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Abstract

Decreasing the number of retrofitting recommendations based on building stock
data without using expensive and computational-consuming UBEM models or en-
ergy advisors’ work could allow upscale of retrofitting decision-making for cities
or districts and also for smaller units, such as associations of property owners or
development companies.

Despite the extensive amount of research in building rennovaiton area, the ques-
tion of decreasing the number of retrofitting measures, that should be validated for
every single building is commonly out of the research interests area.

This work aims to investigate an approach to identify feasible retrofitting recom-
mendations for existing building stock using data-driven approaches and machine-
learning techniques based on urban-level datasets.

We approached the problem as a classification task using the Swedish EPCs
dataset as data input and created a dataset for using retrofitting measures recom-
mendation from EPCs declarations as classification labels.

In this study, we tested multi- and single-label classification approaches and var-
ious classification algorithms. Results confirmed that this research area is promising,
but obtained classification performance is insufficient for the industry usage. The bi-
nary classification on single retrofitting measures achieving high precision, but low
recall. This makes this method possible to be used in the task of enhancing building
stock datasets with missing retrofitting measures.
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Chapter 1

Introduction

1.1 Motivation

The United Nations’ Sustainable Development Goals emphasize the critical role of
improving building energy performance in global energy and emissions reduction
efforts. Urban environments are the largest energy consumers globally (Deb and
Schlueter, 2021), and use up to 70% of all primary energy (Johari, Shadram, and
Widén, 2023).

To reach energy and climate goals on the city level, there is a pressing need to en-
hance the buildings’ energy efficiency and reduce related greenhouse gas emissions.
In Europe, the aging building stock, with over 35% of buildings being over 50 years
old (Ali et al., 2020), what further complicates this as only a tiny percentage undergo
retrofitting annually and a significant part of the current global building stock will
still be in use by 2050 (Deb and Schlueter, 2021). The steady increase in energy use
in buildings, especially in developing countries, highlights the urgency of more ef-
ficient building retrofit methodologies. This approach is a key to meeting the Paris
Agreement’s (The Paris Agreement, 2015) emission-reduction targets.

Upgrading existing dwellings presents several challenges, including the high
costs involved, the complexity of determining the most effective intervention strate-
gies, and the execution difficulties associated with large-scale retrofit projects. De-
velopment of a renovation plan for the specific building may be represented as a
process that includes choosing relevant energy conservation measurements from all
possible options that can be applied to the building, estimating the impact from
an energy-saving standpoint, and validating each option as optimal or not based
on the impact and renovation constraints, such as costs, feasibility for the specific
building characteristics, etc (Ma et al., 2012). The process of selecting a feasible list
of retrofitting measures for the specific building, described by Ma et al., 2012, is
schematized in Figure 1.1

The energy simulation approach is commonly used to choose a feasible list of
retrofitting measures from all possible ones for the building. Building Energy Mod-
eling (BEM) for individual buildings is a way to simulate energy consumption based
on building characteristics. Urban Building Energy Modelling (UBEM) tools allow
energy demand simulation on a large scale (Ferrando et al., 2020). Such methods
focus on energy modeling and consider retrofitting recommendations that can be
estimated within a specific modeling tool and validate chosen recommendations us-
ing computational approaches. This may lead to over-generic recommendations,
especially on the urban scale, due to the high uncertainty factors in the modeling
process.

The scaling question is important not only for the urban level but also for the
availability of the recommendation process for individual building owners. Due to
the complexity and costs of creating an individual building model and especially
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FIGURE 1.1: Selecting feasible retrofitting measures for the specific
building (Ma et al., 2012)

upscaling it to the urban level, testing retrofitting recommendations utilizing BEM
or UBEM processes is far from optimal.

This leads to the conclusion that the step "Identifying possible retrofit measures"
(Figure 1.1) is a crucial part of providing applicable retrofitting recommendations,
specifically on a large scale. Validation of all possible retrofitting measures is not
effective since some of them cannot be applicable to the specific building. A com-
mon practice to form the list of possible retrofit measures is either using the mea-
sures supported by the selected energy emulation tool or forming the list of possible
retrofit measures can be done by energy advisors. As an expert work, the results
provided by energy advisors are more accurate, but the throughput of the advisors
is insufficient to handle all the building stock. According to the "In-depth follow-
up municipal energy and climate advice, 2022"1, not more than 25% of all incoming
recommendations were handled.

1.2 Research Objective

This thesis aims to optimize the step "Identifying possible retrofit measures" (Fig-
ure 1.1) and develop an approach to identify possible retrofitting recommendations
based on the building information and characteristics at the urban scale. Decreasing
the number of possible retrofitting options will optimize the process of choosing fea-
sible measures both for the energy modeling approach or by energy advisors - fewer
input retrofitting options for validation means increasing the number of handled
declarations.

Taking Stockholm building stock as a case study, we propose a data-driven ap-
proach that takes the same UBEM data as input and a classification approach to
choose possible retrofitting recommendations based on the available list of recom-
mendations from Swedish Energy Performance Certificates (EPC) data.

1In-depth follow-up municipal energy and climate advice (EKR) 2022.
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We formulated the set of research questions that we will investigate in the exper-
imental part of our work:

• Validate that the classification approach is applicable to choosing possible retrofitting
measures based on the building stock data without using the building energy
demand evaluation

• Identifying the whole set of retrofitting recommendations for the specific build-
ing using multi-label classification methods

• Identifying a single retrofitting recommendation using classification methods

• Validate the hypothesis that splitting data based on natural criterion may im-
prove the classification performance

1.3 Structure of the thesis

In Chapter 2, we review related works in the area of building stock retrofitting.
Chapter 3 includes a gap analysis, problem definition, and proposed solution along-
side experiment and evaluation setting. Chapter 4 contains the initial data overview
and the process of forming datasets for experiments with their main characteristics.
Chapter 5 outlines a detailed overview of the experiments. Chapter 6 concludes the
work by summarising our results and outlining possible future research directions.
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Chapter 2

Literature review

Developing renovation strategies for existing building stock is a multifaceted task
that can be considered from different research areas’ perspectives. In the scope of
this research, we focused on data-driven approaches and machine-learning tech-
niques used for retrofitting planning. Since building energy modeling (BEM) and
Urban Building Energy Modeling (UBEM) commonly focus on building retrofitting
tasks, specifically an impact estimation, research studies in these areas cannot be
separated from building retrofitting recommendations development completely. At
the same time, this research implies the usage of data input similar to the one uti-
lized in UBEM, specifically EPC data. We will omit details of UBEM approaches,
and while analyzing building energy modeling studies will primarily focus on the
UBEM input data.

2.1 Data-Driven and Machine Learning Approaches in Build-
ing Retrofitting Recommendations

Retrofitting recommendations analysis is a similar process to building energy mod-
eling. Grillone et al. (2020), in their review distinguish three main groups of methods
to predict energy demand or retrofitting strategies planning: Deterministic methods,
which incorporate building energy simulation (BES) approaches with modifications;
Hybrid methods represented BES in combination with data-driven techniques and
Data-driven approaches focused on providing recommendations based on collected
data. Approaches used in reviewed studies focus on providing retrofitting recom-
mendations using energy measurements as criteria to identify retrofitting recom-
mendations.

With a widespread of machine learning techniques, they are often used in en-
ergy modeling and retrofitting planning. Shu and Zhao (2023), in their review, listed
the most common approaches for decision-making in urban retrofitting for energy
performance optimization. According to this review, Energy simulator-based, and
Optimization modeling-based approaches are the most common. They are based on
the usage of Energy simulation software or custom simulation or optimization mod-
els, including analytical techniques and machine learning approaches. In the review
of data-driven approaches in building energy retrofitting, Alrobaie and Krarti (2022)
mentioned that the popularity of data-driven techniques has steadily grown over
the last decade. They analyzed the following data-driven approaches and ML tech-
niques and their applications for building energy consumption predictions: Linear
Regression, Decision Tree, and Ensemble Methods, including Random Forest, Gra-
dient Boosting Machine, Support Vector Machine, Artificial Neural Network, and
Kernel Regression.
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Despite the fact that Building Energy Modeling (BEM) techniques are commonly
used to define suitable retrofitting solutions, there are shortfalls in them, which pro-
vide room for improvements. Pan et al. (2023) investigated approaches and methods
used to evaluate building energy performance on individual and urban levels. The
general drawbacks of approaches based on simulation techniques are the require-
ment of detailed buildings’ physical characteristics, a large amount of energy data
and related data, and complexity in model development.

Analyzing studies in building retrofitting area we can conclude that machine-
learning techniques have become more and more common. However, identifying
retrofitting plans using energy modeling is a common approach. Thrampoulidis
et al. (2021) proposed a surrogate Artificial neural network-based model to predict
retrofit solutions for residential buildings, which decreased computational time ten
times. In further research, this model was used on a large scale to provide optimal
retrofit solutions for Switzerland’s building stock (Thrampoulidis, Hug, and Ore-
hounig, 2023). Biessmann, Kamble, and Streblow (2023), in their study, used the
AutoML model to predict energy consumption and energy saving of large public
buildings. Classic linear approaches are applicable as well. For instance, Pedone
et al. (2023) proposed a framework based on a multi-linear prediction model to plan
energy refurbishment of school buildings in Italy.

Ensembling different ML models is also regularly used. Zhang et al. (2022) pro-
posed a data-driven framework to find an optimal retrofitting plan for a specific
building. They developed an Artificial neural network (ANN) model to predict
building energy performance with different retrofitting packages and used a multi-
criteria decision-making algorithm to choose optimal retrofitting recommendations.
To mitigate the lack of data or low data quality, different techniques of datasets en-
hancement are used. For instance, Feng et al. (2022) in their study proposed an
approach for retrofit strategy analysis based on the data imputation method and
energy performance calculation with Bayesian neural network and Fuzzy C-means
clustering for Swedish building stock.

TABLE 2.1: Overview of the data sources and approaches used for
retrofitting recommendations

Input data Method for
retrofitting
measures’
selection

Approach Features
validation

Reference

Building
characteristics

Supported by
used UBEM
models

Surrogate
ANN-based
ML model

Only model
results vali-
dation

Thrampoulidis
et al., 2021

Building
archetypes
Climate data

Supported by
building sim-
ulation tool

ANN models
ensemble

Only model
results vali-
dation

Thrampoulidis,
Hug, and
Orehounig,
2023

Building fea-
tures
Yearly aggre-
gated climate
data

Used energy
consumption
optimization
coefficient
without spe-
cific features

AutoML
model

Energy mod-
eling valida-
tion only

Biessmann,
Kamble, and
Streblow, 2023
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Building
characteris-
tics

Selected
from possible
recommen-
dations
according to
New York
City’s Local
Law 87

FRL classifi-
cation model

ROC AUC
score

Marasco and
Kontokosta,
2016

Building
characteris-
tics

Supported
by building
energy mod-
elling tools
HOT2000
and HTAP

ANN model
for energy
consumption
evaluation
Multi-criteria
decision-
making
algorithm

Pareto opti-
mal retrofit
solutions by
reducing car-
bon emission
and lyfe cycle
costs

Zhang et al.,
2022

Geometry
data
Building
thermal
properties
Weather data

Predefined
features
based on
earlier re-
searches

Multi-linear
regression
model

Prioritise
retrofitting
scenario
based on
energy per-
formance
tool simula-
tion results

Pedone et al.,
2023

EPC data Retrofitting
strate-
gies from
Swedish EPC

Bayesian reg-
ularization
backpropa-
gation neural
networks
(BRBNNs)
Fuzzy C-
means
clustering
(FCM) for
performance
modelling

Energy mod-
eling results

Feng et al., 2022

Building
properties

Retrofit
recommen-
dations for
EPC rating
improve-
ment

Gradient
boosted
regression
tree

Estimate
building
energy per-
formance

Seyedzadeha et
al., 2020

Building
stock data,
EPC
Weather data
Census

Based on
EPC data

Ensemble
Gradient
Boosting
algorithm
(XGB, LGBM,
and HGB)

Buildings en-
ergy model-
ing apporach

Ali et al., 2024
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2.2 Data sources in energy and building retrofitting model-
ing

Choosing the proper data is a crucial and fundamental step. In building retrofitting
modeling, a common approach is to mix data sources and create extended datasets
for modeling. For instance, Ali et al. (2020) utilized a complex approach in pro-
posed data-driven retrofit modeling for Dublin’s building stock. Their methodol-
ogy contains various input data types, including geometric and non-geometric fac-
tors, building energy performance indices, statistical data, retrofit measure costs,
and retrofit expert reports.

