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Abstract

The process of sentiment classification involves categorizing human speech into one
or more classes based on the emotional information expressed by the speakers. This
study is focused on the development of a Speech Sentiment Classification (SSC) sys-
tem designed to classify sentiment in a multi-lingual environment, including the
Ukrainian language, while addressing the challenge of data scarcity. The research
presents and evaluates three distinct approaches to this problem: a text-only clas-
sifier utilizing a Large Language Model (LLM), an audio-only classifier, and a bi-
modal fusion approach that combines both text and audio features. The results indi-
cate that the bi-modal fusion approach achieved an accuracy of 85% and an F1 score
of 0.85 for binary classification of negative versus neutral sentiment.
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Chapter 1

Introduction

Human speech is one of the main channels through which people pass information
to the world. Emotions are a hidden part of human communication. It is often
necessary not only to process what the human said but also how it was said. In
today’s business landscape, call centers serve as a first-line connection between cus-
tomers and businesses. One key aspect of customer communication is the ability to
recognize and respond to their emotions, especially when they indicate conflict or
dissatisfaction. SSC technology can provide the potential for businesses to improve
by identifying the emotional responses of their customers. In view of Ukraine’s
bilingual history, there is a need for an SSC model that can detect conflicts, based
on the primary emotion of the conversation, particularly in call center settings in a
multi-lingual environment, including the Ukrainian language.

SSC focuses on classifying emotions on a positive-negative scale. It is a subfield
of the much broader field of Speech Emotion Recognition (SER), which describes
emotions in various dimensions. To capture the most recent and promising ap-
proaches, alongside SSC field, we will review State-Of-The-Art (SOTA) works from
the SER field, as they can be easily applied to SSC task.

One of the most effective ways to achieve good results in sentiment classification
task is by using DNN (Deep Neural Network) models. Typically, these models in-
volve a preprocessing step to extract hand-crafted acoustic features which are then
passed as input to CNN (Convolutional Neural Network) (Badshah et al., 2017). Al-
ternately, the model can take audio directly on input, as implemented in Trigeorgis
et al., 2016; Tzirakis, Zhang, and Schuller, 2018, using a combination of LSTM (Long
Short-Term Memory) and CNN models. The highest accuracy for DNN-based mod-
els is achieved by fusing text and audio components together, as demonstrated by
Wu, Zhang, and Woodland, 2021; Morais et al., 2022; Atmaja, Sasou, and Akagi,
2022.

However, such models show good results only on the similar data they were
trained on, but the research datasets available for training are usually acted. That
means that narrated emotions could be exaggerated or feel artificial. This results in
bad generalization and poor results in real-world scenarios. Additionally, research
datasets are mostly available for commonly spoken languages like English, German,
Spanish, and Chinese. The reason for such data scarcity lies in the efforts required
for the annotation. It includes selecting the exact start and end points of the audio
track, annotating emotions, which can be subjective, and optionally annotating the
text that was spoken.

Self-supervised models are designed to solve the issue of labeled data scarcity
since they can be pre-trained on large amounts of unlabeled audio. Then such mod-
els may be fine-tuned for SER or SSC task (Wang, Boumadane, and Heba, 2021;
Wagner et al., 2023). Another approach would be to create weak SER labels for the
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available audio data, for example, by using existing ASR (Automatic Speech Recog-
nition) corpora and then train models in a supervised way.

In this work we aim to investigate two key advancements in SER field: bi-modal
fusion with text and usage of self-supervised pre-trained models. Furthermore, our
primary goal is to develop an end-to-end system for conflict detection in conversa-
tions. In this work we will mainly concentrate on classification of overall sentiment
of the conversation. As a firs step we will consider that conflict is occurred when the
conversation has negative sentiment.
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Chapter 2

Related works

In this section, we will review the most promising research works that can address
the issue of sentiment analysis for human conversation in a multi-lingual context.

2.1 Background

2.1.1 Emotion dimensions

Emotions in speech can be classified in different ways. One common method is to
present them as either positive or negative sentiment, or as categorical classes such
as anger, sadness, happiness, or neutrality. Alternatively, emotions can be described
using a 3-dimensional scale of valence-arousal-dominance (VAD) (Bradley), where
valence determines the emotional vector on a positive-negative scale, arousal de-
termines the strength of the emotion, and dominance indicates the degree of control
over the emotion. These three emotion representations are interrelated. For instance,
categorical classes can be mapped to the VAD 3D coordinate system, and valence
can be used to measure sentiment (Wagner et al., 2023) (Figure 2.1). Many datasets
in SER are annotated to present emotions in one of these systems or can describe
both categorical classes along with VAD mapping.

