated with the human in the image, we can extract multiple
modalities to train the downstream model.
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We need to establish a label sampling process for the SMPL-X avatars, such that
the distribution of labels reflects the real-world distribution of the human poses,
shapes, and expressions. One approach could be to model the parameters of SMPL-
X avatars with simple distributions from which we can sample. However, there is no
theoretical guarantee that any choice of distributions for pose or shape will reflect
the real distribution of avatars. Moreover, if we use latent diffusion models like
Stable Diffusion, we can control the generation process by the text prompt as a part
of the condition. Establishing a reasonable text prompt for the sampled avatar is
non-trivial and cannot be directly obtained for a random avatar.

To alleviate the abovementioned problem, we directly obtain SMPL-X avatars
from real-world images with the existing predictor. Moreover, we select a dataset
with text captions already available. Starting with the large dataset of human im-
ages and corresponding text captions LAION-Face [Zheng et al., 2022], which is
a subset of larger LAION-400M [Schuhmann et al., 2021], we estimate the human
mesh SMPL-X parameter using state-of-the-art method SMPLer-X [Cai et al., 2023].
Obtained avatars cannot be directly utilized as pseudo-ground truth labels for the
given images because of their lack of accuracy. Yet, they reflect the real-world distri-
bution of avatars, and if we can generate images that follow those avatars precisely,
a desired synthetic dataset can be obtained.

This process can be seen as a dataset refinement. Firstly, we make predicting ŷi on
a large-scale unlabeled dataset {x1, x2, ..., xm} with the existing estimation method to
obtain inaccurate image-label pairs with the predictions D̂:

D̂ = {(x1, ŷ1), (x2, ŷ2), ..., (xm, ŷm)},

and then use controllable image generation procedure G(ŷi) to obtain images x(s)i
and compose from them synthetic dataset D(s):

D(s) = {(x(s)1 , ŷ1), (x(s)2 , ŷ2), ..., (x(s)m , ŷm)}

Figure 4.5 shows the overview of the pipeline for the controllable synthetic hu-
man image x(s)i generation with the preservation of pose, shape, and identity distri-
bution from the base image xi.

4.2.2 Changing the distribution

Obtaining labels from the model’s predictions on the large-scale dataset can reflect
the real-world label distribution but simultaneously capture biases learned by the
model. For the SMPLer-X human mesh estimator, we identify such bias in the shape
estimation, which is usually close to the mean shape, meaning that shape param-
eters β⃗ are close to 0. This bias in the model can be explained by how SMPLer-X
is trained. A large portion of the training data consists of only 3D skeletons, from
which estimating the true shape of the avatar is very hard.

To partially alleviate the problem, we change the shape parameters for each im-
age pair by independently sampling shape coefficients. Since parameters β⃗ are co-
efficients near principal components, we argue that the true distribution of human
shapes can be approximated by sampling each βi component independently from a
standard normal distribution and scaling it by the variance explained by the corre-
sponding principal component. Sampling the shape conditional on the other factors,
such as text prompt or pose, as well as alleviating other biases that might be present
in the avatar predictor we leave as the future work.
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4.2.3 IP-adapter conditioning

FIGURE 4.6: Introduction of the original image as an image prompt
through IP-Adapter. Left to right: original image, DensePose of pre-
dicted avatar, generated image w/o image prompt, generated image
w/ image prompt. IP-adapter allows to capture better such concepts

as clothing, gender, background, etc.

Additionally, we want to preserve the distribution of images as close as possible
to the original large-scale dataset LAION-Faces and remove biases that might be in-
troduced with the diffusion model, e.g., human skin color, lighting conditions, back-
ground, and clothing. Part of the information can be encoded in the text prompt, but
realistically, not all aspects of the image can be captured through a textual descrip-
tion.

