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Abstract

In the past few years, substantial progress has been made in the development of text
classification algorithms that can efficiently generalize on limited training data (a set-
ting called few-shot learning). However, the effort has primarily been focused on the
English language, with research on few-shot classification of texts in the Ukrainian
language being largely limited. We shorten this gap by suggesting a modified ver-
sion of Sentence Transformer Fine-tuning (SetFit), and comparing its performance
to versatile baselines on a corpus of news articles. Our solution, which we call Set-
Fit Modified, involves data augmentations, self-training, and evaluation based on
synthetic data. It outperforms all baselines in a setting with 8 training examples per
class. A benchmark of speed and computational costs shows that both original and
modified SetFit provide the fastest and most efficient inference among the tested
methods, which makes them applicable in a general low-resource scenario1.

1Code to reproduce experiments from this project is available at
https://github.com/ysapolovych/few-shot-masters

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua
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Chapter 1

Introduction

1.1 Background

Text classification is the task of assigning labels to textual documents. It has a wide
range of applications in different fields, and encompasses a large set of problems
in natural language processing (NLP): sentiment analysis, document categoriza-
tion, question answering, natural language inference, relation classification [Li et
al., 2022] and more.

One of the key challenges of machine learning and text classification in particular
is that algorithms typically require large amounts of examples to perform well on
unseen data [Li et al., 2022]. However, under many real-life scenarios, obtaining a
sizable training dataset is problematic or impossible. Data collection and labeling
may incur high costs, or the data may be distributed in such a way that there are
rare classes with only a few instances. This issue has spurred the emergence of a
framework called few-shot learning, which aims at efficient machine learning with
limited training data [Parnami and Lee, 2022].

Few-shot text classification has gained much momentum in the past several years,
in particular, due to the advent of pretrained language models (PLMs). A key as-
pect of PLMs is their ability to interact with inputs written in natural language.
They are capable of filling in missing words (like BERT [Devlin et al., 2019] and
similar masked language models [MLMs]), or completing and generating text (like
GPT-3 [Brown et al., 2020] and other autoregressive models). Much progress in
few-shot text classification has been driven by the development and application of
prompts, i.e. texts that guide PLMs’ answers with instructions or examples. How-
ever, prompting can be quite challenging, as it requires domain expertise and an
understanding of the PLM’s internal workings [Schick et al., 2020]. Therefore a large
body of works on the subject is dedicated either to making prompt engineering more
efficient and/or automated, or fully abandoning prompts.

1.2 Motivation

Ukrainian NLP has advanced substantially in recent years, largely thanks to the ac-
tive community that trains SotA models, develops new linguistic tools, and creates
datasets. However, many problems that have been extensively written on in English
remain completely or almost untouched. One such example is few-shot text clas-
sification, the vast majority of the scholarly works on which have been focused on
the English language. To the best of our knowledge, there are only a few works that
touch upon few-shot classification of Ukrainian texts. This presents a notable re-
search gap, as it has just as wide a variety of applications in Ukrainian as in English.
The issue of data scarcity is arguably even more acute for the Ukrainian language
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due to the lack of publicly available datasets and fewer sources to collect data from.
Bridging this gap would be beneficial to both researchers and practitioners from dif-
ferent fields in need of robust classification models under low-data restrictions. Even
when annotation of sufficient data is possible, few-shot text classification may help
reduce development costs and save (often inordinate) time spent on labeling.

1.3 Thesis Structure

This paper is structured as follows. Chapter 2 will provide a review of related work
and describe existing research gaps. Chapter 3 will present the methodology of the
research. Chapter 4 will provide experimental setup, an evaluation of the results,
and their discussion. The paper concludes with a summary and future work in
Chapter 5.
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Chapter 2

Related Work

This chapter will start with a short inquiry into general text classification, as a solid
grasp of it is necessary for a deep dive into few-shot algorithms. An overview of
few-shot text classification will then be provided, with approaches divided into two
major groups based on whether they rely on prompts or not. The chapter will close
with an analysis of research gaps.

2.1 Text Classification

From the 1960s to the 2010s, traditional "shallow" learning methods, such as Support
Vector Machine, Naive Bayes, K-Nearest Neighbor, and Decision Tree were domi-
nant in text classification [Li et al., 2022]. They heavily rely on extensive feature en-
gineering for the construction of text representation. The most common technique
is called the bag of words (BOW), a document-term matrix representing word fre-
quencies in documents [Dogra et al., 2022]. To adjust word weights for their hypo-
thetical importance in a corpus (i.e. more frequent words tend to be less informa-
tive/indicative of a class and vice versa), a technique called TF-IDF (Term Frequency
- Inverse Document Frequency) is often applied over BOW. TF-IDF and BOW typi-
cally require pre-processing like stemming or lemmatization to reduce related words
to common stems or lexemes, as well as a reduction of vocabulary size [Palaniv-
inayagam et al., 2023]. Another downside of BOW and TF-IDF is that they do not
account for word ordering and context.

The early 2010s saw the rise of deep-learning methods for text classification
based on neural networks (NNs), which typically involve end-to-end learning [Li
et al., 2022]. One of the most important changes brought by NNs were word em-
beddings, i.e. mappings of textual data to continuous vectors that allow encod-
ing semantic and syntactic similarities. Textual embedding models like word2vec
[Mikolov et al., 2013], doc2vec [Le and Mikolov, 2014], and GloVe [Pennington et al.,
2014] allowed for more robust text representations that could be used in conjunction
with both "shallow" and NN-based methods. The latter include such architectures as
multi-layer perceptron, feed-forward, convolutional, recurrent, and attention-based
NNs [Li et al., 2022].

In the late 2010s, transformer-based PLMs emerged, such as BERT [Devlin et al.,
2019], GPT [Radford and Narasimhan, 2018], and XLNet [Yang et al., 2019]. PLMs
are pre-trained on large textual data mostly in a self-supervised manner and can be
adapted to numerous NLP tasks with supervised fine-tuning. Due to the versatility
and superior performance of PLMs, the focus of NLP research started shifting to-
wards their application circa 2019, and to this day they remain the state of the art in
text classification [Galke et al., 2023].

Model training procedures largely depend on a PLM type, which falls into three
main categories. Fine-tuning for text classification with encoder-only models like
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BERT, RoBERTa [Liu et al., 2019], ALBERT [Lan et al., 2020], as well as other BERT-
family models, typically involves optimizing model weights to receive better em-
beddings that can be classified with a dedicated layer added on top of a model [Sun
et al., 2019]. Encoder-decoder models, such as T5, require all NLP tasks to be in a
text-to-text format [Raffel et al., 2020]. For text classification, the model is tasked
to predict a word corresponding to a label, and the results are iteratively improved
by adjusting the model’s parameters. Decoder-only models, like GPT-3 [Brown et
al., 2020], take examples or instructions written in natural language as an input and
generate text as an output. Modern decoder-only models tend to have billions of pa-
rameters and are commonly referred to as large language models (LLMs), therefore
this acronym will be used further in the text.

Another paradigm that has gained significant traction is graph NN-based text
classification [Galke et al., 2023]. Their application involves the transformation of
documents into a graph that can be either homogeneous (containing only document
or word-level nodes), or heterogeneous (where multiple features may serve as nodes
simultaneously, such as documents, words, labels [Malekzadeh et al., 2021], entities,
modeled topics [Linmei et al., 2019], etc.). Graphs are propagated through a graph
NN which returns predictions. Galke et al., 2023 conducted experiments showing
that so far graph NNs have been unable to outperform transformer-based methods
on most of the benchmarks.

As both transformer and graph NN-based methods are typically computation-
ally heavy [Galke and Scherp, 2022], over the past few years some researchers sug-
gested a return to simpler architectures. Liu et al., 2021 proposed a model based
on multilayer perceptron showing results competitive with BERT. Some "shallow"
machine learning methods have demonstrated an ability to perform on par or even
better than PLMs, e.g. Support Vector Machines with TF-IDF [Wahba et al., 2023]
and K-Nearest Neighbor on documents compressed with gzip [Jiang et al., 2023b].