2.1.2 Research datasets

The primary research dataset used for SER evaluation is IEMOCAP (Busso et al.,
2008). Categorical emotions include anger, sadness, happiness, disgust, fear, sur-
prise, frustration, excitement, and neutral states. Usually, researchers validate their
models on 4 classes: anger, sadness, happiness+surprise, and neutral, due to their
sufficient quantity and relatively equal distribution. More information on the IEMO-
CAP dataset and other popular datasets can be found in Table 2.1. As with many of
the research SER corpora, the IEMOCAP dataset is available upon request from the
publishing institution.

2.2 Training models from scratch

2.2.1 Classical ML

Based on a survey by Akçay and Oğuz, 2020, statistical models together with audio
features have traditionally been used for SER tasks. One example of such a model
is the Gaussian Mixture Model (GMM). GMM is a probabilistic model that repre-
sents a mixture of multiple Gaussian distributions. In the context of SER, GMMs can
be utilized to model the distribution of acoustic features associated with different
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FIGURE 2.1: Mapping categorical emotions into VAD "coordinates"
(Bălan et al., 2019)

Dataset Name Lang Length (h) NA NE Nature Modality
IEMOCAP
Busso et al., 2008 EN 12 10 9 Acted A,V,T
RECOLA
Ringeval et al., 2013 FR 9.5 46 5 Elicited A,V
MSP-Podcast
Lotfian and Busso, 2017 EN 100 (v1.7) N/A 9 Natural A,T
CMU-MOSEI
Zadeh et al., 2018 EN 66 1000 6 Natural A,V,T
EmoDB
Burkhardt et al., 2005 DE 0.5 10 7 Acted A

TABLE 2.1: Short overview of the popular SER datasets. Columns NA
and NE correspond to a number of actors and a number of emotions.
Modalities A, V, and T correspond to audio, visual, and text compo-

nents.
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emotions. During training, the model estimates optimal parameters of the Gaus-
sian distribution independently by maximizing the expectation of seeing the train
example in the distribution given a set of acoustic features. This process is repeated
for each class in the dataset. During testing, the likelihood of the test example is
computed for each model to determine its most probable class (Metallinou, Lee, and
Narayanan, 2008).

Except for GMMs for SER tasks have also been used such Machine Learning
methods as Hidden Markov Models (HMM), Support Vector Machines (SVM), k-
Nearest Neighbour (KNN), Decision Tree and Naïve Bayes Classifier( Wani). As
an example, Sahu, 2019 reports 63% accuracy using Logistic Regression and SVM
classifier on IEMOCAP dataset.

2.2.2 Deep Neural Networks

Deep Neural Networks (DNN) are known to be more efficient than traditional ML
models because of their ability to capture complex patterns. DNN-based models can
be developed as end-to-end models, where raw audio data is used as input, or may
include additional steps such as audio preprocessing (e.g. noise cancellation, silent
removal), transcribing, and retrieving features (both audio and text embeddings)
(Trigeorgis et al., 2016).

Convolutional Neural Network (CNN) is a type of DNN architecture that is
highly effective in extracting meaningful features from spectrotemporal represen-
tations of speech signals. Although CNNs were originally designed to work with
images, they can also be used for SER tasks by converting spectrograms extracted
from audio into images and using them as input to the network (Badshah et al.,
2017). Additionally, 1D CNNs can be used to work with sequential data. In a study
of Wagner et al., 2023, a 14-layer CNN network was proposed as a baseline SER
model, consisting of 6 two-layer convolutional blocks, each followed by max pool-
ing.

Recurrent neural network architectures, such as LSTM (Long Short-Term Mem-
ory), can be useful in capturing dependencies in audio data over time. To leverage
both CNN and LSTM architectures, Trigeorgis et al., 2016 proposed an end-to-end
model that uses raw audio instead of hand-crafted audio features. The model is
built from two 1-d CNN blocks, which extract latent features, and LSTM model is
used to extract contextual information. The study found a correlation between the
activation of the CNN cells and prosodic audio features. This model architecture
was improved in Tzirakis, Zhang, and Schuller, 2018 by increasing the number of
CNN and LSTM layers while maintaining the proper kernel size of CNN to capture
features. The current result is SOTA for RECOLA dataset.