Luckily, each generated image x(s)i is controlled by the label ŷi, which in turn was
estimated from the original image xi. Thus, we introduce additional conditioning
in the form of original image xi into the diffusion model through the IP-Adapter
[Ye et al., 2023]. IP-Adapter uses highly compressed CLIP-based [Radford et al.,
2021] representation of input image, which carries semantic information but loses
low-level details. This allows us to achieve conditioning on the human pose and
shape from our label while transferring semantics from the original image xi to the
generated x(s)i .

4.3 Avatar estimation

To showcase the applicability of our synthetic dataset, we utilize it for the down-
stream task of human mesh estimation in the form of SMPL-X parameter prediction.
To fairly compare against the competitors, we choose the architecture of the state-of-
the-art model SMPLer-X [Cai et al., 2023] and train it on our dataset.

4.3.1 Virtual Markers Prediction

We propose a minor architectural change to the SMPLer-X architecture to help shape
predictions. Originally, SMPLer-X first predicted the location of 3D joints, which
were then used as input to the pose parameters prediction head. The joints are di-
rectly supervised in addition to the avatar parameters to improve the stability and
speed of training.

Potentially, using synthetic data and precise knowledge of ground truth avatar,
one could build an architecture where each individual vertex is predicted in a similar
manner to joints. However, this might be redundant and very inefficient as there is a
large number of vertices (∼10k) compared to tens of joints, and a 3D heatmap needs
to be predicted for each vertex.
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Therefore, following VirtualMarker [Ma et al., 2023], we introduce additional
intermediate predictions into the model in the form of markers. Markers are simply
a small set M = 64 of vertices fixed on the mesh surface. Compared to joints, they
are influenced more by the shape variations of the human body, thus helping with
predicting shape parameters. Yet, they are sparsely located on the mesh surface,
making them an efficient representation of the human body. We predict joints and
markers at the same time and send markers to the shape parameters prediction head
as additional input. The loss functions on markers are analogous to the joint loss
functions described in chapter 3. Markers are supervised both in 3D and 2D, directly
and after reconstructing them from predicted avatars.

Lm
3D = ∑

i
||m3D

i − m̂3D
i ||1

Lm
2D = ∑

i
||m2D

i − m̂2D
i ||1,

(4.1)
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Chapter 5

Experiments and Results

Below, we provide a list of experiments and results that showcase the effectiveness
of using synthetic data for human mesh estimation. We start by describing the setup
and specific parameters of various pipeline components, like ContolNet training,
controllable generation, and finally, SMPLer-X model training. Then, we move to
the exploration datasets and metrics used for evaluation and compare the results of
various approaches and proposed improvements.

5.1 Experimental Setup

The pipeline consists of multiple stages, and here, we provide the necessary exper-
imental setups for each of them. All the experiments are implemented in PyTorch
[Paszke et al., 2019] framework, and the Stable Diffusion Model inference code is
called through the Diffusers Library [Platen et al., 2022].

Also, we use a subset of the LAION-Faces dataset [Zheng et al., 2022] throughout
our experiments. We filter images where humans are visible in large enough reso-
lution, and at least half of their body is visible based on the detected 2D joints and
arrive at ∼300k images. The dataset is used both for ControlNets training and as a
basis dataset for deriving synthetic datasets.

5.1.1 ControlNet learning

We train the ControlNet [Zhang, Rao, and Agrawala, 2023] model for the Stable
Diffusion 1.5 base model on two different modalities - color-coded SMPL-X avatars
and DensePose part index segmentation. We train on the subset of the LAION-Faces
dataset labeled with SMPLer-X (ViT-L) for the color-coded avatar representation. For
DensePose, we use the original model [Güler, Neverova, and Kokkinos, 2018] based
on the Mask R-CNN architecture [He et al., 2018].

The training was done on 4 Nvidia RTX 3090 GPUs with an effective cumulative
batch size of 32 for 2 training epochs. ControlNet is known for its sudden conver-
gence effect, which was observed after the end of the first epoch. For training, the
images were augmented by random scaling, cropping, and rotations and resized to
the size of 512px by 512px.