2.2 Few-shot text classification

2.2.1 Prompt-based Approaches

Brown et al., 2020 introduced a method called in-context learning (ICL) capable of
addressing diverse few-shot textual tasks. ICL relies on the ability of LLMs such as
GPT-3 to generate text by following examples and/or explicit instructions in human
language called prompts. In its base form, ICL is simple, as it does not involve
parameter updates, and is capable of producing solid results, but is also prone to
several issues, like sensitivity to prompt design and various biases [Zhao et al., 2021].
Another issue with ICL is that a model must process a whole set of examples to make
each prediction.

MLMs, unlike LLMs, cannot follow explicit textual instructions and therefore
require a different prompt design. A text classification task for an MLM can be ex-
pressed as a cloze phrase (a phrase where one or multiple words are masked) that
exploits the model’s ability to fill in missing words [Schick and Schütze, 2021a]. For
instance, in a prompt "I had a lot of fun! It was [MASK]" a model should predict
the best replacement for the [MASK] token. There are two necessary components
required for such prompts to work. Firstly, a function is required to convert a classi-
fied text into an answerable prompt called a pattern [Schick and Schütze, 2021a] or
a template [Hu et al., 2022b]. In the above case, "It was [MASK]." serves as a pattern.
Secondly, considering many possible semantically similar words that may be put in
place of a mask token, a separate function called verbalizer is defined to map label
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words (e.g. "positive") to words from the PLM’s vocabulary (e.g. "good," "great",
"awesome" etc.). This setup was first implemented by Schick and Schütze, 2021a in
an approach called Pattern-Exploiting Training (PET). They fine-tune an ensemble
of models, each with a different pattern, and use them to assign soft labels to unla-
beled documents. A set of examples expanded with high-confidence predictions is
used to either train a "real" final classifier, or intermediate models that would label
more texts for training the next generation of MLMs. Tam et al., 2021 modify PET
by utilizing more complex loss functions, thus improving the performance on nat-
ural language inference tasks and mitigating the need for unlabeled examples and
ensembling. Gao et al., 2021 fine-tune a single MLM in PET fashion, but also use
ICL-like demonstrations in prompts at both training and inference time for better
accuracy. Wang et al., 2021 suggest reformulating text classification and other NLP
tasks under few-shot restriction into an entailment problem, based on an assump-
tion that it can serve as a unified task closer to the language understanding task a
model was pre-trained on.

Manual prompt design is challenging, and poorly constructed prompts can be
detrimental to the results. Multiple methods have been proposed for more efficient
and/or automated prompt engineering. Schick et al., 2020 maximize the likelihood
of training data provided a verbalizer. Gao et al., 2021 generate patterns with a
text-to-text language model and use brute-force search to select the best label words
for verbalizers. Deng et al., 2022 formulate prompt engineering as a reinforcement
learning problem. Hu et al., 2022b utilize knowledge bases to collect synonymous or
semantically related words for verbalizers. Logan IV et al., 2021 explore fine-tuning
with null prompts, i.e. prompts with just an input text, a mask, and a verbalizer
(which can also be picked from random tokens to minimize manual engineering).
While performing worse than meticulously crafted and validated manual prompts,
they show results competitive to prompt tuning and do not require training or vali-
dation with a large dataset unavailable in a true few-shot setting.

Lester et al., 2021 replaced human-language discrete prompts with continuous
numeric prompts. In an approach called prompt tuning, embedded text inputs are
concatenated with special tokens, the weights of which are updated during train-
ing. Various methods have been suggested to improve the performance of continu-
ous prompts, such as pre-training with unsupervised tasks [Gu et al., 2022], encod-
ing discrete prompts with added adversarial perturbations [Hambardzumyan et al.,
2021], and using continuous prompts concatenated with discrete tokens [Liu et al.,
2023]. Hambardzumyan et al., 2021 and Gu et al., 2022 also note that either initializ-
ing a continuous prompt with a manual template or combining continuous prompts
with well-crafted discrete ones improves the performance of the classifier in few-
shot scenarios. These results suggest that continuous prompts cannot be seen as an
outright replacement for discrete ones.

A large point of critique of works on few-shot text classification is that the as-
sumption of scarce data is often relaxed to take advantage of large test sets for hy-
perparameter tuning and prompt selection. Perez et al., 2021 argue that under true
few-shot learning, when such data is not available, models often show results only
marginally better than random selection. It has since been proven that effective clas-
sifiers can be developed with limited test and validation data [Karimi Mahabadi et
al., 2022; Schick and Schütze, 2022], but the model performance can significantly
benefit from them.

Another issue of prompt-based approaches comes from the large size of PLMs,
which makes them impractical or impossible to use without high-end hardware. Ex-
isting solutions suggest using smaller or distilled PLMs [Schick and Schütze, 2021b]
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or optimizing the fine-tuning process. The latter can be achieved by freezing the
model’s weights and training embeddings [Lester et al., 2021; Hambardzumyan et
al., 2021], or training just a few new parameters introduced into the model’s body
[Liu et al., 2022]. Recent developments in quantization and task adaptation with
injected low-rank matrices [Hu et al., 2022a; Dettmers et al., 2023] have also made
fine-tuning of LLMs with billions of parameters more accessible, albeit still demand-
ing powerful GPUs.

2.2.2 Promptless Approaches

Older promptless methods do not rely on PLMs, which makes them language-agnostic
and less hardware-demanding. Two primary groups can be distinguished: semi-
supervised and meta-learning-based.

Semi-supervised methods leverage unlabeled data along with labeled examples
to improve the performance of a model. Linmei et al., 2019 suggest heterogeneous
networks that can capture relations between labeled texts and additional informa-
tion, such as entities and topics, to enrich the semantics of texts for better representa-
tion. Meng et al., 2018 generate pseudo-documents from different seed information
(label names, keywords, and labeled documents), and use them to pre-train a con-
volutional or recurrent NN classifier. At the next stage, a model is first trained on
the initial small training set, and then on an iteratively expanded set of predictions
from unlabeled data. Xie et al., 2020 apply augmentations on unlabeled data, such
as back-translation and replacement of words with low TF-IDF scores. A classifier
is trained with a combination of two loss functions: supervised cross-entropy loss
for labeled examples, and consistency loss to enforce the assignment of the same la-
bels to augmented and non-augmented versions of unlabeled documents. The latter
results in a model less sensitive to changes in the input spaces. Gururangan et al.,
2019 pretrain variational autoencoders on in-domain unlabeled data to efficiently
encode and decode texts. The vectors of labeled documents are concatenated with
weighted combinations of internal states of the encoder and used as features to train
a supervised classifier.

Meta-learning aims at learning an algorithm, often called a meta-model, on a va-
riety of tasks so that it can be efficiently adapted to new tasks [Lee et al., 2022]. Yu
et al., 2018 train clusters of related tasks on various metrics for easier adaptation to
diverse new tasks. The resulting meta-model picks suitable linear combinations of
these metrics weighted by parameters trained during a few-shot target task. Han
et al., 2018 adapt meta networks originally introduced by Munkhdalai and Yu, 2017
for few-shot image classification. Their model is made up of two components, a
meta learner and a base learner. The former acquires knowledge across different
tasks and provides fast weights, i.e. quickly evolving parameters, which help a base
learner generalize on a new task. Prototypical networks [Snell et al., 2017] is an-
other technique originally introduced for image classification. Its core idea is the
construction of class prototypes through averaging vectors of the training set and
making predictions based on the distance between them and new data. Gao et al.,
2019 build robust class prototypes by applying an attention mechanism that assigns
larger weights to more important features and instances. Bao et al., 2020 suggest
improving the adaptability of a meta-model by learning specific word distributions,
namely word frequency across the training data, and inverse entropy of conditional
likelihood of a class label given a word. These statistics are translated into atten-
tion and used to train a ridge regressor, which makes predictions and provides the
attention generator with a loss for optimization.
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More recent promptless methods utilize PLMs. Xie et al., 2020 use a model vari-
ant with BERT-initialized weights in their semi-supervised approach. Chen et al.,
2020 utilize a similar semi-supervised approach and add augmentations from in-
terpolations of documents’ hidden states between multiple layers of BERT. Karimi
Mahabadi et al., 2022 suggested an MLM-based setup that alleviates the need for
prompts. As a replacement for patterns, task-specific adapter layers inform a model
of a given task, and instead of verbalizers, they introduced multi-token trainable
label embeddings that learn label representations. Tunstall et al., 2022 leverage Sen-
tence Transformers models [Reimers and Gurevych, 2019], which map sentences to
continuous vectors. They perform contrastive fine-tuning to pull example pairs of
one class closer in the embedded space, and push pairs from different classes further
apart. A fine-tuned encoder produces embeddings to train a supervised classifier.