Common examples of possible data sources includes, but not limited to

Building stock databases and analysis projects. A range of European and inter-
national level projects are dedicated to the collection and analysis of building stock
data. Ali et al. (2019) in their review listed such initiatives like ODYSSEE-MURE
(2019), Eurostat (2019), TABULA (2019), ENTRANZE (2019), and BPIE (2019). For in-
stance, TABULA (2019) - The Typology Approach for Building Stock Energy Assess-
ment - aimed to create a comprehensive database encompassing various European
building typologies.

Surveys, census, and metering data. According to Ali et al. (2019), census and
survey data are crucial resources for data collection within building stock analysis.
Metering data is also often used for building stock clusterization.

Climate data Climate data represents the location-specific data. This kind of input
includes air temperature, relative humidity, wind, diffuse and direct solar radiation,
and other similar information that can be obtained from meteorological databases
and geographical information systems.

Energy Performance Certificates Improving building energy performance is a key
focus of the EU’s energy and climate policy. The Energy Performance of Buildings
Directive (EPBD), initiated in 20021 and revised in 20102, is the primary mechanism
for this improvement. The directive covered various strategies, including new build-
ing codes, energy retrofitting of existing building stock, creating financial incentives
for energy efficiency, and influencing consumer behavior. A central component of
the EPBD is the Energy Performance Certificate (EPC). In the EPBD 2022 the EU Par-
liament defined EPC as “a certificate recognized by a Member State or by a legal
person designated by it, which indicates the energy performance of a building or
building unit”. EPC contains detailed information on a building’s energy use, in-
cluding data on building reference, geometry, audit methodology, energy consump-
tion, system installations, and energy efficiency recommendations.

Dahlström, Broström, and Widén (2022) mentioned EPC as an essential resource
in the EU, which is used for real-estate analysis projects, national and city-level de-
cision planning, and the buildings energy modeling areas. According to Pasichnyi
et al. (2019) EPC data is commonly used in most building energy modeling related
research studies and projects. In the review of 79 papers thirteen possible problem
domains were identified, where EPC databases can be applied, including evaluation

1DIRECTIVE 2002/91/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 2002.
2DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 2010.
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and predictions of energy demand, urban planning, building design, retrofitting,
etc. For instance, Ferrantelli and Kurnitski (2022) tested different methods for en-
ergy performance labeling using data from the Estonian EPC database. Applying
different EPC labeling methods prescribed by the EU, they estimated retrofit and
renovation rates, CO2 emissions reduction, and energy saving.

2.2.1 Conclusion

In this section, we presented a review of used data-driven and machine-learning ap-
proaches as well as used input data overview for providing retrofitting recommen-
dations and evaluation of building energy demand. Table 2.1 provides an overview
of data inputs and retrofitting recommendations approaches in reviewed studies.
Most of the studies do not focus on the process of selecting possible retrofitting mea-
sures before energy modeling and using energy modeling approach to form a list of
prioritised retrofitting options.
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Chapter 3

Methodology

3.1 Research Gap and Problem Formulation

In current practice, the decision-making about building retrofitting is quite a chal-
lenging task that contains several stages, including selecting applicable and feasible
retrofit options based on the specific building characteristics, modeling the effect of
chosen retrofitting options, and figuring out the optimal renovation actions solutions
according to goals and limitations. Building stock retrofitting is affected by many
uncertainty factors, like building-specific information, retrofit technologies, human-
behavior factors, climate, and many others. A good estimate of uncertainty factors
is crucial for choosing the most effective retrofitting options aimed at maximizing a
building’s energy efficiency throughout its entire lifespan (Ma et al., 2012).

Most of the reviewed studies use the modeling of building energy demand to
evaluate the quality of provided recommendations (Table 2.1). This requires devel-
oping a detailed physics building model or UBEM usage for large scales like cities
or districts (Ali et al., 2024). These approaches are computationally consuming, and
creating such models is meticulous work. Additionally, validation of the selected
retrofitting features is often done by the energy demand simulation result. The step
of selecting the feasible retrofitting options for the specific building or building stock
is commonly skipped or does not include the analysis of the building stock but is
based on the computational and simulation model characteristics and possibilities.
This leads to two possible edge cases - when retrofitting options might be either not
considered but is feasible or modeled and estimated but not feasible for the specific
building.

Decreasing the amount of applicable retrofitting options is commonly skipped
but is a viable step in the building renovation strategies development process. For
a specific building, this can reduce computational time and resources for energy
simulation tools. Energy modeling on a large scale often uses the concept of build-
ing archetypes or reference buildings, which represent a group of similar buildings
stock. In this case, choosing a feasible set of retrofitting options becomes essen-
tial, especially when not all retrofitting scenarios can be implemented for every real
building.

Defining the possible list of recommendations is quite challenging and often re-
quires an energy or building audit (Ma et al., 2012). One of the possible solutions
is using retrofitting scenarios provided by national or urban levels. For instance,
Marasco and Kontokosta (2016) used energy conservation measurements based on
US Energy databases, Ali et al. (2024) based the selection of discovered retrofitting
options on Ireland’s EPC data.

Reducing the number of possible retrofitting approaches before building audit
or energy modeling will reduce the cost and time spent on development renova-
tion strategies. To solve this, we aim to develop a data-driven approach that will
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be able to identify possible retrofitting measures based on the building information
and characteristics at the urban scale. This short list of retrofitting measures will
be further used to form a list of prioritized retrofitting recommendations by energy
modeling. Figure 1.1 provides the general process schema.

Considering the research questions outlined in Section 1.2, we set the following
goals:

• for prediction of the whole set of retrofitting measures for the building - cor-
rectly identify more than 90% of feasible retrofitting measures

• for prediction of the single retrofitting measure - identify the retrofitting mea-
sure for more than 90% of the tested building stock

3.2 Research Setting and Approach to Solution

We outlined the aim of our research as identifying possible retrofitting measures for
the specific building from the whole set of retrofitting measures based on the build-
ing information and characteristics. The important point here is that there is no aim
to provide a final recommendations list for the building but to narrow down the list
of all possible retrofitting measures that can be estimated for the building to the list
of feasible for this building. All further usage of retrofitting recommendations term
means the applicable list of retrofitting measures for the building. Further evaluation
of the feasible retrofitting measures and providing a prioritized list of retrofitting
recommendations are not in the scope of this research.

Approach to Solution We frame our primary task as using a binary classification
approach to identify retrofitting recommendations for buildings at an urban scale
based on the building stock data. We take Sweden Energy Performance Certificates
(EPC) data as source data about the building stock. EPC data in Sweden contain over
thirty possible recommendations for retrofitting measures to improve building en-
ergy performance, Section X in Table A.3. They are divided into three main groups:
Building energy efficiency enhancements, infrastructure upgrades, and control and
efficiency technologies. These recommendations are represented as binary values, so
the value for each retrofitting measure recommendation can be either True or False.
The binary nature of the recommendations values allows us to consider these rec-
ommendations as labels assigned to buildings and apply classification methods to
building stock data to predict these labels.

We start with cleaning the raw EPC data and forming two dataset versions for
further processing. We then experiment with multi- and single-label classification
methods. Also, we tested the natural-based data split approach to improve perfor-
mance.

We conclude experiments for predicting retrofitting recommendations by com-
paring the results obtained in the same setting. We conclude our work by discussing
the results and the directions for further research.

Experiment Setting

Compiling datasets After initial data cleaning and forming a base dataset from the
raw EPC data, we compile two dataset versions with different representations of se-
lected features. EPC data contains information about both implemented retrofitting
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measures and retrofitting recommendations. We will use retrofitting recommenda-
tions as binary labels (Section X in Table A.3), and information about implemented
retrofitting measures (Section IX in Table A.3) will be included in building info.

Data spliting Building stock data contains several splitting parameters that allow
data to be distinguished into groups and to test the research hypothesis that natural
data splitting may improve classification performance.

There are two splitting criteria:

• by the building category - based on the idea that constructionally different
types of buildings require different retrofitting options, for instance, small one-
or two-family houses versus dwellings higher than two floors

• by the year of construction - this split is driven by the historical nuances of
the development of the housing market in Sweden and changes in building
technology in 19s, 20s, and 21st centuries

We will apply classification algorithms to the split data and check classification
performance compared to classification performance on the full dataset and between
two splitting groups.

Multilabel classification We will start by considering the task a binary multilabel
classification task. We will use logistic regression as a baseline classifier. It’s simple
enough and require minimum hyperparameter tuning. After defining the baseline
we will move to K Nearest Neighbors, Decision tree algorithm, Random Forests
for Multi-Label. We will test Classifier Chain method alongside with mentioned
algorithms to identify how it affects the performance.

Binary classification Next, we will test an approach where each retrofitting rec-
ommendation is considered as an independent binary label. We will train a separate
classifier model independently for every retrofitting measure. Similar to the multi-
label approach, it will use logistic regression as a baseline classifier. Next, we will
apply the K Nearest Neighbors algorithm. Then, we will move to tree classifiers -
Decision tree, Extra trees, and Random Forests.

3.3 Evaluation

Multilabel Classification Given the complexity and label imbalance in our dataset,
we utilize metrics that better capture the performance across all labels.

We use the F1-Score Average Samples approach to evaluate the performance of
the multilabel classification. This version of the F1-score calculates metrics individ-
ually for each instance and then averages them, thus emphasizing the performance
on a per-sample basis rather than per class. This is critical in our multilabel setting,
where labels are highly imbalanced.

The formula for the samples-averaged F1 score is:

F1samples =
1

nsamples

nsamples

∑
i=1

2 · pi · ri

pi + ri

Where:

• nsamples is the total number of samples
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• pi is the precision for the i-th sample

• ri is the recall for the i-th sample

This method gives more weight to samples with more labels, as they contribute
more to the overall performance of the model. (Gibaja and Ventura, 2015; Tsoumakas,
Katakis, and Vlahavas, 2010)

We use Hamming Loss to quantify the fraction of incorrect label predictions over
the total number of labels.

Binary Classification We use the F1-Score as the main metric. This metric is highly
effective for imbalanced datasets due to its sensitivity to the balance between preci-
sion and recall.

We use Precision and Recall metrics to collect more information about the model
performance. They provide additional information about the prediction quality and
are useful in case of an imbalanced dataset.

We do not use Accuracy due to the misleading nature of accuracy in imbalanced
datasets, where it may disproportionately reflect the majority class’s prevalence.
This approach aligns with best practices in evaluating classifiers under skewed class
distributions.

3.4 Conclusion

Reducing the number of possible retrofitting measures before conducting an audit
or energy modeling can significantly decrease the needed time and resources. Our
research aims to address this by developing a data-driven approach that identifies
feasible retrofitting measures based on building characteristics at an urban scale.
In our research, we will use classification methods to identify feasible retrofitting
measures and Sweden Energy Performance Certificates data as source data about
the building stock. We will compile a research dataset, considering the provided in
EPC data retrofitting measures as ground truth.
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Chapter 4

Dataset

The data source for this work is the energy declarations’ dataset provided by Bover-
ket (Swedish National Board of Housing)1 and obtained by the supervisor from
KTH. This dataset contains information about buildings across Sweden and is al-
lowed to be used for research purposes2.

The research version had these alterations done by Boverket before export. Dec-
larations with the following criteria are excluded from the withdrawal:

• Buildings that are not subject to declaration

declarations with an area less than 50 m2

• Unreasonable values

declarations with energy performance less than 20 kWh/m2 per year

declarations with energy performance greater than 500 kWh/m2 per year

declarations with building category One- and two-dwelling houses and an
area larger than 500 m2

The dataset was provided in Swedish, and the translation of the dataset was
not considered a part of this work. This leads that only some data entries will be
translated into English, but generally, columns and terms may be shown in Swedish.