5.1.2 Dataset generation

The ControlNet models are used to allow for controllable generation with the SD
model. Once again, we predict avatars on the LAION-Faces dataset and render the
predicted avatars to the color-coded and DensePose part index representation. The
controllable generation pipeline is used for image generation. We use the DDIM
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scheduler [Song, Meng, and Ermon, 2022] and set the generation length to 20 itera-
tions. Also, when used, the IP-Adapter influence scale is set to 0.8. We also employ
the FreeU [Si et al., 2023] method for improving the generation quality and Deep-
Cache [Ma, Fang, and Wang, 2023] for speeding up the generation by caching inter-
mediate UNet activations between different denoising steps. Both of the approaches
do not require any base model training and can be easily integrated with other com-
ponents used for conditioning. The generation image size of the smaller image side
is set to 512, while the larger one is set such that the aspect ratio of the original image
is preserved.

We call the dataset generated with the color-coded SMPL-X avatar and Dense-
Pose based ControlNets LAION-Synth-300k-CC and LAION-Synth-300k-DP, respec-
tively.

5.1.3 SMPLer-X training

We train the SMPLer-X model only on our synthetically generated dataset, which
removes a lot of the complexity of the original SMPLer-X training. Most of the ex-
periments are done on the model with ViT-S backbone to compare it fairly against
individual dataset training setups of the original SMPLer-X model. We also train the
model with ViT-H backbone to compare against state-of-the-art SMPLer-X, yet re-
sults on the individual real-world datasets are not available. The backbones are ini-
tialized with the weights of the ViTPose model [Xu et al., 2022], which has learned to
predict 2D human joints in the image and is the closest related task to human mesh
estimation with such large-scale foundational models available.

In all setups, the model was trained on 6 Nvidia RTX 3090 GPUs for 10 epochs,
with a training cumulative batch size of 16 and an input image shape of 512 by 384
pixels cropped around the human bounding box. We use Adam optimizer [Kingma
and Ba, 2017] for model training.

5.2 Results

5.2.1 Evaluation datasets

Following the SMPLer-X work, we evaluate our method on 3 different real-world
datasets with ground truth SMPL or SMPL-X avatars available: EHF [Pavlakos et
al., 2019], EgoBody (EgoSet) [Zhang et al., 2022], UBody [Lin et al., 2023].

EHF

The dataset consists of 100 images of a single subject in the laboratory environment
with ground truth avatar parameters available. The poses are diverse, but the shape
is not. The dataset has only a test subset and no training or validation subsets.

EgoBody (EgoSet)

EgoBody is a large-scale dataset with the subject’s videos captured from the first-
person view. For efficient evaluation and to skip consequent frames that are almost
identical, we subsample only 1 in 100 frames from the test set, arriving at 3000 test
images.
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UBody

Similarly to EgoBody, UBody is a large-scale dataset with subject videos that covers
15 real-world scenarios. Again, for efficiency reasons, we subsample only 1 in 1000
frames from the test set, arriving at 9000 test images.

SSP3D

Additionally, we do ablations on the SSP3D [Sengupta, Budvytis, and Cipolla, 2020]
dataset, which includes 311 images of athletes images. The main value of the dataset
is in its diverse poses and shapes that athletes possess. Thus, it is great at evaluating
the shape estimation capabilities of the models.

The SSP3D dataset was included in the training dataset of the original SMPLer-X
model. Therefore, we cannot use the metrics of the original SMPLer-X on this dataset
to compare it to our model. We only use SSP3D for internal ablations.

5.2.2 Evaluation metrics

We follow the standard practice of evaluating human mesh estimation methods.
Comparison in the parameters space of SMPL-X avatar is meaningless, thus we eval-
uate the differences of avatars build from those parameters. Two primary metrics in-
clude Per-Vertex Error (PVE) - the mean difference between corresponding vertices
of true and predicted avatar aligned by the location of root joint, and Procrustes-
Aligned Per-Vertex Error (PA-PVE) - which is simply PVE after finding optimal rigid
alignment between two avatars.