2.3 Few-shot Classification of Ukrainian Texts

There are several works dealing with few-shot classification of texts in Ukrainian
that we are aware of. Dementieva et al., 2024b employ ICL with Mistral 7B [Jiang
et al., 2023a] and Llama 2 [Touvron et al., 2023] LLMs for toxicity detection and com-
pare them to full-shot benchmarks. ICL with Llama 2 is also utilized by Dementieva
et al., 2024a for three classification tasks (toxicity, formality, and natural language
inference). Both papers use two to three examples in each prompt. In their exper-
iments, full-shot methods show superior performance, although in Dementieva et
al., 2024b ICL rivals XLM-RoBERTa Large [Conneau et al., 2020] in some settings.
Isaienkov and Paramonov, 2020 evaluates classifiers typically used in a full-shot set-
ting (support vector machine, long-short term memory NN and BERT) on a small
set (60 training and 60 test examples) of short word descriptions. Their best model,
support vector machine with Radial Basis Function kernel, reaches an accuracy of
0.72.

2.4 Research Gaps

The review of related work has identified several research gaps that we intend to
address in our work. First of all, with the exception of ICL, it is not apparent which
PLM-based approaches can be adapted — and to which degree of success — to the
Ukrainian language. The choice of PLMs is much more constrained compared to
English, the (primarily multilingual) existing options are not guaranteed to perform
as well as English-only monolingual models, and the previous guidelines on prompt
building may not be applicable. This calls for an exploration of available linguistic
resources and extensive experimentation. We are especially interested in comparing
the LLMs, which dynamically evolve and regularly establish new SoTA in a wide
range of NLP tasks, to smaller PLMs fine-tuned specifically to text classification.

The shortage of prior research on the topic in Ukrainian implies the lack of base-
lines. This further necessitates adaptation and experiments with existing methods
that will serve as a basis for the comparison with our proposed solution.

Many previous publications on the subjects rely on large validation or holdout
sets of data. The speed and computational efficiency of few-shot text classification
methods are also not reported or are of secondary importance in many of the re-
viewed works. The first factor limits the usefulness of the approaches in true few-
shot setting, while the second impedes applicability in general low-resource scenar-
ios (low data and no high-end hardware available), or when inference must be done
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at a large scale. These two factors need to be addressed for the results to be practical
in real life.
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Chapter 3

Methodology

3.1 Problem Formulation

Given a dataset with K documents x and corresponding labels y belonging to a class
c, DL = {(x, y)}K, our task is to train a supervised model A to accurately map previ-
ously unseen documents DU to labels. Provided that for a class c ∈ C the number of
training examples is equal to P, and |C| = M, a problem can be worded as M-way
P-shot classification. For the sake of brevity, we will further use N = P to indicate
that P training examples are available per class.

DL is typically broken into three subsets, DT for training, DV for validation, and
DH for testing the performance of a trained model. Under the few-shot setting, we
assume that large validation or holdout sets are not available, and the size DV is
the same as the size of DT. When selecting prompts or tuning hyperparameters, we
cannot base our choices on DH.

Model A is to be compared to several baselines Â1, ..., ÂP. P and the criteria for
baseline selection will be presented in chapter 4.

As we are interested in both optimal performance and computational costs, we
will use two measures to assess the latter. Firstly, we will evaluate time T it takes for
a method to predict labels for 1000 documents. Secondly, we will measure floating
point operations (FLOPs) per input token for each model, which is a frequently em-
ployed indicator for computational costs and complexity [Liu et al., 2022; Tunstall
et al., 2022]. We are only considering inference and not training for two reasons.
Firstly, training for different methods is to be done on different hardware due to the
varying requirements. Secondly, inference efficiency is more important as typically
most of the compute is spent on it [Amodei and Hernandez, 2018].

3.2 Approach to Solution

3.2.1 Base Method

Our proposed solution is based on Sentence Transformer Fine-tuning (SetFit) [Tun-
stall et al., 2022]. This method leverages Sentence Transformers (STs), a neural net-
work architecture that maps texts to fixed-size continuous vectors [Reimers and
Gurevych, 2019]. Original STs were based on BERT and RoBERTa [Liu et al., 2019]
and used a pooling layer to derive sentence embedding. Fine-tuning was done with
Siamese networks (two subnetworks with tied parameters outputting comparable
embeddings) using cosine similarity loss (training a model to keep similar sentences
a and b closer in the embedded space, while pushing a dissimilar sentence c fur-
ther away). The resulting models have demonstrated strong performance in tasks
involving sentence comparison, while drastically reducing the computational time
compared to BERT and RoBERTa.
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SetFit is comprised of two components: an ST model body and a classification
head. The training involves two stages. During the first one, the model body is fine-
tuned using contrastive learning. Given a set of labeled examples DT = {(xi, yi)}K,
where xi is a text and yi is its corresponding class label, sets of positive Tp and nega-
tive Tn triplets are created. Each positive triplet Tp = {(xi, xj, 1)} contains two texts
belonging to the same class (yi = yj), and a negative triplet Tn = {(xi, xj, 0)} con-
tains examples from different classes (yi ̸= yj). A final fine-tuning set L is compiled
from all generated triplets. The maximum potential size of L is derived from all
unique combinations of available examples F, F(F − 1)/2. By default, |L| = 2R|C|,
where |C| is the number of classes and R is a hyperparameter usually set to 20. The
resulting L is therefore considerably larger than just F.

A model body is fine-tuned to encode positive pairs closer to each other in the
vector space and to maximize the distance between the negative pairs using cosine
similarity loss:

L =
1
N

N

∑
i=1

(yi −
xi · xj

∥xi∥∥xj∥
) (3.1)

where x is a vector of embeddings and y ∈ {0, 1} is a label.
When the fine-tuning of the ST is completed, it generates embeddings for the

training examples, creating a set DH = {(Emb(xi), yi)}N used to train a classification
head. Any classification algorithm capable of taking text embeddings as an input
can be used, although the authors recommend logistic regression. Another option
provided in the SetFit Python package is an NN with a single feed-forward layer
trained with cross-entropy loss.

The main reason we chose SetFit as a basis for our solution is the strong results
reported in the paper combined with relatively low computational costs and fast
training and inference times. This, along with a modular architecture (body and
head are separate models), allows for relative ease of modification and quick exper-
imentation.

3.2.2 Modifications

We suggest a few modifications meant to improve the classification performance
upon the base SetFit.

Augmentations

Data augmentation is a technique that increases the number of examples through the
generation of artificial data by application of transformations on the available exam-
ples. If applied properly, augmentations can lead to improved model performance
and better regularization. We find that relatively few few-shot text classification
works experiment with data augmentation, despite its potential to mitigate the lack
of training data.

While the small size of data for training sentence transformer’s body is compen-
sated by contrastive learning, the classification head is still trained on a very limited
number of examples, which we assume is a major bottleneck. We will therefore use
augmentations to train a classifier head only.