4.1 EPC data cleaning

4.1.1 Overview of Energy declarations‘ data

The structure of the original data is present in Table 4.1 and replicates the structure
of the building energy questionnaire form. Important features of the original data
are:

• Splited into several files by year from 2019 to 2023

• Contains duplicated records, which may be as data adjustments as well as new
historical updates of the declaration data

• Single declaration may have several sets of retrofitting recommendations

• Some items may not contain information about retrofitting measures

• Contains several records for the same address, for instance, when several build-
ings share the same address

1https://www.boverket.se/
2https://www.boverket.se/sv/energideklaration/energideklaration/

https://www.boverket.se/
https://www.boverket.se/sv/energideklaration/energideklaration/
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• recommended retrofitting measures were provided by humans (energy advi-
sors) and were not additionally verified so that they may contain mistakes

• retrofitting measures contains not standardized columns "Other" for every group
of retrofitting options, which are not detailed and cannot be processed

The full structure of Building Energy declaration data with columns, selected for
further processing and classification task described in Table A.3

FIGURE 4.1: Number of Energy declarations by Year

TABLE 4.1: Energy declarations dataset general structure

Section Data in section Total
number of
columns

Number of
columns
selected

for classifi-
cation

I. The building - Identi-
fication

Building information
Building address
Real estate data
Building address

12 0

II. The building - Prop-
erties

Energy Declaration data 31 15

III. Energy use Energy Declaration data 47 31
IV. Information about
radon

Energy Declaration data 4 2

V. Information on ven-
tilation control

Energy Declaration data 9 6

VI. Air conditioning
system details

Energy Declaration data 1 1
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Continuation of Table 4.1
Section Data in section Total

number of
columns

Number of
columns
selected

for classifi-
cation

VII. Inspection of heat-
ing systems

Energy Declaration data 10 1

VIII. Air conditioning
system inspection

Energy Declaration data 10 1

IX. Carried out energy
efficiency measures
since the previous
energy declaration

Retrofitting measures
Energy Declaration data

35 28

X. Recommendations
on cost-effective mea-
sures

Retrofitting measures
Energy Declaration data

38 28

XI. Miscellaneous Energy Declaration data 2 0
XII. Expert Energy Declaration data 2 0
XIII. Building’s energy
performance

Energy Declaration data 3 0

4.1.2 Forming research dataset

The original data represents exported information from the Building Energy decla-
ration surveys. We start with data-cleaning of the provided data, and this process
contains several steps

Handling multiple recomendations Due to the nature of the EPC data export for-
mat, the data may contain several sets of retrofitting recommendations for the same
building. All of them are applicable to the building, and we merge them into a single
set of retrofitting measures.

Processing several buildings within the same address For records that belong to
the same address, we choose the one that is marked as the main address. Other
records will be marked as duplicated and not included in the dataset.

Dealing with historical updates Another case when data contains several rows
for the same building is the declaration updates. It may happen due to fixing errors
or adding missed information to the same energy declaration, or providing a new
energy declaration for the building. We distinguish these cases using the period
between declarations in dataset records. When there’s less than one year between
sequential declarations we consider the last one as a correction, otherwise - as a new
version of declaration.

The total number of identified historical updates is about 2300 declarations, which
is less than 1% of the total number of declarations in the researched dataset. They
wouldn’t provide significant differences but may cause bias due to similar building
characteristics. We decided not to include historical updates to the research dataset.
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Data cleaning After combining all data we do the cleaning stage

• fill empty values with appropriate values due to the physical meaning

converting text yes/no fields into binary

one-hot encoding for categorical data

• fix incorrect values in data

fix number of floors that are physically nonsense, for instance more than
five floor for one- or two-family houses

limit number of basement floors up to two - this is common Sweden limi-
tation

set minimum physical limit of airflow

4.2 Classification datasets

In the previous step, we created a dataset that will be a base for the specific classifi-
cation datasets. Main characteristics of dataset

• 274878 rows and 110 columns

• 28 columns contain retrofitting recommendations - these will be our prediction
labels

• 28 columns contain implemented retrofitting measures and will be used as fea-
tures

• 54 columns contain building characteristics and information about the energy
usage

The number of retrofitting recommendations is small enough to conclude that
the dataset for each single label and between labels is also imbalanced. Figure 4.2
provides a graphical overview of the distribution of buildings with- and without
retrofitting recommendations for each retrofitting measure. For every single mea-
sure, the total number of buildings with retrofitting recommendations is not more
than 20% compared to the total number of buildings. Measures R14, R17, R21, R24
have the biggest number of buildings with recommendations, for others number of
buildings with retrofitting recommendations do not extend 10%.

We encoded retrofitting recommendations to provide a way of showing and
mentioning specific retrofitting measures. The full list of recommendation codes
with original column names and English-translated recommendation names is avail-
able in Table A.1.

Building retrofitting recommendations and the implemented retrofitting mea-
sures are also highly imbalanced among themselves.

Another important data characteristic is that all numeric distributions are skewed
and contain natural outliers.

More detailed statistics for the numeric columns of the dataset are present in
Table A.4. Due to the realistic nature of the outliers in datasets, we decided not to
remove them but to mitigate their effect by considering energy usage values with
respect to the building area.

For the experiments, we created two versions of the classification datasets. In
these versions, columns from the "Energy use" section of the Energy declaration
datasets are processed differently.
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FIGURE 4.2: Distribution of Number of Buildings with Retrofitting
Recommendations to Buildings without Recommendations by

retrofitting measures

FIGURE 4.3: Number of building retrofitting recommendations in
comparison with the implemented retrofitting measures

Dataset 1: detailed energy usage The value of each of the energy usage columns
is divided by building area, so we have energy usage per square meter by specific
source - heating, hot water, electricity, and their subtypes.

Dataset 2: total energy usage by type In this case, we sum each building’s energy
usage by type: total usage, heating, hot water, and electricity. These total values are
divided by building area, so in classification, we deal with total energy usage by
type per square meter. The energy columns are converted to binary.

4.3 Conclusion

In this chapter, we did cleaning of the original Sweden EPC data and compiled the
research dataset. We created two versions of the dataset for further experiments.
Each of these versions contains 74878 rows and 110 columns; 28 of the columns are
retrofitting measures that will be used as prediction labels.

Despite the cleaning and feature selection process, the research dataset still has
limitations:
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• Retrofitting options were not additionally verified and so that may be inaccu-
rate

• "Other" retrofitting recommendations were excluded, which may lead to miss-
ing some important data dependencies or missing correct prediction labels
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Chapter 5

Experiments

This chapter outlines our experiments. We start with data analysis and creating two
dataset versions for validation of the classification method for providing retrofitting
recommendations. Dataset characteristics are discussed in Section 4.2. We start ex-
periments with a multilabel classification approach in Section 5.1 and test different
classification algorithms and approaches on two dataset versions. We continue with
the validation hypothesis about possible performance improvements on split data,
using two approaches: split by year of construction and by building type. We sum-
marise our findings in Section 5.1.3. We conclude our experiments by testing binary
classification methods aims to predict every single retrofitting measure separately
and discussing the results in Section 5.2. Limitations of the processed experiments
discussed in the Section 5.3

5.1 Multilabel classification

At this stage of our experiments, we tested the multilabel classification approach,
where each retrofitting measure recommendation was treated as a distinct label
within our dataset. These experiments aimed to assess the applicability of multilabel
classification with complete datasets and data split into groups to predict the whole
set of retrofitting recommendations for the specific building based on the building
characteristics.

Experiments run and results validation To validate our models, we employed a
standard training and testing procedure. The dataset was split into training and
test sets, with the training set used to train the models and the test set reserved for
validation. The data was split for the experiments in the following proportions:

• 80% of data for training set

• 20% of data for test set

Specifically, we trained each model on the training set and then used the trained
models to make predictions on the test set.

Train-test split approach Considering the imbalanced nature of data, we have to
pay particular attention to splitting data for training and validation steps. Stan-
dard methods for imbalanced data include stratification, which means dividing the
dataset into subsets in such a way that each subset maintains a similar distribution
of classes as observed in the original dataset. This approach helps to ensure that all
classes are adequately represented in each subset, thus preventing bias towards the
more frequent classes on training and evaluation steps.
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Traditional single-label stratification methods often fail to yield balanced dataset
divisions, and this imbalance hinders the ability of classifiers to generalize effec-
tively. Common issues with conventional train/test splits include the complete ab-
sence of specific labels in the training set or disproportionately allocating most label
pair evidence to the test set. This distribution leaves the training set devoid of ade-
quate evidence necessary for generalizing conditional probabilities associated with
label relationships.

Multilabel data stratification addresses these challenges and can be done in sev-
eral ways, as described in Sechidis, Vlahavas, and Tsoumakas (2011). To handle this
issue, we use an iterative stratification mechanism provided by the Scikit-multilearn
package, which aims to ensure a more equitable distribution of evidence concern-
ing label relations up to a specified order, which leads to facilitating more effective
model training and evaluation (Szymański and Kajdanowicz, 2017).

Classification algorithms We use different algorithms and techniques in multil-
abel classification experiments. This aimed to identify the most effective approach
in predicting a comprehensive set of retrofitting measures based on specific building
characteristics.

Linear Model: Logistic Regression

• MultiOutputClassifier: Treats each label as an independent binary classifica-
tion problem.

• ClassifierChain: Takes into account possible correlations among labels by chain-
ing them. We evaluated 10 different feature configurations and selected the one
that yielded the best performance.

Instance-based Learning: KNeighbors Classifier

• Multilabel: A straightforward multilabel approach where each label is treated
independently but uses the neighbors’ votes to decide.

• ClassifierChain: Incorporates label dependencies by chaining predictions. We
evaluated 10 different feature configurations and selected the one that yielded
the best performance.

Tree-based Methods:

Decision Tree Classifier

• Multilabel: Direct approach using decision trees for multilabel classification.

• MultiOutputClassifier: Utilizes multiple decision trees, one per label, without
considering label dependencies.

• ClassifierChain: Decision trees with chained label predictions to model label
correlations. We evaluated 10 different feature configurations and selected the
one that yielded the best performance.
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Random Forest Classifier

• Multilabel: Single model for multilabel classification.

• ClassifierChain: Uses multiple random forests in a chained fashion to model
dependencies among labels. We evaluated 10 different feature configurations
and selected the one that yielded the best performance.

Extra Tree Classifier

• Multilabel: Single model approach, not explicitly divided into sub-methods
for multilabel.

• ExtraTrees Classifier: Similar to Random Forest but using Extra Trees for the
ensemble, typically leading to more randomized splits.

Ensemble Methods: Random Forest Classifier and ExtraTrees Classifier These
methods described above are ensemble methods that leverage multiple trees to im-
prove prediction accuracy and robustness against overfitting.

Neural Network We use a multi-label binary classification neural network that
consists of a sequence of four fully connected layers, each followed by a dropout
layer with a probability of 0.3, to prevent overfitting. The dimensions of these layers
increase progressively (128, 256, 512, 1024), with each layer employing ReLU activa-
tion and using BCELoss as a loss function.

5.1.1 Classification on the full dataset

We start with running classifiers on full datasets to identify a baseline for each
method. Numerical results, which represented as F1-score and Hamming loss val-
ues, are outlined in Table 5.1

TABLE 5.1: Multilabel classification: result summary

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,0551 0,04 0,0797 0,0388

LogisticRegression
ClassifierChain

0,0553 0,04 0,2436 0,0486

KNeighborsClassifier
Multilabel

0,2298 0,0401 0,2569 0,0392

KNeighborsClassifier
ClassifierChain

0,2859 0,0449 0,3536 0,0467

DecisionTreeClassifier
Multilabel

0,3825 0,0465 0,374 0,0472

DecisionTreeClassifier
MultiOutputClassifier

0,3533 0,0489 0,3431 0,0499

DecisionTreeClassifier
ClassifierChain

0,3804 0,0497 0,3716 0,0506

RandomForestClassifier 0,3048 0,0299 0,2879 0,0305
Continued on next page
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Continuation of Table 5.1

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
RandomForestClassifier
ClassifierChain

0,4213 0,0336 0,3995 0,0348

ExtraTreeClassifier 0,3989 0,0459 0,3657 0,0475
ExtraTreesClassifier 0,3216 0,0299 0,3135 0,0308
Neural Network 0,1606 0,038 0,1479 0,0385

General Conclusion The multilabel classification experiments demonstrated that
ensemble methods, specifically Random Forest and Extra Trees classifiers, in con-
junction with the ClassifierChain approach, showed the highest classification per-
formance in terms of F1-score value.

This highlights the promising potential of ensemble methods combined with la-
bel dependency modeling to improve prediction accuracy. Specifically, the Random
Forest ClassifierChain achieved the highest performance, suggesting that capturing
label dependencies might be a promising approach for improving retrofit measure
predictions. We need to investigate this deeper with more label configurations in
further work.

In contrast, logistic regression models showed relatively low performance, in-
dicating that simpler linear models may struggle with the complexity of multilabel
classification in this context and huge amount of features. But with ClassifierChain
the Logistic Regression method significantly improved the performance on the sec-
ond dataset. Dataset 2 contains more binary labels and this performance change
may indicate that the combination of the ClassifierChain approach can be applica-
ble for the Logistic Regression as well with less number of numerical features. This
direction should be investigated deeply.