PVE =
1
|V|

|V|

∑
i
||⃗vgt − v⃗pred||

PA-PVE =
1
|V|

|V|

∑
i
||⃗v(PA)

gt − v⃗(PA)
pred ||

(5.1)

For the SSP3D dataset, we only want to measure the accuracy of the shape. For
that purpose, we calculate PVE on the avatars in zero pose, meaning that we set pose
parameters to zero and keep only the shape parameters untouched when construct-
ing the avatars. This effectively takes into account only shape during evaluation. We
call this metric PVE-S, standing for Per-Vertex Error Shape.

5.2.3 Experiments results

We start with the comparison of the conditioning modality for the ControlNet, namely
comparing two versions of synthetic datasets, LAION-Synth-300k-CC and LAION-
Synth-300k-DP. For this purpose, we train on both datasets the SMPLer-X model
with ViT-S backbone and compare on three proposed evaluation datasets. The re-
sults can be seen in table 5.1. The DensePose-based dataset clearly outperforms the
Color-Coded Avatar-based dataset, verifying visual clues that poor alignment dur-
ing ControlNet training results in poor controllability. The next experiments will
involve only DensePose-based conditioning.
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TABLE 5.1: The quantitative evaluation of the quality of synthetic
data generated by different conditioning modalities. LAION-Synth-
300k-CC represents the dataset created by ControlNet, taking as in-
put color-coded SMPL-X avatars, while LAION-Synth-300k-DP takes
as input DensePose estimates. Datasets are compared by reporting

metrics of the SMPLer-X (ViT-S) model trained on them

Synthetic Dataset ↓ EHF EgoBody UBody
PVE PA-PVE PVE PA-PVE PVE PA-PVE

LAION-Synth-300k-CC 120.51 93.12 168.32 112.30 154.29 97.16
LAION-Synth-300k-DP 97.84 60.94 129.81 81.62 112.78 54.65

Next, we evaluate the changes aimed at fixing the label distribution and infusing
additional training signals into the model. In particular, we test the impact of re-
sampling the shape parameters and generating the LAION-Synth-300k-DP-Shape-
Resampled version of the dataset and the introduction of virtual markers into the
training signal, as well as an additional input to the shape parameters prediction
head. The results can be seen in table 5.2. Adding markers to the training and
resampling shape distribution improves the quality on multiple evaluation dataset
datasets, but decreases metrics on the EHF. This can be explained by a single sub-
ject present in this dataset, with a shape close to the mean human shape. Decreases
in errors on the SSP3D dataset, where shape variations in the human body are the
most prominent, prove the effectiveness of proposed improvements for the shape
estimation capabilities of the model.

TABLE 5.2: The quantitative evaluation of fixing shape distribution
in the synthetic dataset and introduction of additional virtual mark-
ers modality. Reported metrics represent the quality of the SMPLer-X
(ViT-S) model trained with the specified method. S. r. stands for re-

sampled shape in dataset distribution

Method ↓ EHF EgoBody UBody SSP3D
PVE PA-PVE PVE PA-PVE PVE PA-PVE PVE PA-PVE PVE-S

Baseline 97.84 60.94 129.81 81.62 112.78 54.65 116.26 76.39 53.58
w/ s.r. 102.37 60.55 129.30 81.63 112.33 54.62 113.82 74.92 50.15
w/ markers 103.15 60.67 127.23 79.70 112.42 53.15 111.27 73.63 49.82
w/ s.r. + markers 105.59 60.63 127.01 79.46 111.73 52.70 106.85 72.07 50.9

Moreover, we compare our model (without markers) with the metrics of mod-
els trained on individual synthetic datasets. For comparison, we choose five syn-
thetic datasets created in the gaming engines BEDLAM [Black et al., 2023b], SynBody
[Yang et al., 2023], AGORA [Patel et al., 2021b], GTA-Human II [Cai et al., 2022], and
SPEC [Kocabas et al., 2022]. The sizes of datasets range from 72k instances in SPEC
to 1802k instances in GTA-Human II. For all except our dataset, the metrics are taken
from [Cai et al., 2023] and are reported in table 5.3. Our dataset shows comparable
and sometimes even better performance compared to other synthetic data, which
shows its effectiveness in training human mesh estimation models.