There is a wide variety of augmentation methods for text classification used ei-
ther directly on textual data or on embeddings [Bayer et al., 2023]. However, only
a handful of them are applicable in our case, largely due to the lack of linguistic re-
sources like a lexical database of semantic relations for synonym replacement, or a
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labeled dataset to fine-tune a transformers-based model for word/phrase/sentence
replacements (such as Conditional BERT) [Wu et al., 2018]. We picked several meth-
ods that could be beneficial to the model performance and are relatively easy to
apply:

• Back-translation: textual data is first translated into another language, and
then translated back to the original language. This results in paraphrases that
largely preserve the semantics, although potentially adding some noise [Bayer
et al., 2023].

• Easy Data Augmentation (EDA): suggested by Wei and Zou, 2019, this method
utilizes four techniques: synonym replacement, random insertions of synonyms,
random word swaps, and random word deletion. Due to the aforementioned
lack of linguistic resources, we only apply the latter two.

• Sentence swap: we randomly shuffle sentences in our texts.

• TF-IDF-based replacement: words that have low TF-IDF scores in sentences
are replaced with other words with low TF-IDF scores [Xie et al., 2020].

• Mixup: this method comes from the domain of computer vision [Zhang et al.,
2018]. Its primary idea is the generation of examples from pairwise weighted
combinations of vectors and their labels. For a pair of text embeddings xi, xj
and corresponding labels yi, yj, the following transformation is applied:

x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj
(3.2)

where λ ∈ [0, 1] and is usually sampled from a Beta distribution, λ ∼ Beta(α, α),
and α is a hyperparameter.

• Cutmix: another method from computer vision, it extends Mixup by adding
another augmentation type, Cutout, which randomly replaces a portion of a
vector or a matrix with zeros [Yun et al., 2019]. Given text embeddings xi, xj
with length L and their labels yi, yj, the algorithm cuts out a random segment of
xi and replaces it with a segment of yi with the corresponding indices. Labels
are mixed proportionally to the size of the substitution:

x̃ = M ⊙ xi + (1 − M)⊙ xj

ỹ = λyi ++(1 − λ)yj
(3.3)

where M ∈ {0, 1}L denotes a binary mask indicating whether a value should
be dropped or left in place, and ⊙ is an element-wise multiplication. As in
Mixup, λ is sampled from a Beta distribution. Sentence embeddings, unlike
images, are vectors with length L and width 1, therefore we slightly modify
the algorithm for sampling M. We pick the first coordinate for a cut c and the
size of the cut r the following way:

c ∼ Unif(0, L)

r = L
√

1 − λ
(3.4)
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FIGURE 3.1: Schematic representation of SetFitM

Use of synthetic data

Text generation is largely considered an augmentation technique, however, we view
it separately due to the intended use. As the previous two modifications expand the
size of the training data, synthetic examples are to be used as a test set for evaluat-
ing intermediate results of applied modifications under conditions where a large test
dataset is considered unavailable. We will further refer to it as an artificial holdout
set DH to distinguish it from the original test set (the terms holdout and test are of-
ten used interchangeably). While many methods and model architectures have been
suggested for generating artificial texts [Bayer et al., 2023], a variety of LLMs capable
of text completion make the process particularly easy. To soften high computational
requirements, one may either use moderately sized models combined with quanti-
zation, or inference APIs for access to the models hosted in the cloud.

Self-training

Another way to mitigate the small size of a training set is inspired by iPET (iterative
PET) from Schick and Schütze, 2021a. We assume that apart from the initial training
set D0

T, there is a set of unlabeled data DU drawn from the same distribution. First,
a model is trained on D0

T and then assigns pseudo-labels to texts x ∈ DU . High-
confidence predictions D1

P (above a probability threshold θ) are added to D0
T and

used to train a new model. This process is applied iteratively, with model Ak at step
k trained on Dk

T = DT ∪ D1
P ∪ . . . ∪ Dk

P. We increase the number of pseudo-labeled
examples for each class c rather conservatively, with |D1

P(c)| = |D0
T(c)|, and at each

consecutive step

|Dk
P(c)| = |Dk−1

P (c)|+
|Dk−1

P (c)|
2

(3.5)

Schick and Schütze, 2021a continue training until a PLM is fine-tuned on 1000
examples. Unlike them, we use performance on an artificial holdout set as a stopping
criterion. That is, we stop when the accuracy of two consecutive steps k + 1, k + 2
deteriorates or remains the same as in step k. iPET also leverages ensembling to
make use of different prompts. We only train a single model per generation as SetFit
does not utilize prompts.
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For each N, we train three configurations: a full-fledged variant Modified Setfit
(SetFitM) (augmentations + multiple generations) and two ablations: a single gener-
ation with augmentations, Augmented SetFit (SetFitA), as well as multiple genera-
tions with a logistic regression classifier and no augmentations, Multi-generational
SetFit (SetFitG). A schematic depiction of SetFitM is presented in fig. 3.1:

1. Training set DT is used to fine-tune an ST model body.

2. Augmentations are applied to the input data.

3. Augmented texts are fed into the fine-tuned body to extract embeddings.

4. Additional augmentations are applied to the embedded texts.

5. Embeddings are used to train a model head.

6. A trained model predicts texts for unlabeled texts DU .

7. High-confidence predictions are added to DT and a new model is trained with
the same procedure.

The above modifications are directed toward the expansion of the available la-
beled data for different stages of training and evaluation. We acknowledge several
limitations of our approach. First, additional in-domain data is not always accessi-
ble, and there is no way to guarantee that high-confidence predictions will provide
a similar number of examples for all classes, potentially leading to an unbalanced
training set. The predicted labels may also be incorrect to a certain extent, and the
only way to validate them is through a manual check, which is only viable while
the set remains relatively small. The diversity of artificial texts is limited by the seed
texts used as examples in prompts, and they require manual verification to ensure
correct labeling. Although our modifications will not affect the inference time, the
training time will increase (quite significantly in the case of multi-generation train-
ing).
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Chapter 4

Implementation and Evaluation of
Results

4.1 Dataset

We chose to base our experiments on the UA-News dataset [Ivanyuk-Skulskiy et al.,
2021]. It is comprised of news articles divided into five rubrics: business, politics,
sports, technology, and news (an umbrella category for texts that do not fit into oth-
ers). It is split into test (30105 records) and training (120417 records) sets. Apart
from a text body and a category, the records also contain headlines and tags associ-
ated with each document. It is worth noting that the data distribution is imbalanced,
as can be seen in fig. 4.1b.

We considered a few different datasets among few options available in Ukrainian
but ultimately opted for UA-News. Other choices we considered included two
datasets gathered from the Yakaboo online book store1. The first consists of reviews
with user scores (on a scale from 1 to 5), which essentially presents a five-way sen-
timent classification. Most few- and even full-shot classifiers struggle with such a
task [Gao et al., 2021; Deng et al., 2022; Gu et al., 2022; Karimi Mahabadi et al., 2022],
so it might not be the best choice for the first benchmark to compare the methods.
The second dataset contains book descriptions with categories that do not fall into
a single or even a few taxonomies. Both of these datasets are also only partially in
Ukrainian.

Apart from UA-News, we are aware of two other news datasets in Ukrainian.
Panchenko et al., 2022 compiled a dataset labeled by source news websites. The
second option is a news subcorpus of the UberText 2.0 dataset [Chaplynskyi, 2023].
Although its publicly available version lacks classification labels, the author of the
dataset kindly agreed to share a portion of it containing tags, which, similarly to the
book description dataset, are very diverse. All of the above options would have been
valid for our task, despite complicating it in one way or another. Nevertheless, we
ultimately chose UA-News as classification by rubric is quite common and therefore
comparable to such popular benchmarks as AG News2.

4.2 Experimental Setup

4.2.1 Training Data Size and Evaluation

There is no rule as to what number of examples constitutes a problem as a “few-
shot”. Reviewed papers experiment with varying numbers of examples per class,

1https://github.com/osyvokon/awesome-ukrainian-nlp
2https://huggingface.co/datasets/ag_news
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FIGURE 4.1: Class distribution in UA-News dataset

from 1 [Hu et al., 2022b] to 1250 [Chen et al., 2020]. Assuming that annotating more
than a few dozen texts per label can become quite tedious, especially when some
classes are rare and tasks are numerous, we experiment with N = 8 and N = 16 for
both training and validation sets. They are sampled from the full training set, the
remainder of which is treated as unlabeled data for self-training.