The KNeighbors and Decision Tree classifiers performed better, with the Deci-
sion Tree showing notable effectiveness in handling the multilabel classification task
without the need for label dependency modeling - the ClassifierChain approach did
not improve the classification performance.

Despite using the default parameters and not using the hyperparameter tuning
and cross-validation technique, the results still provided an understanding of the
comparative performance of different methods.

In numbers, the obtained results show a general performance of less than 0.5 F1-
score. Despite a Hamming loss value of less than 0.05, this is insufficient to reach the
research goal.

5.1.2 Classification on the split data

In this section, we test two splitting approaches to identify if this improves the per-
formance of multilabel classification. Splitting criteria are chosen based on the na-
ture of building stock data.

Spliting by year of construction

In this experiment, we split building stock data based on the year of construction
into three groups:

• Built before 1920
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• Built between 1920 and 2000

• Built after 2000

The chosen splitting points are driven by the historical nuances of the develop-
ment of building technology and the housing market in Sweden. This segmentation
aimed to explore the variation in multilabel classification performance based on the
age of the buildings, using two datasets to evaluate each method’s performance.

Summarized results, F1-score for each method per dataset are outlined in Table
5.2. Hamming loss for all options is less than 0.06, which is acceptable, and its dif-
ference is not significant to discuss in detail. Full obtained results for each group
outlined in Table B.1, Table B.2, Table B.3

TABLE 5.2: Multilabel classification: Classification results on data
split by year of construction. F1-score values for different methods
and datasets. DS 1 stands for Dataset 1, and DS 2 stands for Dataset 2

Method
Before 1920 1920 - 2000 After 2000

DS 1 DS 2 DS 1 DS 2 DS 1 DS 2
LogisticRegression
MultiOutputClassifier

0,032 0,0826 0,0537 0,0616 0,051 0,2945

LogisticRegression
ClassifierChain

0,0327 0,2459 0,0539 0,2259 0,0503 0,4334

KNeighborsClassifier
Multilabel

0,1629 0,1906 0,2234 0,2451 0,4335 0,439

KNeighborsClassifier
ClassifierChain

0,2237 0,3049 0,2805 0,3357 0,4779 0,5113

DecisionTreeClassifier
Multilabel

0,3217 0,3175 0,3697 0,3663 0,5712 0,5673

DecisionTreeClassifier
MultiOutputClassifier

0,2788 0,2867 0,3412 0,3317 0,5415 0,5238

DecisionTreeClassifier
ClassifierChain

0,3183 0,3168 0,3687 0,3606 0,5731 0,5649

RandomForestClassifier 0,2235 0,2136 0,2879 0,2704 0,5528 0,5263
RandomForestClassifier
ClassifierChain

0,34 0,3365 0,4037 0,3974 0,6269 0,6213

ExtraTreeClassifier 0,3109 0,3017 0,3607 0,3545 0,5657 0,5584
ExtraTreesClassifier 0,2384 0,2336 0,3078 0,3004 0,5717 0,544

General Observations Across all methods, there is a clear trend that more re-
cent construction periods tend to yield better classification results, which can be
explained by the nature of the data - most of the buildings in the dataset belong to
the two last groups and contain more data for training classifiers. Methods that use
the ClassifierChain approach show better results than standard multilabel or Multi-
OutputClassifier approaches regardless of the group to which data belongs.

Ensemble methods, particularly the Random Forest and Extra Trees classifiers,
performed best. The ClassifierChain method significantly improved performance
for all groups and methods, similar to classification on the full dataset. Decision-
TreeClassifier show similar results with and without ClassifierChain usage.
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We can conclude that splitting data improves the prediction performance for the
buildings constructed after 2000, and proper data splitting, together with other pos-
sible enhancements, may help us to find the building group where the classification
approach works well enough to reach the research goal.

Buildings with year of construction earlier than 1920 shows less performance
than others, which may be explained by the total amount of building in this group
and worse quality of building characteristics for so old building stock. Such building
are not standardized the same way as modern buildings and have more individual
characteristics.

Splitting by building category

In this experiment, we split building stock data based on the category to which the
building belongs into three groups:

• Multi-family dwellings (MFD)

• Office buildings (OB)

• Single- or two-family house (SFH)

Chosen splitting points are driven by differences in building characteristics be-
tween these categories. Each category was tested using two datasets, aiming to ex-
plore classification performance across different classification methods and building
types.

Summarized results, F1-score for each method per dataset are outlined in Table
5.3. Hamming loss for all options is less than 0.07, which is acceptable. Its difference
is not significant to discuss in detail. Full obtained results for each group outlined in
Table B.4, Table B.5, Table B.6

TABLE 5.3: Multilabel classification: Classification results on data
split by building category. F1-score values for different methods and

datasets. DS 1 stands for Dataset 1, and DS 2 stands for Dataset 2

Method
MFD OB SFH

DS 1 DS 2 DS 1 DS 2 DS 1 DS 2
LogisticRegression
MultiOutputClassifier

0,0005 0,0161 0,0001 0,0201 0,131 0,1701

LogisticRegression
ClassifierChain

0,0005 0,1086 0,0001 0,162 0,3279 0,3731

KNeighborsClassifier
Multilabel

0,2279 0,263 0,107 0,129 0,2626 0,2853

KNeighborsClassifier
ClassifierChain

0,2682 0,3201 0,163 0,2135 0,3545 0,2853

DecisionTreeClassifier
Multilabel

0,4419 0,4272 0,2818 0,2802 0,3937 0,3943

DecisionTreeClassifier
MultiOutputClassifier

0,4271 0,4086 0,2723 0,2617 0,3574 0,3518

DecisionTreeClassifier
ClassifierChain

0,4383 0,4201 0,2931 0,2822 0,3955 0,3921

RandomForestClassifier 0,3641 0,3443 0,1966 0,1885 0,3229 0,305
Continued on next page
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Continuation of Table 5.3

Method
MFD OB SFH

DS 1 DS 2 DS 1 DS 2 DS 1 DS 2
RandomForestClassifier
ClassifierChain

0,4051 0,3956 0,2995 0,2889 0,4832 0,4597

ExtraTreeClassifier 0,4531 0,434 0,2855 0,2806 0,3777 0,3702
ExtraTreesClassifier 0,4083 0,3925 0,2138 0,2168 0,3282 0,3226

General Observations Across all methods, the family houses category consistently
showed higher performance in F1-scores value. Ensemble classifiers provided the
best performance among tested. We can conclude that splitting the dataset based on
building categories led to improved classification performance compared to using
a complete, undivided dataset. This supports the hypothesis that data segmenta-
tion based on natural criteria can show better classification performance. Using the
ClassifierChain approach led to improving classificaion results.

5.1.3 Conclusion

We experimented with different multilabel classification methods to aim to predict
the whole set of recommended retrofitting measures based on the building charac-
teristics. Two dataset versions were used to investigate the performance of classifi-
cation algorithms on different data characteristics.

Logistic Regression Classifier and KNeighbors Classifier show better performance
on Dataset 2, which can be explained by the mostly binary nature of the data in
Dataset 2. Tree-based and Ensemble methods show similar results on both dataset
versions but slightly better on Dataset 1. The ClassifierChain approach improves the
classification results for most experiments, meaning that internal label dependencies
are important for the classification on the building stock data. For prediction on the
complete dataset, the RandomForest classifier shows the best result with the Classi-
fierChain approach.

The next stage of experiments is the classification on the split data using two
criteria: by year of construction and by building category. We can conclude, that
splitting data may lead to prediction performance improvement for most group of
data, comparing to the performance of the prediction on the whole dataset. The only
group od data, that showed worse classification performance than classification on
whole dataset is buildings constructed before 1920, which may be explained by the
smaller amount of such data and individual features of this group. For both splitting
criteria we got the similar classification performance values.

In summary, we can confirm the promising results for one the our research ques-
tion "identifying the whole set of retrofitting recommendations for the specific build-
ing using multi-label classification methods". Even with default hyperparameters it
shows classification performance, enough to continue research in this area.

Another research question was the hypothesis that splitting data based on natu-
ral criterion may improve the classification performance, which definitely confirmed
by the obtained results.

General prediction performance is less than 90% with an error rate of less than
10% in Hamming loss, which means that we didn’t get the good enough perfor-
mance score to consider the research goal achieved.
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5.2 Binary classification

This section outlines experiments with binary classification. We have 28 possible
retrofitting measures that may be recommended for a building. In contrast to the
multilabel approach, where we tried to predict the whole set of retrofitting recom-
mendations, we consider each measure as an independent binary label here. For
every retrofitting measure, we train a separate classifier model on two dataset ver-
sions. These experiments aim to test the possibility of predicting a single classifica-
tion measure with high probability.

Experiments run and results validation We used a standard training and testing
procedure to validate the experiments’ results. Each dataset was split into training
and test sets, with the training set used to train the models and the test set reserved
for validation. For all experiments data was split in the following proportions:

• 80% of data for training set

• 20% of data for test set

We trained each model on the training set and then used the trained models to
make predictions on the test set and calculate the performance metrics.

Train-test split approach There is a strong imbalance in data for each label, so to
mitigate this and ensure proper sampling of train and test data, we use the stratify
technique in train_test_split from the sklearn package.

Classification algorithms We use different algorithms in this experiment:

• Linear Model: Logistic Regression

• Instance-based Learning: KNeighbors Classifier

• Decision Tree Classifier

• Random Forest Classifier

• Extra Tree Classifier

• ExtraTrees Classifier

Evaluation The accuracy score does not work well for the imbalanced data since it
doesn’t capture the positive prediction, but the whole prediction, including negative,
and provides false-positive results. We are using F1-score, precision, and recall to
identify the performance of each model.

Results We trained classifiers on each version of dataset for every label. Detailed
results are outlined in Tables B.7, B.8, B.9, B.10, B.11, B.12. The overall summary
for all classifiers and the best classification score is given in Table 5.4.
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TABLE 5.4: Binary classification: results summary, best classifier and
dataset for each retrofitting measure

Classifier Dataset F1-score Precision Recall
R1 ExtraTreesClassifier DS 1 0,5547 0,9262 0,3959
R2 ExtraTreesClassifier DS 2 0,6266 0,9326 0,4718
R3 ExtraTreesClassifier DS 2 0,5828 0,956 0,4191
R4 ExtraTreesClassifier DS 1 0,6408 0,9729 0,4778
R5 ExtraTreesClassifier DS 1 0,6318 0,9566 0,4716
R6 ExtraTreesClassifier DS 2 0,4626 0,8145 0,323
R7 ExtraTreesClassifier DS 1 0,5093 0,944 0,3487
R8 ExtraTreesClassifier DS 2 0,5394 0,9631 0,3746
R9 ExtraTreesClassifier DS 2 0,3949 0,9512 0,2492
R10 ExtraTreesClassifier DS 2 0,5178 0,9336 0,3582
R11 ExtraTreesClassifier DS 1 0,5812 0,9519 0,4183
R12 ExtraTreesClassifier DS 2 0,5018 0,9714 0,3383
R13 ExtraTreesClassifier DS 1 0,4444 1 0,2857
R14 RandomForest DS 1 0,6216 0,7878 0,5133
R15 ExtraTreesClassifier DS 1 0,4054 0,8862 0,2628
R16 ExtraTreesClassifier DS 2 0,6055 0,9635 0,4415
R17 RandomForest DS 1 0,6249 0,7789 0,5218
R18 ExtraTreesClassifier DS 2 0,4817 0,8805 0,3316
R19 ExtraTreesClassifier DS 2 0,5295 0,9058 0,3741
R20 ExtraTreesClassifier DS 1 0,5812 0,9345 0,4218
R21 ExtraTreesClassifier DS 1 0,376 0,6674 0,2617
R22 ExtraTreesClassifier DS 2 0,6726 0,95 0,5205
R23 ExtraTreesClassifier DS 2 0,6809 0,9412 0,5333
R24 ExtraTreesClassifier DS 1 0,5807 0,7866 0,4603
R25 ExtraTreesClassifier DS 2 0,4031 0,8595 0,2633
R26 ExtraTreesClassifier DS 1 0,5049 0,9212 0,3478
R27 ExtraTreesClassifier DS 1 0,3878 0,878 0,2489
R28 ExtraTreesClassifier DS 1 0,3388 0,8994 0,2087

Ensemble Methods - RandomForest and ExtraTrees show the best performance
for the binary classification for all retrofiting measures. Summarised values are pro-
vided in Table 5.5.