2.3 Language transferability

The common approach when working with low-resourced languages, such as Ukrainian,
is to train the model on the dataset publicly available for some popular language and
then validate it on the small dataset for the target language (Iosifov et al., 2022). The
research goal of this work was to find transferability between different languages.
Authors report that among 7 datasets (English, German, French, Chinese, Farsi, Es-
tonian, and Urdu), Chinese along with English were the least transferable, and the
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model trained on Farsi provided the best results for the other languages: 77% accu-
racy when 2 emotions (angry and neutral) were evaluated and 36% accuracy for 4
emotions.

2.4 Fusion of audio and text models

The impact of the text dimension in the SER task was a point of significant research
interest. Studies conducted in Wu, Zhang, and Woodland, 2021; Atmaja, Shirai,
and Akagi, 2019 have reported that text-only models result in better accuracy than
audio-only models. However, these studies confirm that the fusion of audio and
text (Wu, Zhang, and Woodland, 2021; Atmaja, Shirai, and Akagi, 2019) improves
general performance by 5-7%. See Table 2.2 for more detailed comparison.

Such fusion models may have a simple architecture but provide sufficient results.
The model proposed in Atmaja, Shirai, and Akagi, 2019 consists of an LSTM layer
for text embedding and a Dence layer for audio features. The model results in 75.5%
UA on IEMOCAP dataset (without CV). To achieve this level of accuracy, authors
retrieved 34 different audio features of time and spectral domains, Mel-Frequency
Cepstral Coefficients (MFCC), and chromas. Also, they used preprocessing tech-
niques to reduce noise and delete silence.

Given that the context of the phrase in conversation is important to determine
its emotion, Wu, Zhang, and Woodland, 2021 proposed to combine together audio
features, word embeddings, and BERT model with a context window to capture
information. The best result of 78.4% UA with 5-fold CV authors achieved using
[-3,3] context window.

The drawback of fusion audio with text modality is that it is required to use
additional Speech-to-Text model in order to transcribe text into audio. It consumes
additional resources, and when poorly chosen (with high error rate or with frequent
hallucinations) may even worsen the results of acoustic model.

2.5 Pre-trained Self-Supervised models

Previously discussed DNN-based acoustic models were built and trained from scratch
for the SER task. Another class of the models are based on transformer architecture
(Vaswani et al., 2017): the raw audio input is passed to the CNN feature encoder to
extract latent speech representations, which are fed into a contextual encoder con-
sisting of several transformer layers. The models are trained in a self-supervised
way by masking some part of the audio and trying to reconstruct it, minimizing
loss. This way, models can learn useful language representations directly from the
large quantity of audio input data without relying on external labeled annotations.
Than the pre-trained models can be further tuned for the SSC task. Wav2Vec 2.0
(Baevski et al., 2020) and HuBERT (Hsu et al., 2021) are the example of such models.
They have similar transformer-based architecture but differ in the the definition of
targets and loss functions during pre-training.

Wav2Vec 2.0 model uses a quantization module that takes latent feature vectors
from the CNN network as input. By applying Gumbel-Softmax, the module learns
discrete speech units. These quantized units then serve as the target for minimiza-
tion, achieved by computing the contrastive loss between them and the output of
the encoder. The drawback of such an approach is that the quantization module is
trained along with the model itself and requires precise parameter tuning.
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FIGURE 2.2: XLS-R model with Wav2Vec2.0 architecture created by
Facebook (Mohamed et al., 2022)

HuBERT self-supervised training strategy suggests the use of a separate acoustic
model and cross-entropy loss. In the first step, MFCC features are extracted from
the audio segments, which then are clustered using k-means to N clusters. Obtained
clusters are used later during training as targets for the transformer encoder.

In the context of our work, Wav2Vec2.0 has a main advantage over the other self-
supervised models currently available due to the incorporation of Ukrainian audio
data within its training dataset. The example of such multilingual model, based on
Wav2Vec2.0 architecture is XLS-R (Mohamed et al., 2022) (see Figure 2.2).