Most of the works on few-shot text classification we reviewed report only accu-
racy as the performance metric. We find it insufficient due to the imbalanced data.
Therefore we also report macro F1 and weighted F1 scores. However, we mostly rely
on accuracy during hyperparameter tuning and model selection, as keeping track of
all metrics and deciding which should be given preference is quite challenging. In-
ference times will also be compared on the same hardware.

Due to the lack of prior work on text classification utilizing UA-News dataset,
there are no external results to which we can compare ours. Although comparisons
to somewhat similar experiments on data in English, e.g. AG News, are possible,
they would be uninformative given differences in the data and fundamental models.

4.2.2 Baselines

We utilized subsequent criteria to select the baselines for comparing against our so-
lution:

• Availability of linguistic resources. For the selected method to work on a
dataset in the Ukrainian language, there should be compatible language mod-
els and other resources (e.g. part of speech taggers) if necessary.

• Diversity. We wanted our selection of baselines to cover different approaches
and model architectures. We outlined the following groups of approaches,
with at least a single method representing each: prompt-based (in-context
learning, in-context learning with fine-tuning, MLM-based), and promptless
(MLM).

• Performance. The baselines must provide a strong competition to our solu-
tion. However, selecting the best-performing options is problematic given the
lack of a unified benchmark. To mitigate this issue at least partially, we com-
piled a table with the reported performance of the methods from the reviewed
literature on a variety of datasets. The table A.1 is available in appendix A.

Our choice of baselines landed on the following methods:
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• SetFit [Tunstall et al., 2022]: we compare our modifications to the basic SetFit
without any added modifications.

• ADAPET [Tam et al., 2021]: a prompt-based method utilizing an MLM. It is
a modification of PET [Schick and Schütze, 2021a] which breaks fine-tuning
an MLM into two tasks. Firstly, all words in the MLM’s vocabulary are con-
sidered as candidates for a label, and a loss function that encourages correct
choices and penalizes incorrect ones is employed. Secondly, a model is trained
to predict an input provided a label. This combination results in faster training,
eliminating the need for ensembling and training multiple model generations,
and outperforms PET in multiple natural language inference tasks.

• Perfect [Karimi Mahabadi et al., 2022]: a promptless method utilizing an MLM.
The authors introduce adapter layers into a model’s body while freezing all
pretrained weights. Adapters serve as a replacement for prompt patterns, in-
forming a model of a task while reducing the computational costs of training.
They also utilize trainable multi-token label embeddings that learn label rep-
resentations. At inference time, a text is classified based on the distance to a
class prototype, similar to Gao et al., 2019.

• In-context learning [Brown et al., 2020]: we run vanilla ICL as suggested in
the original GPT-3 paper.

• In-context learning + fine-tuning: we use Low-Rank Adaptation (LoRA) [Hu
et al., 2022a] to fine-tune a model for the task. LoRA introduces low-rank de-
composition matrices into the body of a PLM and trains them while keeping
the pre-trained weights frozen. This drastically reduces the compute required
for fine-tuning.

4.2.3 Model, Hyperparameters, and Prompt Selection

Due to the availability of multiple foundational models for each selected text classi-
fication method, we conducted experiments to choose the ones yielding the optimal
performance. For SetFit, we chose Multilingual-E5-small [Wang et al., 2022]. Larger
E5 models required the reduction of training batch size below 8 and slowed down
both training and inference, while two other multilingual options, paraphrase-multilingual-
mpnet-base-v23 and paraphrase-multilingual-MiniLM-L12-v24, demonstrated infe-
rior results. Three MLMs were tested as base models for ADAPET, one unilin-
gual (ukr-RoBERTa-Base5), and two multilingual (XLM-RoBERTa-Base and XLM-
RoBERTa-Large [Conneau et al., 2020]). We opted for the last option based on the
performance. We reused XLM-RoBERTa-Large to train Perfect. For ICL, our choice
landed on Mistral 7B Instruct 0.2 [Jiang et al., 2023a], as it can run on affordable
hardware and has a decent command of Ukrainian. Other models with comparable
hardware requirements, namely Llama2 7B [Touvron et al., 2023] and Gemma 2B
[Team et al., 2024], returned considerably worse (often unintelligible) outputs when
provided with the same prompts. We quantized Mistral 7B to 4 bit for it to fit into
VRAM.

Quick training time with SetFit allowed us to do an extensive hyperparameter
search on the validation set with Optuna Python library [Akiba et al., 2019] using

3https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
4https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
5https://huggingface.co/youscan/ukr-roberta-base
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Tree-structured Parzen Estimator. We set the body learning rate to 1.93 × 10−5 and
the number of epochs to 3. During training, we compute evaluation loss and save
model checkpoints at the end of each epoch to load the best model at the end. We
chose logistic regression as a classifier head for SetFitG and an NN classifier (trained
for 24 epochs) for other two variants, as the most efficient combination of augmenta-
tions required a loss function that could accept continuous values for class probabili-
ties. For ADAPET and Perfect, generic hyperparameters provided in the source code
were used due to fine-tuning requiring a very long time. Several temperature values
in the range from 0.1 to 2.0 were tried for ICL but did not affect the performance
in any way, so we ended up using a "standard" temperature of 1.0. Various train-
ing data configurations were explored for fine-tuning of Mistral, including N = 8,
N = 16, and a combination of larger training and validation sets (N = 32). Due to
insufficient time and computational resources for running inference on the full test
set for all variants, we tested each one (with and without demonstrations) on a sam-
ple of 3000 examples. Adapters with the best performance were then chosen (with
N = 32 + 3 demonstrations per class taken from the training set) for inference on all
test examples.

We tested three prompt pattern variants (“Category:”, “Text rubric:”, and a null
prompt) with ADAPET. Results for the best one ("Category:") are reported in table
4.1. Class labels were used as verbalizers. For ICL, we experimented with various
prompts on a unified set of training and validation data and ended up using three
randomly selected examples from each class per prompt for demonstration, each
followed by a question asking to identify a category of the text, followed by a label.
The prompt template for ICL and its variations can be found in the appendix B.

4.2.4 SetFit Modifications

We started the implementation of our primary solution with the generation of syn-
thetic data. Our prompt consisted of three example texts (randomly sampled from
DT and DV) belonging to the same class prepended with a pattern "News text on
topic:" with class name in place of topic and finished with the pattern to force the
model to complete it. We first generated 500 texts (100 per each class). After dedu-
plication and manual filtering of unintelligible outputs and results that could not be
confidently attributed to a particular class, their number was reduced to 248. We
found this amount insufficient and therefore decided to generate more data with a
more powerful cloud-hosted model. We opted for GPT 3.5 Turbo6 due to relatively
cheap inference compared to other similar services. The same sampling strategy,
prompt template, and filtering procedures were applied. We then combined arti-
ficial data generated by two models and, based on the cosine similarity of ST em-
beddings, dropped records that were complete or near duplicates of the ones from
DT, DV and DU . A cosine similarity threshold of 0.92 was chosen empirically to
cut off texts with high resemblance while keeping the ones on close topics. The re-
sulting artificial holdout set DH contained 698 texts. Class distribution can be seen
in fig. 4.2. Despite it being non-uniform and different from the distribution of the
real data, it was decided to proceed with it, as adding more examples incurred addi-
tional costs (which is undesirable under a low-resource setting we were aiming for)
and removing meant decreasing an already small number of examples.