TABLE 5.5: Single-label classification: aggregated classification per-
formance score

F1-score Precision Recall
Min 0,3388 0,6674 0,2087
Median 0,53445 0,9331 0,37435
Max 0,6809 1 0,5333

Conclusion We tested different binary classification methods aiming to predict
the necessity of the specific retrofitting measure recommendation based on build-
ing characteristics. Ensemble methods - RandomForest and ExtraTrees classifiers
outperform all other classification algorithms. These methods consistently provided
high F1-scores, precision, and recall across various retrofit measures. Distinctive
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features of the obtained results are high overall precision metric values and signifi-
cantly small recall metric values, which are caused by data imbalance. Also, despite
the high precision value (0.93 in average), all methods showed small enough recall
(0.37 in average), which also might be caused by the data imbalance. The average
classification performance across all retrofitting measures is 53% in terms of F1-score
values, which is not enough to achieve our research goal. Based on the obtained re-
sults, we can conclude that the positive validation for our research question, that it is
possible to identify a single retrofitting recommendation using classification meth-
ods. With default hyperparameters, we got promising results, which confirmed that
it makes sense to continue research in this area.

5.3 Experiments limitations discussion

The general number of planned experiments is 6 - three experiments for multilabel
classification and three experiments for binary classification approach. We also used
two different versions of the dataset in the experiments. From the number of used
dataset versions standpoint and computation wise:

• multilabel approach: 12 different classification approaches and 14 different
dataset versions - for each version of the dataset, it is one experiment on the
full dataset and two experiments with data split into three categories

• single retrofitting measure predictions: for each of 28 retrofitting measures, we
run 6 different classification algorithms on two versions of the dataset

This amount of experiments on various datasets led us to the following limita-
tions, which should be considered in the overall results discussion:

Choosing classification algorithms Due to the computational and time-consuming
nature of the experiments, we cannot afford to test all possible classification meth-
ods. We decided to focus on testing selected methods and left other also promising
approaches for future research.

Hyperparameters tunning and cross validation Given the large number of our ex-
periments involving multiple classification approaches and numerous dataset ver-
sions, we decided to use default hyperparameters for our models and not do hyper-
parameter tuning and cross-validation at this stage of the research.

The computational resources and time required for hyperparameter tuning and
cross-validation would be extremely high. Hyperparameter tuning typically in-
volves an extensive grid or random search over a range of parameters, exponentially
increasing the computational load. Similarly, cross-validation, particularly k-fold
cross-validation or its variation for multilabel data stratification, requires training
and validating the model multiple times, further compounding the computational
demands.

Using default hyperparameters allows us to maintain a feasible and manage-
able experimental framework while ensuring that our models are trained and eval-
uated within a reasonable timeframe. Default hyperparameters, although not op-
timized for each specific dataset, provide a baseline performance that is sufficient
for comparative analysis across the numerous classification approaches and dataset
versions. This approach is particularly pragmatic given our aim to evaluate the gen-
eral applicability of various models and methodologies rather than to achieve the
absolute best performance for each individual case.
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In summary, the decision to use default hyperparameters and avoid extensive
tuning and cross-validation is driven by practical considerations of computational
efficiency and the necessity to handle a large number of experimental scenarios
within the constraints of available resources.

Comparing experiments results The data imbalance and difference in the train-
test split processes make it impossible to compare results between experiments us-
ing multilabel and binary classification methods. Datasets in multilabel approach
experiments are split into train and test subsets, saving the same distribution of all
labels simultaneously in train and test. However, for the binary classification exper-
iments, we consider every retrofitting measure as an independent binary and split
the datasets with stratification only for this label. This means that it is generally im-
possible to get the same data distribution in both experiments and comparing the
results makes no sense.

Instead, each approach should be evaluated with performance metrics tailored
to the specific nature of the classification task at hand. This ensures the evaluation is
meaningful and relevant to the respective methodologies.
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Chapter 6

Conclusions

6.1 Discussion

In this work, we considered the task of identifying possible retrofitting measures for
the building stock based on information about building characteristics and energy
demand without using energy consumption modeling tools and models.

We analyzed the related work in the field and outlined the research gaps and
formulated the research hypotheses. In our research, we approached the problem of
retrofitting recommendations as a classification problem. We explored the Swedish
EPC’s dataset and created two versions of dataset for experiments, considering pro-
vided in EPC data the retrofitting measures recommendations as ground truth set for
the classification task. The data is highly imbalanced in terms of number of buildings
with- and without recommended retrofitting measures.

In the scope of this research, we investigated different classification approaches
and algorithms, including multi- and single-label classification.

Considering data and experiments limitations we should discuss the obtained
results for multi- and single-label classification independently.

We can conclude that using multi-label classification methods to identify the
whole set of retrofitting recommendations for the specific building is promising but
does not show good enough classification performance for using it. Splitting data
into groups with similar characteristics improved the classification performance and
this approach should be investigated deeply.

Identifying a single retrofitting recommendation using classification methods
also provided can be considered a working approach with an average prediction
performance of 53%, which is not sufficient to use this method in real-world chal-
lenges. But the promising point here is a high level of precision, 0.93 on average, but
low recall, 0.37 on average. It means that the binary classification approach can be
used for cases when it’s more important to be confident in the positive predictions
that are made, even if it means missing some actual positive cases. For instance, the
enrichment of the building stock datasets with missing retrofitting measures.

Such insufficient classification performance for both tested approaches may be
caused by data quality and a high imbalance in data. Also important part here is
experiments limitations - further hyperparameter tunning may increase the classifi-
cation performance.

Concluding the discussion of obtained results from the research questions stand-
point, in the scope of this research we confirmed that the classification approach is
applicable to choosing possible retrofitting measures based on the building stock
data without using the building energy demand evaluation, but requires more ef-
forts in input data validation and additional investigation in proper models’ param-
eters or classification methods.
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This thesis marks a significant step in this research area, but there is more work
to be done. The methodologies and findings presented in this work can serve as a
foundation for future research into retrofitting measures prediction at urban build-
ing stock.

6.2 Future work

This work shows that there exists a significant space for improvement in this area.
It could be beneficial to investigate approaches to mitigate imbalance in data with
adjustments for the specifics of building stock data. For instance, dataset over- and
under-sampling techniques should be tested aim to mitigate the data imbalance.
Cooperation with industry experts to ensure data quality and the development of
a framework for data validation may be crucial for enhancing the accuracy and
reliability of predictive models. The data-splitting approach showed performance
improvement, and continued investigation of this direction may lead to reaching
the goal of recommending retrofitting measures for the specific part of the build-
ing stock. Testing the findings on EPC data from other countries can deepen un-
derstanding of the domain and the importance of the specific data characteristics
and reveal the limitations of the proposed methods. Additionally, further research
should consider on the test state-of-the-art classification approaches and hyperpa-
rameter tuning to achieve the needed classification performance.
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Appendix A

Appendix: dataset structure

A.1 Structure of Swedish EPCs dataset

TABLE A.1: Retrofitting measures recommendations columns in a
dataset with artificial recommendation code and recommendation

name in English

Code Column name Recommendation Name
R1 AtgForslagNyVentil New radiator valves
R2 AtgForslagJustVarme Adjustment of heating system
R3 AtgForslagStyrVarme Time/demand control of heating

systems
R4 AtgForslagRengVarme Cleaning and/or airing of heating

systems
R5 AtgForslagBegrTemp Maximum limitation of internal

temperature
R6 AtgForslagNyGivare New indoor sensor
R7 AtgForslagBytePumpar Replacement/installation of

pressure-controlled pumps
R8 AtgForslagJustVent Adjustment of ventilation system
R9 AtgForslagTidstyrVent Time management of ventilation

systems
R10 AtgForslagBehovstyrVent Demand management of ventila-

tion systems
R11 AtgForslagByteFlaktar Replacement/installation of speed-

controlled fans
R12 AtgForslagStyrBelys Time/demand control of lighting
R13 AtgForslagStyrKyla Time/demand control of cooling
R14 AtgForslagSparaVatten Hot water saving measures
R15 AtgForslagEffektivBelys Energy efficient lighting
R16 AtgForslagIsolKanal Insulation of pipes and ventilation

ducts
R17 AtgForslagByteVarmepump Replacing/installing a heat pump
R18 AtgForslagByteAnnanVarme Replacement/installation of a more

energy-efficient heat source
R19 AtgForslagByteVent Replacement/completion of the

ventilation system
R20 AtgForslagAterVent Recovery of ventilation heat
R21 AtgForslagIsolTak Additional insulation attic

joists/roof
R22 AtgForslagIsolVagg Additional insulation walls
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Continuation of Table A.1
Code Column name Recommendation Name
R23 AtgForslagIsolMark Additional insulation base-

ment/ground
R24 AtgForslagInstSolceller Installation of solar cells
R25 AtgForslagInstSolvarme Installation of solar heating
R26 AtgForslagByteFonster Change to energy-efficient win-

dows/window doors with inner
pane

R27 AtgForslagKompFonster Complementing win-
dows/window doors with inner
pane

R28 AtgForslagTatFonster Sealing windows/window
doors/external doors

TABLE A.2: Data categories encoding

Data category Code
Energy Declaration data ED
Real estate data RE
Building information BI
Building address BA
Retrofitting measures data RM

TABLE A.3: Energy declarations dataset structure

Data
category
code

Column Description Used for
classifi-
cation

I. Building Identification
ED IdLankod County code No
ED IdLan County No
ED IdKommunkod Municipal code No
ED IdKommun Municipality No
RE IdEgnaHem Own home No
RE IdFastBet Property designation No
BI IdHusnr House no No
BI IdRapportLM Reason for error report No
BA IdAdr The address of the building No
BA IdPostnr Was built post no No
BA IdPostort The building’s postal address No
BA IdHuvudadress Main address No

II. Building Properties
ED EgenTypkod Type code code No
ED EgenTypkod_typ Type code_type No
ED EgenByggnadsKat Type code_cat No
ED EgenKomplexitet The complexity of the build-

ing
Yes

Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED EgenByggnadsTyp Building category Yes
ED EgenNybyggAr Year of new construction Yes
ED EgenAtemp Building area Yes
ED EgenAvarmgarage Dewatering garage Yes
ED EgenAntalKallarplan Number of basement floors

heated to >10 degrees
Yes

ED EgenAntalPlan Number of floors above
ground

Yes

ED EgenAntalTrapphus Number of stairwells Yes
ED EgenAntalBolgh Number of residential apart-

ments
Yes

ED EgenSmaLagenheter Are there predominantly
apartments with a living area
of no more than 35 m² each?

Yes

ED EgenProjVentFlode Projected average hygienic
outdoor air flow in local
buildings or apartment build-
ings

Yes

ED EgenInstEleffektStorre There is installed electrical
power >10 W/m² for heating
and hot water production

Yes

ED EgenSkyddadEllerVardefull Is the building protected as a
building monument or such
a particularly valuable build-
ing as referred to in ch. 8 § 13
PBL?