2.5.1 Finetuning

In Wang, Boumadane, and Heba, 2021, the authors explore fine-tuning strategies of
pre-trained self-supervised models HuBERT and Wav2Vec 2.0. Authors achieved
SOTA results with both fully fine-tuned and partially fine-tuned (with frozen CNN
layers) HuBERT models, with the latter showing a 1% improvement, reaching 72.56%
UA on a 10-fold CV. Experiments with the additional pre-training model on 960h of
the ASR dataset showed a slight accuracy drop. Authors suggest a loss of prosodic
information during additional ASR training.

The usage of a pre-trained self-supervised model for SER tasks in the context
of emotion valence (sentiment scale) is also described in Wagner et al., 2023. MSP-
Podcast corpus was used for fine-tuning, and cross-corpus evaluation was performed
on IEMOCAP and MOSI datasets. The authors highlighted two significant findings:

• Fine-tuned transformer-based models are better generalized and robust, as
confirmed by obtaining good results on cross-corpus evaluation. This is an im-
portant statement since previous works focused on achieving the best results
on a specific dataset. Authors suggest that transformer-based architectures are
better suited to real-world applications than DNN-based.

• Models implicitly learn linguistic information from the input audio signal, as
demonstrated by the experiment with synthesized emotionless data, where
models were able to provide a good result on the valence scale. As a draw-
back of this feature, its performance towards English drops when the model is
trained in multi-lingual data.
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2.6 Weakly-Supervised Learning

One approach to increase model performance when available labeled data is lim-
ited would be to create weak labels, for example, by using existing ASR (Automatic
Speech Recognition) corpora and then train models in a supervised way.

ASR systems are widely used for the automatic generation of transcription for
audio content. An example of such model is Whisper ASR model (Radford et al.,
2023). It was pre-trained on 680,000 hours of labeled audio data available on the
internet, which is 10 times bigger than the training corpora used for pre-trained self-
supervised models reviewed in the next section. Also, one-third of the training data
was taken from different non-English languages (including Ukrainian).

In a study Wu, Zhang, and Woodland, 2021, researchers used an ASR system
to extract transcription from the audio, which was then used as input to the SER
bimodal model in the training and inference stages. Authors reported a drop of 3.7%
when ASR transcription is used instead of the reference text. However, Li et al., n.d.
demonstrated an almost linear dependency between the Word Error Rate (WER) of
the ASR model and the UA of the SER system on English datasets. The higher the
WER, the lower the accuracy.

The limitation of such weakly-supervised learning approach lies in the number
of models required to preprocess the audio before the obtained text label and audio
sample can be used in the SSC model: ASR, speaker diarization, audio-to-text align-
ment, and, possibly, speaker recognition. The more steps we have in the pipeline,
the higher the possibility of accumulating errors.

2.7 Summary

Recent advancements in SER offer the possibility of improving performance and ro-
bustness in the context of the Ukrainian language. Techniques like bi-modal fusion,
which incorporates text data alongside audio, can potentially improve the identifi-
cation of emotions that might not be expressed in speech with high intensity. With
the usage of pre-trained ASR systems, text components can be extracted from au-
dio for further bi-modal fusion. Additionally, leveraging pre-trained self-supervised
models trained on large unlabeled datasets can enhance the model’s ability to learn
complex relationships within the data, potentially leading to more robust emotion
classification.
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Model Modality Emotions Test setting UA
Bi-modal fusion

Self-Attention + BERT[-3,3]
Wu, Zhang, and Woodland, 2021

A+T h, s, n, a 5-fold CV 78.41

LSTM + Dense
Atmaja, Shirai, and Akagi, 2019

A + T e, s, n, a 80/20 split 75.49

Self-Attention + BERT[-3,3]
Wu, Zhang, and Woodland, 2021

A+T h, s, n, a, o 5-fold CV 75.6

Self-supervised models
huBERT + W2V2
Morais et al., 2022

A h+e, s, n, a 5-fold CV 77.76

Attention-Guided-WavLM-Large-v2
Ioannides et al., 2023

A h, s, n, a 5-fold CV 74.32

RNN w/ attention + SpecAugment
Lu et al., 2020

A h+e, s, n, a 10-fold CV 72.56

Text-only model
BERT[-3,3]
Wu, Zhang, and Woodland, 2021

T h, s, n, a, o 5-fold CV 71.88

LSTM + Attention
Atmaja, Shirai, and Akagi, 2019

T e, s, n, a 80/20 split 68.01

Deep Neural Networks
CNN14
Wang, Boumadane, and Heba, 2021

A h+e, s, n, a 10-fold CV 55.8

TABLE 2.2: SOTA results on IEMOCAP datastes. Unweighted ac-
curacy is reported since weight accuracy is not present for all the
works. Emotions are translated as following: a-anger, s-sadness, h-
happiness, e-excitement, n-neutral, o-other. "Att" in model names is

shortened to "Attention"
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Chapter 3

Datasets and evaluation

This chapter focuses on reviewing the dataset provided by Stream Telecom company,
which will be used to develop a sentiment classification system. We will review the
text and audio annotations, label distribution, and explain our choices for merging
the labels. Additionally, we will discuss the audio properties of the data.