6https://platform.openai.com/docs/models/gpt-3-5-turbo
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FIGURE 4.2: Distribution of artificial holdout dataset

New DH allowed us to conduct a hyperparameter search to find the most effi-
cient composition of augmentations. To this end, we used vanilla SetFit body fine-
tuned on N = 8 as text encoder and only re-trained classifiers (either a logistic re-
gression or an NN) for each trial. Back-translation, being the most resource- and
time-demanding augmentation, was done beforehand with nllb-200-distilled-1.3B
model [Team et al., 2022] and three intermediate languages (English, French, and
German). The best accuracy was yielded by an NN classifier and a combination of
back-translation (a single set of examples translated from Ukrainian to English and
back), EDA (with 5 maximum word swaps and a maximum chance of word deletion
equal to 0.6), TF-IDF replacement, and Mixup (with α = 0.141). Optimization also
suggested a text augmentation multiplicity of 2 (i.e. two augmented texts per each
original or back-translated), and an embedding augmentation multiplicity of 3. This
set of parameters was used in all further experiments with augmentations.

We then proceeded to train SetFit with modifications. We trained three variants
for each N. The same hyperparameters were reused for all generations, except the
number of pseudo-labeled examples added to DT according to the formula from
chapter 3 and the probability threshold θ incremented by 0.05 for each next gener-
ation until reaching 0.85. We set the initial θ to 0.70, however, the first generation
of SetFitM trained on N = 8 only predicted a single class (sports) with sufficient
confidence, therefore we had to make an exception in this particular case.

4.3 Results

4.3.1 Performance

Performance metrics for the principal approach, ablations, and baseline models are
available in table 4.1. For N = 8, the best results across all metrics are achieved by
SetFitG trained for two generations (+0.03 accuracy and weighted F1 and +0.2 macro
F1 compared to the vanilla SetFit), followed by SetFitM (+0.02 across all scores). Con-
versely, for N = 16, the vanilla SetFit surpasses all other approaches. Evaluation of
SetFitG with N = 16 on DH suggested picking the first model generation, hence the
scores are the same as for SetFit with no modifications. SetFitM improves upon the vanilla
SetFit for N = 8, but falls short of it for N = 16. Overall, the use of the NN classifier
head with augmentations had a detrimental effect on the model performance, and
the logistic regression head consistently provided better results.
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N = 8 N = 16

method accuracy macro F1 weighted F1 accuracy macro F1 weighted F1

SetFitM 0.83 0.81 0.83 0.83 0.84 0.84

SetFitG 0.84 0.82 0.84 0.85∗ 0.84∗ 0.85∗

SetFitA 0.81 0.79 0.81 0.80 0.81 0.81

SetFit 0.81 0.79 0.81 0.85 0.84 0.85

ADAPET 0.81 0.78 0.81 0.81 0.79 0.81

Perfect 0.75 0.73 0.76 0.69 0.67 0.70

N = 3 (demonstrations)

ICL 0.77 0.71 0.76

ICL + fine-tuning 0.73 0.71 0.74

TABLE 4.1: ∗the first model generation was selected based on holdout
dataset accuracy, making it the same as SetFit

Fig. 4.3 demonstrates that in three out of four cases, the second generation im-
proved the accuracy upon the first, but further training led to degradation of the
performance. In the case of SetFitG with N = 16, the decline starts immediately with
the second generation. The primary reason for this is that the addition of more data
leads to overfitting, as evidenced by fig. 4.4. We attempted to compensate for this
by strengthening the regularization, namely increasing the weight decay parameter
of the Adam optimizer (controlling L2 regularization) and adding L1 regularization,
but did not reach significant improvements. Another factor that could affect the out-
comes is inaccurate pseudo-labels. As can be seen from fig. C.2, a certain proportion
of pseudo-labels predicted by each generation is incorrect. With the exception of
SetFitM with N = 16, the number of mislabeled examples is low, however, it is still
likely to have an impact given the small training size. It should also be noted that
many mislabeled examples are somewhat ambiguous, e.g. a text on investments into
cryptocurrency with the true label "technology" was classified as "business", which
is also a plausible option considering the lexicon. At the same time, the high confi-
dence of this prediction can be seen as erroneous from a human perspective.

The decline of performance with the addition of more training goes against the
results from Tunstall et al., 2022, where the accuracy increases with a transition from
N = 8 to N = 64 across all benchmarks. We hypothesized that this could be caused
by the diminishing value of new pseudo-labeled data, i.e. the model does not im-
prove significantly by learning from the examples it was confident about in the pre-
vious iteration. A potential indicator could be the lack of intra-class diversity be-
tween the preceding and the next training sets. To test this assumption, we used a
method for comparing corpora similarity suggested by Kilgarriff, 2001. He ranks
words in two corpora based on frequency, takes the difference d in rank orders for
each of n most common words between the two corpora, and calculates the Spear-
man’s rank-order correlation:

Sim = 1 − 6 ∑ d2

n(n2 − 1)
(4.1)

which provides an easily interpretable score on a scale from 0 to 1. Our idea was that
the similarity grew more rapidly when a preceding set of examples for a class was
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FIGURE 4.3: Accuracy of SetFitM and SetFitG generations

supplemented by high-confidence predictions compared to when randomly sam-
pled documents from the full-size DT were added. However, this was disproved in
an experiment, as in the latter case the similarity grew at approximately the same
or a higher rate (0.08 vs 0.16 on average in 10 trials). For an alternative check, we
embedded 4-generational (the original data is counted as generation 0) N = 8 train
set for SetFitM with Multilingual-E5-small. We plotted a heatmap of the cosine simi-
larity matrix for each class (fig. C.3), hoping that if semantic diversity declined over
generations, similarity values should visibly increase from left to right (at least com-
pared to the first generation). However, a visual investigation of the plots revealed
no such pattern. Although our hypothesis found no confirmation, we assume the
outcomes of self-training could still be improved through advanced techniques and
heuristics, like applying curriculum learning to shift the value of θ or using multiple
classifiers [Amini et al., 2023], which might be a promising line of future work.

As for the baselines other than base SetFit, the best results in both settings are
demonstrated by ADAPET. Doubling the size of the dataset to 16 examples per la-
bel only slightly improves macro F1 by +0.01. The worst overall performance is
shown by Perfect with N = 16, which could be caused by both overfitting and in-
sufficient size of validation data. Mistral 7B, being by far the largest model, scores
significantly lower than both ADAPET and all SetFit variants. It is worth noting that
despite multiple demonstrations and a specific instruction requesting to provide the
most suitable option among the ones listed, it often returned a completely different
label. Fine-tuning Mistral leads to a decrease in performance (-0.04 accuracy and
-0.02 weighted F1). From this, we may conclude that moderately sized LLMs, while
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being very versatile and easy to use, struggle to keep up with smaller fine-tuned
MLMs and STs in the task of text classification.

For each model, the macro F1 score is lower than the accuracy and weighted F1
by about 0.01-0.02, which means that some classes are harder to predict. As can be
seen from fig. C.1 in appendix C, all models predict the sports category consistently
well. While other classes are mislabeled more often, there is no universal pattern
among the models, e.g. ICL struggles more with the business category and Perfect
has difficulty with the news class. A more detailed analysis of classification errors is
provided in appendix C.