Yes

ED EgenAtempBostad Dwellings (incl. secondary
area, e.g. stairwell and
heated basement)

Yes

ED EgenAtempHotell Hotels, boarding houses and
student dormitories, %

No

ED EgenAtempRestaurang Restaurant, % No
ED EgenAtempKontor Office and administration, % No
ED EgenAtempLivsmedel Store and warehouse space

for food, %
No

ED EgenAtempButik Shop and warehouse space
for other trade, %

No

ED EgenAtempKopcentrum Shopping center, % No
ED EgenAtempVard Care, around the clock, % No
ED EgenAtempVardDag Daytime care (including ser-

viced accommodation, hair-
dressers, etc.), %

No

ED EgenAtempSkolor Schools (preschool-
university), %

No

ED EgenAtempBad Bathing, sports, sports facili-
ties (not outdoor arenas), %

No

Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED EgenAtempTeater Theatre, concert, cinema
venues and other gathering
spaces, %

No

ED EgenAtempOvrigaVad Other activities - specify what No
ED EgenAtempOvrig Other activities, % No
ED EgenAtempSumma Total business Yes

III. Energy use
ED EgiForstaArManad The data refer to the first

month of the 12-month pe-
riod

Yes

ED EgiSistaArManad The last month of the 12-
month period the data refers
to

Yes

ED EgiBeraknatVarde Estimated energy use No
ED EgiFjarrvarmeUPPV Energy for heating - District

heating (1)
Yes

ED EgiFjarrvarmeVV Energy for domestic hot wa-
ter - District heating (1)

Yes

ED EgiOljaUPPV Energy for heating - Heating
oil (2)

Yes

ED EgiOljaVV Energy for domestic hot wa-
ter - Heating oil (2)

Yes

ED EgiGasUPPV Energy for heating - Natural
gas, city gas (3)

Yes

ED EgiGasVV Energy for domestic hot wa-
ter - Natural gas, city gas (3)

Yes

ED EgiVedUPPV Energy for heating - Fire-
wood (4)

Yes

ED EgiVedVV Energy for domestic hot wa-
ter - Wood (4)

Yes

ED EgiFlisUPPV Energy for heating -
Chips/pellets/briquettes
(5)

Yes

ED EgiFlisVV Energy for domes-
tic hot water -
Chips/pellets/briquettes
(5)

Yes

ED EgiOvrBiobransleUPPV Energy for heating - Other
biofuel (6)

Yes

ED EgiOvrBiobransleVV Energy for domestic hot wa-
ter - Other biofuel (6)

Yes

ED EgiElVattenUPPV Energy for heating - Electric-
ity (water borne) (7)

Yes

ED EgiElDirektUPPV Energy for heating - Electric-
ity (direct acting) (8)

Yes

Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED EgiElLuftUPPV Energy for heating - Electric-
ity (air borne) (9)

Yes

ED EgiPumpMarkUPPV Energy for heating - Ground
source heat pump (electric)
(10)

Yes

ED EgiPumpFranluftUPPV Energy for heating - Heat
pump exhaust air (electricity)
(11)

Yes

ED EgiPumpLuftLuftUPPV Energy for heating - Heat
pump-air/air (electricity)
(12)

Yes

ED EgiPumpLuftVattenUPPV Energy for heating - Heat
pump-air/water (electricity)
(13)

Yes

ED EgiElVV Energy for heating - Domes-
tic hot water (electricity) (14)

Yes

ED EgiFjarrkyla District cooling (15) Yes
ED EgiKomfort Electricity for comfort cool-

ing (16)
Yes

ED EgiFastighet Property electricity (17) Yes
ED EgiHushall Household (18) No
ED EgiVerksamhet Business electricity (19) No
ED EgiSumma2 Total 1-17 No
ED EgiSolvarme Enter solar collector area Yes
ED EgiGruppSolvarme Is there solar heating? Yes
ED EgiBerEngProduktion Estimated energy production No
ED EgiStationEI City (Energy Index) No
ED EgiSolcell Enter solar cell area Yes
ED EgiGruppSolcell Are there solar cell systems? Yes
ED EgiBerElProduktion Estimated electricity produc-

tion
No

ED EgiEnergianvandning The building’s energy use
(Normal annual corrected
value (Energy index))

Yes

ED EgiPrimarenergianvandning The building’s primary en-
ergy use

Yes

ED EgiPrimarenergital2019 Used to calculate Energy Per-
formance from 2019-01-01 to
2020-08-31 Available in the
appendix from 2020-09-01

No

ED EgiPrimarenergital2020 Used to calculate Energy Per-
formance from 2020-09-01 -
> Available on the appendix
from 2020-09-01

No

Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED EgiSpecifikEnergianvandning Used to Energy performance
from 2010 to 2018-12-31
Available on attachment
from 2020-09-01

No

ED EgiRefvarde1 Reference value 1 (according
to new construction require-
ments)

No

ED EgiRefvarde2Max Reference value 2 (similar
buildings)

No

ED EgiRefvarde3 Reference value 3 (new con-
struction requirements for
this building)

No

ED EgiEnergiPrestanda Energy performance No
ED EgiVersion Energy class calculated on

reference value year
No

ED EgiEnergiklass Energy class No
IV. Information about radon

ED RadGruppHaltMatt Is the radon level measured? Yes
ED RadHalt Radon level Yes
ED RadTypMatning Type of measurement No
ED RadMatDatum Date of radon measurement No

V. Information on ventilation control
ED VentGruppKrav Are there requirements for

regular ventilation checks in
the building?

Yes

ED VentTypFTX FTX Yes
ED VentTypF F Yes
ED VentTypFT FT Yes
ED VentTypSjalvdrag Self trait Yes
ED VentTypFmed F with recycling Yes
ED VentGruppGodkand Is the ventilation check car-

ried out at the time of the en-
ergy declaration?

No

ED VentDelvisProcent % without remark No
ED VentGruppUtanAnm Is the ventilation control un-

remarked at the time of the
energy declaration?

No

VI. Air conditioning system details
ED LuftGruppFinnsluft There are air conditioning

systems with a nominal cool-
ing output greater than 12
kW

Yes

VII. Inspection of heating systems
Continued on next page



38 Appendix A. Appendix: dataset structure

Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED InspUppvGruppNomStorre Is there a heating system
or combined space heating
and ventilation system with
a nominal space heating out-
put of more than 70 kW?

Yes

ED InspUppvBedomningNomEffekt Assessment basis for deter-
mining nominal power

No

ED InspUppvGruppInspSkyldighet Is the building subject to in-
spection obligations?

No

ED InspUppvAngeNomEffekt Enter the nominal power of
the system

No

ED InspUppvAngeNomEffektYta Enter area served No
ED InspUppvGruppLamplig Is the size and efficiency of

the air conditioning system
appropriate for the needs of
the building?

No

ED InspUppvLampligKommentar Comment No
ED InspUppvUndAvtalEgipres Agreement on energy perfor-

mance (section 8 a first para-
graph 1 EDF)

No

ED InspUppvUndSysFastStyr System for property automa-
tion/property management
(Section 8 a first paragraph 2
EDF)

No

ED InspUppvUndFunkOverReglBost Function for monitoring and
regulation, residential build-
ings (section 8 a first para-
graph 3 EDF)

No

VIII. Air conditioning system inspection
ED InspLuftGruppNomStorre Is there an air conditioning

system or combined air con-
ditioning and ventilation sys-
tem with a rated output of
more than 70 kW?

Yes

ED InspLuftBedomningNomEffekt Assessment basis for deter-
mining nominal power

No

ED InspLuftGruppInspSkyldighet Is the building subject to in-
spection obligations?

No

ED InspLuftAngeNomEffekt Enter the nominal power of
the system

No

ED InspLuftAngeNomEffektYta Enter area served No
ED InspLuftGruppLamplig Is the size and efficiency of

the air conditioning system
appropriate for the needs of
the building?

No

ED InspLuftLampligKommentar Comment No
Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED InspLuftUndAvtalEgipres Agreement on energy perfor-
mance (section 8 a first para-
graph 1 EDF)

No

ED InspLuftUndSysFastStyr System for property automa-
tion/property management
(Section 8 a first paragraph 2
EDF)

No

ED InspLuftUndFunkOverReglBost Function for monitoring and
regulation, residential build-
ings (section 8 a first para-
graph 3 EDF)

No

IX. Carried out energy efficiency measures since the previous energy declaration
RM AtgUtfordaNyVentil New radiator valves Yes
RM AtgUtfordaJustVarme Adjustment of heating sys-

tem
Yes

RM AtgUtfordaStyrVarme Time/demand control of
heating systems

Yes

RM AtgUtfordaRengVarme Cleaning and/or airing of
heating systems

Yes

RM AtgUtfordaBegrTemp Maximum limitation of inter-
nal temperature

Yes

RM AtgUtfordaNyGivare New indoor sensor Yes
RM AtgUtfordaBytePumpar Replacement/installation of

pressure-controlled pumps
Yes

RM AtgUtfordaAnnanVarme Other action (heat) No
RM AtgUtfordaJustVent Adjustment of ventilation

system
Yes

RM AtgUtfordaTidstyrVent Time management of ventila-
tion systems

Yes

RM AtgUtfordaBehovstyrVent Demand management of
ventilation systems

Yes

RM AtgUtfordaByteFlaktar Replacement/installation of
speed-controlled fans

Yes

RM AtgUtfordaAnnanVent Other measure (ventilation) No
RM AtgUtfordaStyrBelys Time/demand control of

lighting
Yes

RM AtgUtfordaStyrKyla Time/demand control of
cooling

Yes

RM AtgUtfordaAnnanBelysKyla Other measures (lighting,
cooling, etc.)

No

RM AtgUtfordaInstSolceller Installation of solar cells Yes
RM AtgUtfordaInstSolvarme Installation of solar heating Yes
RM AtgUtfordaIsolTak Additional insulation attic

joists/roof
Yes

RM AtgUtfordaIsolVagg Additional insulation walls Yes
Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

RM AtgUtfordaIsolMark Additional insulation base-
ment/ground

Yes

RM AtgUtfordaByteFonster Change to energy-efficient
windows/window doors
with inner pane

Yes

RM AtgUtfordaKompFonster Complementing win-
dows/window doors with
inner pane

Yes

RM AtgUtfordaTatFonster Sealing windows/window
doors/external doors

Yes

RM AtgUtfordaAnnanBygg Other action (build) No
RM AtgUtfordaSparaVatten Hot water saving measures Yes
RM AtgUtfordaEffektivBelys Energy efficient lighting Yes
RM AtgUtfordaIsolKanal Insulation of pipes and venti-

lation ducts
Yes

RM AtgUtfordaByteVarmepump Replacing/installing a heat
pump

Yes

RM AtgUtfordaByteAnnanVarme Replacement/installation of
a more energy-efficient heat
source

Yes

RM AtgUtfordaByteVent Replacement/completion of
the ventilation system

Yes

RM AtgUtfordaAterVent Recovery of ventilation heat Yes
RM AtgUtfordaAnnanInst Other action (installation) No
RM AtgUtfordaUtfortAr Performed (year) No
RM AtgUtfordaBeskrivning Description of the action No

X. Recommendations on cost-effective measures
RM AtgForslagNyVentil New radiator valves Yes
RM AtgForslagJustVarme Adjustment of heating sys-

tem
Yes

RM AtgForslagStyrVarme Time/demand control of
heating systems

Yes

RM AtgForslagRengVarme Cleaning and/or airing of
heating systems

Yes

RM AtgForslagBegrTemp Maximum limitation of inter-
nal temperature

Yes

RM AtgForslagNyGivare New indoor sensor Yes
RM AtgForslagBytePumpar Replacement/installation of

pressure-controlled pumps
Yes

RM AtgForslagAnnanVarme Other action (heat) No
RM AtgForslagJustVent Adjustment of ventilation

system
Yes

RM AtgForslagTidstyrVent Time management of ventila-
tion systems

Yes

RM AtgForslagBehovstyrVent Demand management of
ventilation systems

Yes

Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

RM AtgForslagByteFlaktar Replacement/installation of
speed-controlled fans

Yes

RM AtgForslagAnnanVent Other measure (ventilation) No
RM AtgForslagStyrBelys Time/demand control of

lighting
Yes

RM AtgForslagStyrKyla Time/demand control of
cooling

Yes

RM AtgForslagAnnanBelysKyla Other measures (lighting,
cooling, etc.)

No

RM AtgForslagSparaVatten Hot water saving measures Yes
RM AtgForslagEffektivBelys Energy efficient lighting Yes
RM AtgForslagIsolKanal Insulation of pipes and venti-

lation ducts
Yes

RM AtgForslagByteVarmepump Replacing/installing a heat
pump

Yes

RM AtgForslagByteAnnanVarme Replacement/installation of
a more energy-efficient heat
source

Yes

RM AtgForslagByteVent Replacement/completion of
the ventilation system

Yes

RM AtgForslagAterVent Recovery of ventilation heat Yes
RM AtgForslagAnnanInst Other action (installation) No
RM AtgForslagIsolTak Additional insulation attic

joists/roof
Yes

RM AtgForslagIsolVagg Additional insulation walls Yes
RM AtgForslagIsolMark Additional insulation base-

ment/ground
Yes

RM AtgForslagInstSolceller Installation of solar cells Yes
RM AtgForslagInstSolvarme Installation of solar heating Yes
RM AtgForslagByteFonster Change to energy-efficient

windows/window doors
with inner pane

Yes

RM AtgForslagKompFonster Complementing win-
dows/window doors with
inner pane

Yes

RM AtgForslagTatFonster Sealing windows/window
doors/external doors

Yes

RM AtgForslagAnnanBygg Other action (build) No
RM AtgForslagEgiMinskad Reduced energy use No
RM AtgForslagKostnad Cost per kWh saved No
ED ExpertGruppHosUppdragsgivare Are you employed by the

person who is obliged to en-
sure that there is an energy
declaration or an inspection
report?

No

ED Godkand Approval No
Continued on next page
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Continuation of Table A.3
Data
category
code

Column Description Used for
classifi-
cation

ED Version Version No
XI. Miscellaneous

ED OvrBesiktigat Has the building been in-
spected on site?