We also acknowledge the availability of a larger, unlabeled dataset, which presents
opportunities for pseudo-labeling and further expansion of our system. To ensure
the accuracy and effectiveness of our models, we will use cross-validation tech-
niques and report metrics such as accuracy, precision, recall, F1 score, and Word
Error Rate (WER).

3.1 Russian-Ukrainian datasets

3.1.1 Labeled data

We will conduct experiments using a dataset provided by a Stream Telecom com-
pany and annotated in Mrozek and Danylov, 2021. The audio is recorded with 8kHz
sample rate, 16 bits per sample and 1 channel. The dataset contains 90 audio files,
and each sample is a record of a different customer. The audio files contain conver-
sations between an operator and a customer in Russian or Ukrainian languages. The
average duration of each conversation is 50 seconds. The dataset includes 6 emotion
labels for each utterance as well as overall file emotion and ground-truth transcrip-
tion. The emotion labels are the following: "pleasant_surprise", "happy", "neutral",
"sad", "angry" and "disgust". Data labels distribution is imbalanced (see Figure 3.1):

• Emotion labels are highly skewed towards neutral class and less towards neg-
ative emotions. There are almost no positive conversations present in the data.

• There is an imbalance in the language component, with approximately two-
thirds of the conversations being in Russian and one-third in Ukrainian.

To eliminate emotion bias we mapped emotions into 2 classes: "conflict" and
"no-conflict" based on sentiment (valence) component of each emotion. We merged
"happy" and "pleasant_surprise" to "neutral" class to indicate "no-conflict" conversa-
tion. "sad", "angry" and "disgust" labels were combined together to "conflict" label.
New label distribution is illustrated in Figure 3.2. We received balanced class dis-
tribution per language for file level, as for utterance level, there is still bias towards
"no-conflict" class, since speech of call center operator is always marked as "neutral".

This dataset already has been preprocessed to remove unrelated sounds such as
dial tones, voice mail agents, silence, and music, as well as sensitive information
related to the customer and the company. Additionally, we resampled audio from
8kHz to 16kHz before starting the experiments with acoustic classifiers to have con-
sistency with pre-trained models.
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(A) utterance level (B) file level

FIGURE 3.1: Initial emotion and language distribution

(A) utterance level (B) file level

FIGURE 3.2: Merged labels distribution
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3.1.2 Raw data

Stream Telecom company also provided us with 3000 audio files recorded from
03/2020 to 11/2020. The recordings share the same audio properties as previously
described dataset. The data is not labeled and not preprocessed, but it may be fur-
ther used for pseudo-labeling.

3.2 Evaluation metrics

For classification model comparison, we will use accuracy, precision, recall, and F1-
score metrics with n-fold cross-validation.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 · Precision · Recall
Precision + Recall

To report ASR model performance WER metric will be used, which is calculated
as the number of substitutions (S), deletions (D), and insertions (I) relative to the
total number (N) of words in the reference transcript. Lower WER values indicate
better performance:

WER =
S + D + I

N
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Chapter 4

Metodology

This chapter presents a methodology for SSC for mixed Ukrainian-Russian audio
data. It addresses a research gap in this area and outlines the problem setting. The
research goal is to develop an effective end-to-end SSC system for the multi-lingual
scenario given limited amount of data. The chapter details the approach to the solu-
tion, starting with a text-only baseline model using LLMs and ASR for transcription
(Section 4.2.1). It then describes acoustic models using hand-crafted features and
Wav2Vec2.0 architecture (Section 4.2.1). Finally, it explores bi-modal fusion tech-
niques to combine text and audio components (Section 4.2.2).