4.3.2 Effect of the Artificial Holdout

Model evaluation on DH served as quite an effective criterion for stopping the train-
ing and selecting a model generation. As evidenced by fig. 4.3, classification accu-
racy on it generally (although not perfectly) aligns with the accuracy on the full test
set. However, to confidently say that artificial texts can be a reliable substitute for a
real test set would require a lot more experimentation with diverse data. The lack-
ing test results of SetFitA suggest the artificial set was not adequate to find the most
efficient augmentations or their combination.
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FIGURE 4.4: Training and validation losses of SetFitM generation 4.
Training loss recorded for every 100 steps, validation loss for each

epoch

4.3.3 Inference Time and Computational Costs

To compare the inference times of the employed methods, we run experiments on
two sets of hardware: first, on a virtual machine with 2 vCPU, 16 GB RAM, and
20GB VRAM (1/4 of H100 graphic processing unit); second, to test potential usabil-
ity without GPU acceleration, on a laptop with AMD Ryzen 5 5500U CPU (6 cores
and base clock speed 2.1 GHz), 16 GB RAM and no graphical processor. For each
method, inference times were measured on three random samples of size 1000 from
the test dataset, except for ICL without GPU acceleration, running which took ex-
tremely long (therefore we offer time extrapolated from 100 examples). Moreover,
quantization in our experiments relies on bitsandbytes Python library7 which re-
quires GPU. Without it we resorted to using a pre-quantized version of Mistral 7B

7https://github.com/TimDettmers/bitsandbytes
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method model T (GPU) T (no GPU) FLOPs/token

SetFit Multilingual-E5-small 5.03 171.60 5.18E+07

ADAPET XLM-RoBERTa-Large 376.35 8846.26 6.29E+08

Perfect XLM-RoBERTa-Large 117.02 4545.95 6.29E+08

ICL Mistral 7B 1883.82 451759.31∗ 1.42E+10

ICL + fine-tuning Mistral 7B + LoRA 2418.12 - 1.49E+10

TABLE 4.2: Inference times (in seconds) and FLOPs of the tested clas-
sification methods. ∗ - time is extrapolated from 100 examples

Instruct 0.28. For this reason, we were unable to run a fine-tuned model on the local
machine.

Calflops Python library [Xiaoju, 2023] was used to measure FLOPs. The mea-
sure of FLOPs only accounts for the PLM model body, leaving out SetFit’s logistic
regression/NN head and Perfect’s prototypical network classifier.

The results are recorded in table 4.2. SetFit is by far the fastest and most cost-
efficient classification method among the ones tested. Perfect comes second, fol-
lowed by ADAPET. Although Perfect and ADAPET both utilize the same MLM, the
reliance of the former on the prototypical evaluation, according to its authors, gives
it a speed advantage over PET-like models which predict verbalizers in an autore-
gressive fashion [Karimi Mahabadi et al., 2022]. ICL lags far behind the other meth-
ods, and the introduction of adapters into Mistral 7B led to about 28% additional
slowdown. Larger prompts for PLMs also result in much longer inference times. In
our case, the average input length for Mistral 7B was around 3440 tokens, while the
maximum sequence length for XLM-RoBERTa-Large and Multilingual-E5-small was
limited to 512 tokens. Without GPU acceleration, only SetFit demonstrates inference
time that could still be tolerable in a production environment.

It is worth noting that the gap could have been reduced somewhat if we had cho-
sen a larger ST model and a smaller MLM and LLM. However, smaller model sizes
would most likely result in worse performances. Mistral 7B is considered rather a
compact LLM, as more capable decoder-only models tend to have dozens or hun-
dreds of billions of parameters.

8https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
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Chapter 5

Conclusions

5.1 Discussion

In this work, we considered the problem of the few-shot classification of texts in
Ukrainian language. Our contributions are the following:

1. To the best of our knowledge, this is the first published work on few-shot clas-
sification of Ukrainian texts that utilizes methods based on different PLM ar-
chitectures (MLM, LLM and ST). We have provided an extensive review of
the existing approaches, selected the baselines based on the availability of lin-
guistic resources and the reported metrics, and tested their performance and
computational efficiency, thus laying the groundwork for future inquiries into
the subject. The results of our experiments can serve as a reference point for
the comparison with new approaches and different language models.

2. We have established the first SoTA for few-shot classification on UA-News
dataset, with our proposed solution providing the best results in 8-shot set-
ting. Of two modifications to the training procedure of SetFit proposed by us,
namely self-training with multi-generation models and raw text and embed-
ding augmentations, the former and the combination of the two were beneficial
to the performance in 8-shot setting, with Modified, Augmented, and Multi-
generational SetFit improving upon the base SetFit. However, potential model
overfitting should be kept in mind.

3. Our experimental results speak favorably of using (albeit with caution) syn-
thetic data generated by LLMs for model evaluation when a full-fledged test
dataset is not available, although, for a conclusive statement, this must be ver-
ified on more data.

It should be noted that our method is not limited to either news texts or the Ukrainian
language. It can easily be adapted to other corpora and languages as long as the
latter are supported by Sentence Transformers and large language models that can
generate texts of sufficient quality.

5.2 Future Work

We suggest several directions that future research might take to expand upon our
work.

1. The selection of approaches to few-shot text classification and PLMs tested
in this paper is not exhaustive and was largely limited by the constraints of
time and computational resources, so further research should explore more
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available options and suggest novel techniques. Possible lines of work could
be automated prompt generation and tuning, experiments with more powerful
LLMs, search for more robust self-training algorithms, and exploration of other
data augmentation methods.

2. The methods we tested in this paper should be run on more datasets, prefer-
ably from different domains and representing other types of text classification
tasks, such as natural language inference, sentiment analysis and question an-
swering. An obstacle to this is a general lack of publicly available text datasets
in the Ukrainian language. We, however, expect to see more made available in
the near future, which will present a great opportunity for new studies.

3. There is a need for a reliable assessment of synthetic text quality for classifica-
tion, as the potential utility of generated data is vast, but it also presents many
pitfalls when used either for training or evaluation.
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Appendix A

Reported Accuracy of the
Reviewed Methods

Dataset

Method PLM used N Yelp5 AGNews Yahoo MNLI BoolQ CB

ADAPET [Tam et al., 2021] ALBERT-xxlarge 32 80 92
Adaptive ROBUST TC-FSL [Yu et al., 2018] - 5
Distributional Signatures [Bao et al., 2020] - 5

EFL [Wang et al., 2021] EFL 8
HGAT [Linmei et al., 2019] - 20 72.1

ICL + contextual calibration [Zhao et al., 2021] GPT-3 8 84.3 65
iPET [Schick and Schütze, 2021a] RoBERTa large 50 60.7 88.4 69.7 67.4

Knowledgeable Prompt-tuning [Hu et al., 2022b] RoBERTa large 10 86.3 68
LM-BFF [Gao et al., 2021] RoBERTa large 16 70.7

MixText [Chen et al., 2020] BERT 10 88.4 67.6
P-tuning [Liu et al., 2023] ALBERT ? 76.55 88.39

Perfect-rand [Karimi Mahabadi et al., 2022] RoBERTa large 90.3
PET [Schick and Schütze, 2021a] RoBERTa large 50 60 86.3 66.2 63.9

PETAL [Schick et al., 2020] RoBERTa large 10+ 56.5 84.9 62.9 62.4
PPT [Gu et al., 2022] T5-XXL 32 76 82.2

RLPROMPT [Deng et al., 2022] RoBERTa large 16 80.2
SetFit [Tunstall et al., 2022] MPNet 8 82.9

UDA [Xie et al., 2020] BERT large 20+
VAMPIRE [Gururangan et al., 2019] - 200 83.9 59.9

WARP [Hambardzumyan et al., 2021] RoBERTa large 32 88
WeSTClass-CNN [Meng et al., 2018] - 10+ 77.6 84.1

Dataset

Method RTE WiC DBpedia IMDB Amazon (sentiment) TREC SST-2 SST-5 MR CR

ADAPET 75 53.5
Adaptive ROBUST TC-FSL 83.12

Distributional Signatures
EFL 87.1 90.8 86.2 92.3

HGAT
ICL + contextual calibration 86.9 66.9 95.3

iPET
Knowledgeable Prompt-tuning 98.0 92.9 93.8

LM-BFF 89.4 93 50.6 87.7 91
MixText 98.5 78.7

P-tuning 63.27 55.49
Perfect-rand 60.4 53.8 90.6 90.7 42.8 86.3 90

PET
PETAL

PPT 65.8 94.4 46
RLPROMPT 92.5 41.4 87.1 89.5

SetFit 40.3 88.5
UDA

VAMPIRE 82.2
WARP 84.3 96.3

WeSTClass-CNN

TABLE A.1: Reported Accuracy of the reviewed methods. Only
benchmarks used 3+ times are shown
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Appendix B