No

ED OvrBesiktigatUndantag If no, which exception is in-
voked

No

XII. Expert
ED ExpertGodkand Date of approval No
ED ExpertBehorighet Expert qualification No

XIII. Building’s energy performance
ED EgiSpecifikEnergianvandning Specific energy use according

to BBR 24 and earlier
No

ED EgiPrimarenergital2019 Primary energy number ac-
cording to BBR 25

No

ED EgiPrimarenergital2020 Primary energy number ac-
cording to BBR 29

No

A.2 Statistics of classification dataset

The table below contains numeric statistics for the created classification dataset columns,
excluded all retrofitting measures columns. Total number of rows is 274878.

TABLE A.4: Statistics of classification dataset

Column Data type Missed
values

Skewness Min Q50 Max

EgenKomplex
itet

Categorical 0 - - - -

EgenByggnad
sTyp

Categorical 0 - - - -

EgenNybygg
Ar

Numeric 0 -4,34 1006 1969 2023

year_bucket Numeric 0 -4,99 1000 1960 2020
EgenAtemp Numeric 0 14,95 50 230 209514
EgenAvarmga
rage

Numeric 174501 39,85 0 0 65992

EgenAntalKal
larplan

Numeric 55456 14,62 0 0 20

EgenAntalPla
n

Numeric 61734 5,25 1 2 96

EgenAntalTra
pphus

Numeric 75551 8,77 0 1 72

EgenAntalBol
gh

Numeric 74652 12,01 0 2 1059

Continued on next page



A.2. Statistics of classification dataset 43

Continuation of Table A.4
Column Data type Missed

values
Skewness Min Q50 Max

EgenSmaLage
nheter

Binary 0 - - - -

EgenProjVent
Flode

Numeric 0 4,73 0 0 9,65

EgenInstEleffe
ktStorre

Binary 0 - - - -

EgenSkyddad
EllerVardefull

Categorical 70223 - - - -

EgenAtempBo
stad

Numeric 0 -2,11 0 100 100

EgenAtempB
usiness

Numeric 0 2,11 0 0 100

EgiFjarrvarme
UPPV

Numeric 151957 9,3 0 93606 16249577

EgiFjarrvarme
VV

Numeric 154265 11,74 0 15000 2535456

EgiOljaUPPV Numeric 270005 9,2 0 16000 1815806
EgiOljaVV Numeric 271606 10,03 0 3200 199512
EgiGasUPPV Numeric 271951 4,08 0 20433 1722749
EgiGasVV Numeric 272182 5,29 0 4889 338200
EgiVedUPPV Numeric 248415 4,62 0 2500 206890
EgiVedVV Numeric 263338 2,85 0 0 38150
EgiFlisUPPV Numeric 267395 10,64 0 20705 2891000
EgiFlisVV Numeric 268356 17,08 0 3958 548700
EgiOvrBiobra
nsleUPPV

Numeric 268162 13,04 0 0 2175600

EgiOvrBiobra
nsleVV

Numeric 268247 12,95 0 0 198000

EgiElVattenU
PPV

Numeric 250385 25,68 0 9718 2905000

EgiElDirektU
PPV

Numeric 200897 17,54 0 4215 1516380

EgiElLuftUPP
V

Numeric 264480 9,56 0 5684,5 1042512

EgiPumpMar
kUPPV

Numeric 239758 15,1 0 9600 2840000

EgiPumpFranl
uftUPPV

Numeric 253735 8,39 0 6791 590765

EgiPumpLuft
LuftUPPV

Numeric 234616 23,22 0 3882,5 470000

EgiPumpLuft
VattenUPPV

Numeric 260310 12,03 0 8200 809085

EgiElVV Numeric 116019 18,38 0 2154 466898
EgiFjarrkyla Numeric 265480 13,42 0 0 5523306
EgiKomfort Numeric 256561 12,03 0 300 2354650
EgiFastighet Numeric 63072 32,47 0 2242 10257000
EgiSolvarme Numeric 272223 21,52 0 12 3000

Continued on next page
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Continuation of Table A.4
Column Data type Missed

values
Skewness Min Q50 Max

EgiGruppSolv
arme

Binary 0 - - - -

EgiSolcell Numeric 269733 5,6 0 68 7000
EgiGruppSolc
ell

Binary 0 - - - -

EgiEnergianv
andning

Numeric 0 15,62 213 25384 26748348

EgiPrimarener
gianvandning

Numeric 0 18,56 383 32592 29981704

VentGruppKr
av

Binary 0 - - - -

VentTypFTX Binary 0 - - - -
VentTypF Binary 0 - - - -
VentTypFT Binary 0 - - - -
VentTypSjalv
drag

Binary 0 - - - -

VentTypFmed Binary 0 - - - -
LuftGruppFin
nsluft

Binary 0 - - - -

InspUppvGru
ppNomStorre

Binary 0 - - - -

InspLuftGrup
pNomStorre

Binary 0 - - - -
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Appendix B

Appendix: Results of experiments

B.1 Multilabel classification results on split data

B.1.1 Classification results on data split by year of construction

This section contains a results summary for multilabel classification for data split on
the building year of construction.

TABLE B.1: Multilabel classification: results’ summary for building
built before 1920

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,032 0,0393 0,0826 0,0385

LogisticRegression
ClassifierChain

0,0327 0,0392 0,2459 0,0527

KNeighborsClassifier
Multilabel

0,1629 0,0418 0,1906 0,0411

KNeighborsClassifier
ClassifierChain

0,2237 0,0449 0,3049 0,0495

DecisionTreeClassifier
Multilabel

0,3217 0,053 0,3175 0,0536

DecisionTreeClassifier
MultiOutputClassifier

0,2788 0,0567 0,2867 0,0559

DecisionTreeClassifier
ClassifierChain

0,3183 0,0559 0,3168 0,0573

RandomForestClassifier 0,2235 0,0333 0,2136 0,0335
RandomForestClassifier
ClassifierChain

0,34 0,0384 0,3365 0,0388

ExtraTreeClassifier 0,3109 0,0533 0,3017 0,0537
ExtraTreesClassifier 0,2384 0,0336 0,2336 0,0346
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TABLE B.2: Multilabel classification: results’ summary for building
built between 1920 and 2000

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,0537 0,0403 0,0616 0,0392

LogisticRegression
ClassifierChain

0,0539 0,0402 0,2259 0,0543

KNeighborsClassifier
Multilabel

0,2234 0,0405 0,2451 0,0396

KNeighborsClassifier
ClassifierChain

0,2805 0,0451 0,3357 0,0476

DecisionTreeClassifier
Multilabel

0,3697 0,0472 0,3663 0,0478

DecisionTreeClassifier
MultiOutputClassifier

0,3412 0,0503 0,3317 0,0506

DecisionTreeClassifier
ClassifierChain

0,3687 0,0504 0,3606 0,0517

RandomForestClassifier 0,2879 0,0305 0,2704 0,0311
RandomForestClassifier
ClassifierChain

0,4037 0,0348 0,3974 0,0364

ExtraTreeClassifier 0,3607 0,0478 0,3545 0,0481
ExtraTreesClassifier 0,3078 0,0306 0,3004 0,0314

TABLE B.3: Multilabel classification: results’ summary for building
built after 2000

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,051 0,0389 0,2945 0,0344

LogisticRegression
ClassifierChain

0,0503 0,0388 0,4334 0,0412

KNeighborsClassifier
Multilabel

0,4335 0,0322 0,439 0,0322

KNeighborsClassifier
ClassifierChain

0,4779 0,034 0,5113 0,0354

DecisionTreeClassifier
Multilabel

0,5712 0,0322 0,5673 0,0321

DecisionTreeClassifier
MultiOutputClassifier

0,5415 0,0336 0,5238 0,0345

DecisionTreeClassifier
ClassifierChain

0,5731 0,0341 0,5649 0,0336

RandomForestClassifier 0,5528 0,0209 0,5263 0,0219
RandomForestClassifier
ClassifierChain

0,6269 0,0235 0,6213 0,0246

ExtraTreeClassifier 0,5657 0,0323 0,5584 0,0328
ExtraTreesClassifier 0,5717 0,0213 0,544 0,022
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B.1.2 Classification results on data split by building category

This section contains a results summary for multilabel classification for data split on
the building’s category.

TABLE B.4: Multilabel classification: results’ summary for building
category "Multi-family dwellings"

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,0005 0,0422 0,0161 0,0421

LogisticRegression
ClassifierChain

0,0005 0,0422 0,1086 0,0512

KNeighborsClassifier
Multilabel

0,2279 0,0409 0,263 0,0398

KNeighborsClassifier
ClassifierChain

0,2682 0,0469 0,3201 0,0488

DecisionTreeClassifier
Multilabel

0,4419 0,042 0,4272 0,0432

DecisionTreeClassifier
MultiOutputClassifier

0,4271 0,0449 0,4086 0,0468

DecisionTreeClassifier
ClassifierChain

0,4383 0,0471 0,4201 0,0493

RandomForestClassifier 0,3641 0,026 0,3443 0,0269
RandomForestClassifier
ClassifierChain

0,4051 0,0277 0,3956 0,029

ExtraTreeClassifier 0,4531 0,0409 0,434 0,0429
ExtraTreesClassifier 0,4083 0,0244 0,3925 0,0253

TABLE B.5: Multilabel classification: results’ summary for building
category "Office buildings"

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,0001 0,0435 0,0201 0,0433

LogisticRegression
ClassifierChain

0,0001 0,0435 0,162 0,0519

KNeighborsClassifier
Multilabel

0,107 0,0468 0,129 0,0465

KNeighborsClassifier
ClassifierChain

0,163 0,056 0,2135 0,0595

DecisionTreeClassifier
Multilabel

0,2818 0,0607 0,2802 0,061

DecisionTreeClassifier
MultiOutputClassifier

0,2723 0,0652 0,2617 0,0663

Continued on next page
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Continuation of Table B.5

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
DecisionTreeClassifier
ClassifierChain

0,2931 0,0674 0,2822 0,0675

RandomForestClassifier 0,1966 0,0351 0,1885 0,035
RandomForestClassifier
ClassifierChain

0,2995 0,0426 0,2889 0,0425

ExtraTreeClassifier 0,2855 0,0605 0,2806 0,0602
ExtraTreesClassifier 0,2138 0,035 0,2168 0,0347

TABLE B.6: Multilabel classification: results’ summary for building
category "Single- or two-family house"

Method
Dataset 1 Dataset 2

F1-score Hamming loss F1-score Hamming loss
LogisticRegression
MultiOutputClassifier

0,131 0,0357 0,1701 0,0351

LogisticRegression
ClassifierChain

0,3279 0,0438 0,3731 0,0447

KNeighborsClassifier
Multilabel

0,2626 0,0373 0,2853 0,0366

KNeighborsClassifier
ClassifierChain

0,3545 0,0419 0,2853 0,0366

DecisionTreeClassifier
Multilabel

0,3937 0,0445 0,3943 0,0444

DecisionTreeClassifier
MultiOutputClassifier

0,3574 0,0462 0,3518 0,0462

DecisionTreeClassifier
ClassifierChain

0,3955 0,0458 0,3921 0,0466

RandomForestClassifier 0,3229 0,0297 0,305 0,03
RandomForestClassifier
ClassifierChain

0,4832 0,0349 0,4597 0,0348

ExtraTreeClassifier 0,3777 0,0455 0,3702 0,0461
ExtraTreesClassifier 0,3282 0,0303 0,3226 0,031

B.2 Single-label classification results

TABLE B.7: Single-label classification: results’ summary for Logisti-
cRegression Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0 0 0 0 0 0
R2 0 0 0 0 0 0
R3 0 0 0 0,0149 0,6923 0,0075
R4 0 0 0 0 0 0

Continued on next page
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Continuation of Table B.7
Dataset 1 Dataset 2

F1-score Precision Recall F1-score Precision Recall
R5 0 0 0 0,0038 0,4545 0,0019
R6 0 0 0 0,0062 0,3889 0,0031
R7 0 0 0 0 0 0
R8 0 0 0 0 0 0
R9 0 0 0 0 0 0
R10 0 0 0 0 0 0
R11 0 0 0 0 0 0
R12 0 0 0 0 0 0
R13 0 0 0 0 0 0
R14 0,023 0,1437 0,0125 0,1092 0,6177 0,0599
R15 0 0 0 0 0 0
R16 0 0 0 0 0 0
R17 0,4179 0,5101 0,354 0,422 0,5966 0,3265
R18 0 0 0 0,0012 0,25 0,0006
R19 0 0 0 0,0018 0,1429 0,0009
R20 0 0 0 0,0019 0,1111 0,001
R21 0,0262 0,2506 0,0138 0,0084 0,5686 0,0042
R22 0 0 0 0 0 0
R23 0 0 0 0 0 0
R24 0 0 0 0,1964 0,5899 0,1178
R25 0 0 0 0 0 0
R26 0 0 0 0 0 0
R27 0,0022 1 0,0011 0,0047 0,25 0,0024
R28 0 0 0 0 0 0