Finally, we train a SMPLer-X model with ViT-H backbone to compare against
the state-of-the-art SMPLer-X model. Importantly, the original SMPLer-X is trained
on 32 datasets and learns on training subsets of EgoBody and UBody as well. This
makes the comparison of validation subsets of these datasets unfair with regard to
our model, which never saw any of these datasets. Yet, we present the metrics in
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TABLE 5.3: The quantitative evaluation of model trained on our
LAION-Synth-300k-DP-Shape-Resampled dataset against other syn-

thetic datasets.

Training Dataset ↓ EHF EgoBody UBody
PVE PVE PVE

BEDLAM 81.10 109.10 132.50
SynBody 112.90 136.60 144.60
AGORA 164.60 138.40 128.40
GTA-Human II 126.00 139.20 143.70
SPEC 197.80 154.80 146.10
Synth-300k-DP-SR 102.37 129.30 112.33

table 5.4 and show the gap that still exists between our best model and state-of-the-
art. We do not compare on the SSP3D dataset as it was part of the training data
for the original SMPLer-X. Qualitative results of our best model predictions on the
unseen images are shown in figure 5.1.

TABLE 5.4: The quantitative evaluation of model trained on our
LAION-Synth-300k-DP-Shape-Resampled dataset with ViT-H back-
bone against state-of-the-art SMPLer-X model trained on 32 datasets.

Training Dataset ↓ EHF EgoBody UBody
PVE PVE PVE

32 datasets 56.80 59.50 54.50
Synth-300k-DP-SR 74.31 99.12 90.49
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FIGURE 5.1: The qualitative results of SMPLer-X ViT-H model trained
on Synth-300k-DP-SR dataset
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Chapter 6

Conclusions

6.1 Contribution

In this work, we propose a novel approach to generating a dataset for human pose
and shape estimation tasks in the form of SMPL-X avatar parameters prediction. To
our knowledge, we are the first to utilize purely synthetic data generated by the
Latent Diffusion Model through a conditional generation process for this task.

• We develop a method for controllable synthetic human generation based on
the DensePose representation and show its superiority compared to naive gen-
eration based on avatar renders.

• We train the human mesh estimation model SMPLer-X purely on our synthetic
data. We show that the results of a model trained on our dataset are com-
parable and sometimes even superior to the model trained on other synthetic
datasets utilized for human avatar regression methods.

• In contrast with other synthetic datasets, our dataset generation process does
not involve a human for its creation. Also, it is not limited in diversity by the
attributes predefined by the computer graphics artist.

6.2 Limitations & Future Work

Due to limited computational resources, we did not experiment extensively with
the scaling laws for our dataset size. Also, we utilized Stable Diffusion 1.5, which
might not be optimal considering the existence of a larger model SDXL [Podell et al.,
2023], which requires a much more computational budget for ControlNet training
and further generation but consistently provides better results. Moreover, we did
not propose any human identity preservation in our dataset creation process, as it
might leak into the generated image, especially with the usage of the original image
as a prompt for the generation.

In future work, we plan to mitigate those limitations. We plan to extend the
model to generate and then perform human mesh estimation on multiple people in
the image at the same time. Also, we plan on extending the controllability of gen-
eration for camera parameters as well, which might help in the camera estimation
process as a subtask of human mesh recovery.

Lastly, we plan to resample other factors in the generation process, similar to
what we did with shape parameters. We plan to resample pose distribution for
complex poses and evaluate the method on datasets with non-trivial human pose
distributions. Also, more careful evaluation of human hands and head estimation
capabilities is needed.
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