Prompts for In-context Learning

Текст: 29-рiчний український пiвзахисник «Гента» Роман Безус подiлив-
ся думкою про те, що головний тренер збiрної України Андрiй Шевченко
може очолити iталiйський «Мiлан». «Звичайно, Шевченко зможе тренува-
ти «Мiлан». Зараз вiн створив топ-атмосферу в збiрнiй України. Все на
топ-рiвнi: тактика, аналiз, весь пiдхiд повнiстю. Вiд «Гента» вiдрiзняється
набагато. У збiрної України на голову сильнiше. У збiрної України, думаю,
найвищий рiвень, який може бути. Тому, я думаю, якщо Шевченко запро-
сять до «Мiлана» i керiвники пiдуть на його умови, то вiн зможе там легко
побудувати команду високого рiвня», — зазначив Безус.
Катеогорiя тексту: полiтика, технологiї, бiзнес, спорт, чи новини?
Категорiя: спорт
. . .
Tекст: Згiдно з новим витоком, наступне поколiння iPhone має вмiщати без-
дротову зарядку, яка дозволить смартфону заряджати бездротовий годин-
ник та навушники Apple. За даними японського новинного блога про Apple
Macotakara, наступне поколiння iPhone, яке представлять восени 2019-го,
буде включати бездротову зарядку iнших пристроїв, повiдомляє 9to5Mac.
Ранiше про це також заявляв наближений до компанiї Apple та її iнвесторiв
аналiтик Мiнь-Чi Куо, що пiдтверджує чутки про майбутню двосторонню
бездротову зарядки iPhone.
Катеогорiя тексту: полiтика, технологiї, бiзнес, спорт, чи новини?
Категорiя:

FIGURE B.1: A shortened example of a prompt used for ICL

Fig. B.1 shows an example of a prompt we used for ICL. A light blue back-
grounds highlights a demonstration , an example of a task that helps guide a model’s
predictions. It consists of a text, a question that suggests available class labels, a pat-
tern that forces a model to output a label, and a label itself. In each prompt we used
three demonstrations per class (15 in total). An actual task is put at the end of the
prompt, its structure is identical to a demonstration, except that it does not contain a
label. We used this template for inference on the test data, as it demonstrated the best
accuracy on the validation set. Other prompt variants included different structures
(question, text, pattern, label; text, pattern, label [no question]; question, text, label
[no pattern] omitting the "Текст: " prefix; no demonstrations on a fine-tuned model)
as well as different wordings for questions ("Питання: До якої категорiї належить
даний текст: полiтика, технологiї, бiзнес, спорт, чи новини?", "Текст належить до
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однiєї з категорiй: полiтика, технологiї, бiзнес, спорт, новини."), fewer (1, 2) and
more (4, 5) demonstrations per class.
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Appendix C

Additional Result Statistics

C.1 Analysis of Classification Errors

Fig. C.1 provides confusion matrices of predictions made by different methods. Al-
though errors vary from one method to another, some common patterns can be dis-
cerned. A common mistake by SetFit (both vanilla and with modifications) is label-
ing politics as news and vice versa. A manual inspection suggests a partial explana-
tion. Texts tagged with politics and predicted as news are often dedicated to topics
such as crime, incidents, warfare, and terrorism. In the opposite case, many texts are
related to combat clashes, exchange rates, taxes, trade, catastrophes, and police re-
ports. The topics listed above are often quite similar and, from a human standpoint,
classifying them as either of two rubrics would not be incorrect. Without the guide-
lines, we can only presume that an original choice of a label was largely dictated by
a subjective preference of an annotator. The same is true for quite a few other cases,
e.g. documents labeled as technology and predicted as business frequently contain
messages about tech companies and startups, technological innovations for busi-
ness, and cryptocurrency. At the same time, the sports category, a lot less ambigu-
ous by its nature, was predicted consistently well by all classifiers. Therefore many
(though by no means all) errors can be attributed to the dataset design, which largely
capped the performance of SetFit and its modifications. Similar conclusions can be
drawn about some common mistakes made by other methods. For instance, in cases
where news was misclassified as technology and vice versa, the documents were
often dedicated to scientific discoveries, tech companies, and innovation. While be-
ing a considerable drawback of the UA-News dataset, we acknowledge that such
overlaps are hard to avoid while keeping the number of categories limited to only
five. This calls for further evaluation of the methods explored in this paper on other
datasets with less room for ambiguity and subjectivity.

C.2 Other visualizations



C.2. Other visualizations 29

(A) SetFit2
M, N = 8

0.77 0.05 0.10 0.00 0.08

0.04 0.75 0.14 0.01 0.05

0.02 0.16 0.80 0.01 0.00

0.00 0.00 0.00 0.99 0.00

0.08 0.16 0.01 0.00 0.74

business

news

politics

sports

tech

(B) SetFit2
M, N = 16

0.83 0.06 0.06 0.00 0.05

0.03 0.86 0.07 0.01 0.03

0.02 0.26 0.71 0.00 0.00

0.00 0.00 0.00 0.99 0.00

0.11 0.07 0.00 0.00 0.82

(C) SetFit2
G, N = 8

0.79 0.04 0.08 0.01 0.09

0.05 0.78 0.11 0.01 0.05

0.03 0.13 0.83 0.01 0.00

0.00 0.00 0.00 0.99 0.00

0.10 0.16 0.01 0.00 0.72

(D) SetFit, N = 8

0.79 0.03 0.04 0.01 0.13

0.07 0.72 0.09 0.01 0.10

0.08 0.15 0.74 0.02 0.01

0.00 0.00 0.00 0.99 0.00

0.07 0.12 0.01 0.00 0.80

(E) SetFit, N = 16

0.79 0.05 0.10 0.01 0.06

0.03 0.85 0.09 0.01 0.02

0.02 0.19 0.79 0.00 0.00

0.00 0.00 0.00 0.99 0.00

0.16 0.07 0.01 0.00 0.76

(F) ADAPET, N = 8

0.67 0.06 0.10 0.00 0.17

0.06 0.67 0.06 0.05 0.15

0.06 0.10 0.81 0.01 0.02

0.00 0.00 0.00 0.99 0.00

0.05 0.09 0.01 0.01 0.84

(G) ADAPET, N = 16

0.81 0.03 0.05 0.01 0.10

0.09 0.67 0.08 0.04 0.12

0.08 0.15 0.74 0.01 0.01

0.00 0.00 0.00 1.00 0.00

0.08 0.08 0.01 0.01 0.83

(H) PERFECT N = 8

0.73 0.03 0.05 0.00 0.19

0.10 0.58 0.12 0.01 0.19

0.17 0.10 0.69 0.00 0.03

0.01 0.03 0.01 0.93 0.02

0.06 0.01 0.02 0.00 0.90

(I) PERFECT, N = 16

0.80 0.03 0.10 0.00 0.07

0.16 0.49 0.27 0.01 0.08

0.22 0.10 0.66 0.01 0.02

0.06 0.03 0.00 0.89 0.02

0.20 0.15 0.01 0.00 0.64

(J) ICL, N = 3

0.53 0.02 0.28 0.01 0.17

0.07 0.44 0.15 0.10 0.25

0.03 0.04 0.90 0.01 0.02

0.00 0.00 0.00 0.99 0.00

0.04 0.11 0.03 0.01 0.81

(K) ICL+fine-tuning,
N=3

0.60 0.12 0.14 0.00 0.14

0.06 0.72 0.03 0.04 0.15

0.05 0.32 0.61 0.01 0.01

0.00 0.00 0.00 0.99 0.00

0.04 0.18 0.01 0.01 0.75

FIGURE C.1: Confusion matrices of the models’ predictions (normal-
ized over true labels)
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FIGURE C.2: Number and proportion of correct and incorrect predic-
tions made by each model generation
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FIGURE C.3: Cosine similarity of 4 generations training examples,
with generation 1 onward pseudo-labeled by SetFitM (N = 8). The
main diagonal is removed not to show the similarity of texts with
themselves; the lower triangle is removed as the matrices are sym-

metric.
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