TABLE B.8: Single-label classification: results’ summary for KNeigh-
bors Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0,3458 0,5788 0,2465 0,3849 0,5843 0,287
R2 0,4268 0,5757 0,3391 0,4904 0,628 0,4023
R3 0,3331 0,6658 0,2221 0,4135 0,7102 0,2917
R4 0,3543 0,6948 0,2378 0,3944 0,6382 0,2854
R5 0,3868 0,6504 0,2753 0,4308 0,6343 0,3261
R6 0,3267 0,5419 0,2339 0,3763 0,5752 0,2796
R7 0,2709 0,6605 0,1704 0,2864 0,6196 0,1863
R8 0,2815 0,6105 0,1829 0,3426 0,6615 0,2312
R9 0,163 0,44 0,1 0,1891 0,5 0,1166
R10 0,2236 0,5057 0,1436 0,326 0,6848 0,2139
R11 0,2842 0,5625 0,1901 0,3773 0,6327 0,2688
R12 0,248 0,6739 0,152 0,2126 0,5094 0,1343
R13 0,0444 0,3333 0,0238 0,16 0,4444 0,0976
R14 0,4469 0,553 0,3749 0,4993 0,6081 0,4235
R15 0,1951 0,56 0,1181 0,2774 0,5832 0,182

Continued on next page
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Continuation of Table B.8
Dataset 1 Dataset 2

F1-score Precision Recall F1-score Precision Recall
R16 0,2968 0,604 0,1968 0,3679 0,624 0,2609
R17 0,5224 0,6047 0,4598 0,5424 0,6135 0,4861
R18 0,2679 0,5856 0,1737 0,3444 0,6266 0,2374
R19 0,3117 0,5548 0,2168 0,382 0,6454 0,2713
R20 0,311 0,6158 0,208 0,3987 0,636 0,2903
R21 0,2966 0,4395 0,2239 0,3025 0,4443 0,2293
R22 0,4198 0,7391 0,2931 0,5106 0,7636 0,3836
R23 0,4812 0,8421 0,3368 0,5344 0,8537 0,3889
R24 0,4272 0,5363 0,355 0,4789 0,5738 0,411
R25 0,2149 0,6118 0,1303 0,2994 0,7075 0,1899
R26 0,2819 0,6257 0,182 0,338 0,6217 0,2321
R27 0,1635 0,5513 0,096 0,1972 0,4839 0,1238
R28 0,1715 0,529 0,1023 0,1924 0,4924 0,1195

TABLE B.9: Single-label classification: results’ summary for Decision-
Tree Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0,4562 0,4387 0,4751 0,4412 0,459 0,283
R2 0,5343 0,5216 0,5476 0,5364 0,5505 0,3665
R3 0,411 0,3997 0,423 0,4159 0,435 0,2625
R4 0,4557 0,425 0,4911 0,443 0,4449 0,2845
R5 0,4834 0,4668 0,5013 0,4616 0,4882 0,3
R6 0,4025 0,3915 0,4142 0,4111 0,4293 0,2587
R7 0,3456 0,3324 0,3599 0,3079 0,3235 0,182
R8 0,3632 0,3588 0,3676 0,3686 0,3996 0,2259
R9 0,3049 0,2966 0,3136 0,3153 0,345 0,1872
R10 0,372 0,3396 0,4111 0,3739 0,4041 0,23
R11 0,4168 0,3952 0,4408 0,4129 0,4436 0,2602
R12 0,2844 0,2602 0,3137 0,2993 0,3134 0,176
R13 0,2885 0,2419 0,3571 0,2418 0,2683 0,1375
R14 0,5346 0,5271 0,5424 0,5253 0,5367 0,3562
R15 0,3122 0,3037 0,3212 0,3098 0,3272 0,1833
R16 0,3752 0,3699 0,3806 0,4025 0,4314 0,252
R17 0,5479 0,5442 0,5517 0,5411 0,5532 0,3709
R18 0,3642 0,3465 0,3837 0,3705 0,4014 0,2274
R19 0,3925 0,3855 0,3996 0,4054 0,4287 0,2543
R20 0,428 0,4158 0,4408 0,4094 0,436 0,2574
R21 0,3689 0,3584 0,38 0,3612 0,3757 0,2204
R22 0,4008 0,3745 0,431 0,4431 0,4977 0,2846
R23 0,45 0,4286 0,4737 0,5028 0,5 0,3358
R24 0,5155 0,5072 0,5241 0,5139 0,5297 0,3458
R25 0,2556 0,2422 0,2707 0,2515 0,2709 0,1438
R26 0,3729 0,3542 0,3937 0,3636 0,3831 0,2222
R27 0,2737 0,2556 0,2946 0,2311 0,2453 0,1307
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Continuation of Table B.9
Dataset 1 Dataset 2

F1-score Precision Recall F1-score Precision Recall
R28 0,2634 0,249 0,2796 0,2413 0,2584 0,1372

TABLE B.10: Single-label classification: results’ summary for Ran-
domForest Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0,5202 0,9682 0,3556 0,4644 0,97 0,3053
R2 0,5969 0,9699 0,4311 0,5859 0,9723 0,4192
R3 0,5379 0,9869 0,3697 0,5268 0,9907 0,3588
R4 0,5701 0,9784 0,4022 0,5577 0,9721 0,391
R5 0,6004 0,9829 0,4322 0,5737 0,9771 0,406
R6 0,4252 0,8786 0,2805 0,4296 0,9034 0,2818
R7 0,4604 0,9793 0,301 0,4231 0,9821 0,2696
R8 0,4681 0,9888 0,3066 0,502 0,9843 0,3369
R9 0,3686 0,974 0,2273 0,3803 1 0,2348
R10 0,4761 0,9604 0,3165 0,5069 0,9712 0,343
R11 0,5403 0,9779 0,3732 0,5315 0,9731 0,3656
R12 0,4047 0,9811 0,2549 0,4479 1 0,2886
R13 0,4444 1 0,2857 0,3922 1 0,2439
R14 0,6216 0,7878 0,5133 0,6054 0,7938 0,4894
R15 0,3717 0,9395 0,2317 0,343 0,9438 0,2096
R16 0,5278 0,9344 0,3677 0,564 0,9675 0,398
R17 0,6249 0,7789 0,5218 0,6059 0,7721 0,4985
R18 0,4501 0,9568 0,2943 0,4515 0,9506 0,296
R19 0,484 0,9504 0,3247 0,5044 0,9561 0,3426
R20 0,5237 0,9766 0,3578 0,5193 0,9604 0,3558
R21 0,349 0,7291 0,2294 0,3222 0,7071 0,2087
R22 0,5775 0,9794 0,4095 0,6626 0,9909 0,4977
R23 0,6573 0,9792 0,4947 0,6466 1 0,4778
R24 0,5727 0,8166 0,441 0,5597 0,8055 0,4288
R25 0,3681 1 0,2256 0,3595 0,9775 0,2203
R26 0,4663 0,9783 0,3061 0,4617 0,9913 0,301
R27 0,3339 0,9381 0,2031 0,2903 0,9603 0,171
R28 0,3092 0,967 0,184 0,2754 0,9537 0,1609

TABLE B.11: Single-label classification: results’ summary for Extra-
Tree Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0,4564 0,45 0,463 0,4412 0,4399 0,4424
R2 0,5396 0,5398 0,5395 0,5395 0,5307 0,5486
R3 0,4382 0,4331 0,4434 0,4214 0,4148 0,4283
R4 0,4756 0,4756 0,4756 0,4321 0,4122 0,4539

Continued on next page
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Continuation of Table B.11
Dataset 1 Dataset 2

F1-score Precision Recall F1-score Precision Recall
R5 0,5054 0,4946 0,5167 0,4793 0,4642 0,4954
R6 0,3937 0,389 0,3985 0,4001 0,3908 0,4098
R7 0,3714 0,3627 0,3806 0,3557 0,3474 0,3644
R8 0,369 0,3687 0,3693 0,3872 0,374 0,4014
R9 0,3156 0,3087 0,3227 0,3206 0,3139 0,3275
R10 0,3751 0,3547 0,398 0,3846 0,3726 0,3973
R11 0,4342 0,4041 0,469 0,4479 0,4368 0,4595
R12 0,3529 0,3529 0,3529 0,344 0,3398 0,3483
R13 0,425 0,4474 0,4048 0,3023 0,2889 0,3171
R14 0,524 0,527 0,5211 0,5034 0,4999 0,5069
R15 0,308 0,2998 0,3167 0,3055 0,3003 0,3108
R16 0,4045 0,4058 0,4032 0,4251 0,4099 0,4415
R17 0,535 0,5343 0,5358 0,5315 0,5267 0,5363
R18 0,3724 0,3642 0,3808 0,3881 0,3747 0,4026
R19 0,4166 0,4222 0,4112 0,4041 0,3915 0,4176
R20 0,4484 0,4492 0,4475 0,446 0,4325 0,4604
R21 0,3689 0,3646 0,3734 0,3654 0,3604 0,3706
R22 0,4167 0,4032 0,431 0,4882 0,4597 0,5205
R23 0,4828 0,4537 0,5158 0,5134 0,4948 0,5333
R24 0,5089 0,5048 0,5131 0,5001 0,491 0,5094
R25 0,245 0,2444 0,2456 0,2801 0,2721 0,2886
R26 0,3722 0,3669 0,3776 0,3733 0,3672 0,3795
R27 0,2687 0,2591 0,279 0,2534 0,2456 0,2618
R28 0,2696 0,2668 0,2724 0,2371 0,2333 0,2409

TABLE B.12: Single-label classification: results’ summary for Extra-
Trees Classifier

Dataset 1 Dataset 2
F1-score Precision Recall F1-score Precision Recall

R1 0,5547 0,9262 0,3959 0,5239 0,9011 0,3693
R2 0,6191 0,9281 0,4645 0,6266 0,9326 0,4718
R3 0,5721 0,9559 0,4082 0,5828 0,956 0,4191
R4 0,6408 0,9729 0,4778 0,6398 0,9554 0,4809
R5 0,6318 0,9566 0,4716 0,6165 0,9486 0,4566
R6 0,4497 0,821 0,3097 0,4626 0,8145 0,323
R7 0,5093 0,944 0,3487 0,4958 0,9283 0,3382
R8 0,5052 0,9703 0,3415 0,5394 0,9631 0,3746
R9 0,3771 0,9568 0,2348 0,3949 0,9512 0,2492
R10 0,5066 0,9464 0,3458 0,5178 0,9336 0,3582
R11 0,5812 0,9519 0,4183 0,5691 0,9589 0,4046
R12 0,4797 0,9701 0,3186 0,5018 0,9714 0,3383
R13 0,4444 1 0,2857 0,3922 1 0,2439
R14 0,6198 0,7726 0,5175 0,6026 0,7649 0,4972
R15 0,4054 0,8862 0,2628 0,3974 0,8408 0,2602

Continued on next page
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Continuation of Table B.12
Dataset 1 Dataset 2

F1-score Precision Recall F1-score Precision Recall
R16 0,5475 0,9167 0,3903 0,6055 0,9635 0,4415
R17 0,619 0,7543 0,5248 0,6172 0,7266 0,5364
R18 0,4723 0,9038 0,3197 0,4817 0,8805 0,3316
R19 0,5145 0,9217 0,3568 0,5295 0,9058 0,3741
R20 0,5812 0,9345 0,4218 0,5646 0,9284 0,4057
R21 0,376 0,6674 0,2617 0,3637 0,6343 0,2549
R22 0,5946 0,9802 0,4267 0,6726 0,95 0,5205
R23 0,6712 0,9608 0,5158 0,6809 0,9412 0,5333
R24 0,5807 0,7866 0,4603 0,5726 0,7578 0,4602
R25 0,3796 0,8661 0,2431 0,4031 0,8595 0,2633
R26 0,5049 0,9212 0,3478 0,4977 0,9502 0,3372
R27 0,3878 0,878 0,2489 0,3444 0,8916 0,2134
R28 0,3388 0,8994 0,2087 0,3054 0,8306 0,1871
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