4.1 Research Gap and Problem Formulation

4.1.1 Research Gap

Our search for related works for Sentiment or Emotion Classification tasks in audio
for the Ukrainian or mix of Ukrainian and Russian languages yielded very limited
results. Only work of Mrozek and Danylov, 2021 relates to the aim of this work, but
it is focused on emotion classification on utterance level, while our work consider
sentiment classification for the whole conversation.

Also, there is room for improvement in terms of text-only and bi-modal fusion
models. In previous works that implemented the fusion of audio and text compo-
nents (Wu, Zhang, and Woodland, 2021, Atmaja, Shirai, and Akagi, 2019) , word
embeddings like GloVe or language representation extracted from pre-trained Large
Language Models (LLMs) such as BERT were used. In our work, for text component
extraction, we suggest using models specifically trained on sentiment classification
or emotion recognition tasks.

4.1.2 The Problem Setting

4.1.3 Research Goal

To fill the gap in research on SSC for the Ukrainian language and mixed Ukrainian-
Russian datasets, we aim to investigate this topic and contribute valuable insights to
the field by evaluating the effectiveness of recent SOTA methods like the fusion of
text component with audio and using pre-trained self-supervised transformer mod-
els. We will develop and evaluate an end-to-end SSC system specifically designed
for the multi-lingual scenario of Ukrainian, Russian, and their mix, focusing on per-
formance under limited training data. The evaluation will be conducted on a real-
world bilingual dataset, with separate results reported for the Ukrainian portion to
aid future research. The resulting model will be used for conflict detection based on
the dominant sentiment of the conversation.
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By evaluating recent SOTA methods on our bi-lingual dataset, we hope to estab-
lish a foundation for future development of conflict detection tools that are appli-
cable to real-world scenarios like mental health audio chatbots or customer service
analysis. While the proprietary nature of our dataset limits public data sharing, we
plan to open-source the resulting training and inference pipelines, potentially bene-
fiting researchers and the Ukrainian industry working on similar tasks.

4.2 Research Setting and Approach to Solution

4.2.1 Approach to Solution

Our approach to the solution for the SSC task will leverage the advancements of the
SER field discussed in 2 and the recent rapid evolution of the NLP field, particularly
LLM field.

Given the significant imbalance in the emotion classes within the original dataset,
we have merged emotions on a positive-negative scale and will concentrate on bi-
nary classification. Our primary objective, due to the importance of not missing
conflicts in call center scenarios, will be to maximize the F1 score for conflicts.

With the absence of an SSC benchmark for Ukrainian or a mix of Russian and
Ukrainian, our initial step will be to develop a text-only model. This model will
serve as a baseline for comparing audio and bi-modal models. We intend to leverage
existing LLMs trained for zero-shot or sentiment classification, and utilize existing
ASR models to extract transcriptions or translations into English from the audio for
use in the text model.

Next we will start working with audio component. We will evaluate hand-
crafted features as well as Wav2Vec2.0 encodings using classical Machine Learning
(ML) methods such as Logistic Regression. The evaluation will be conducted at both
the conversation and utterance levels. To enhance the Wav2Vec2.0 results, we will
fine-tune the model on our dataset. Finally, we will integrate the text and audio
components.

Text-only baseline approach

As demonstrated Wu, Zhang, and Woodland, 2021 and Atmaja, Shirai, and Akagi,
2019, text modality may itself provide a sufficient result in the SSC tasks. The field of
Generative AI has seen rapid advancements in recent years, with the introduction of
increasingly powerful LLM architectures on a regular basis. Notably, some of these
models are pretrained for Ukrainian and Russian languages, making them suitable
for various tasks, including SSC.

LLM selection. To develop a text-only baseline, we selected 3 LLMs from the Hug-
gingFace repository based on the target task and suitability for our dataset:

• MoritzLaurer/mDeBERTa-v3-base-mnli-xnli (Laurer et al., 2024) DeBERTa model
(He, Gao, and Chen, 2021), initially pre-trained on multilingual CC100 dataset,
which includes 14G of Ukrainian data, and then tuned on XNLI dataset (Con-
neau et al., 2018) for Natural Language Inference (NLI) task.
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FIGURE 4.1: Diagram of a baseline

• SamLowe/roberta-base-go_emotions 1 is a RoBERTa base model fine-tuned
for multi-label classification task on the English emotion dataset GoEmotions
(Demszky et al., 2020) with 28 emotion categories.

• cardiffnlp/twitter-roberta-base-sentiment-latest (Loureiro et al., 2022), also RoBERTa
model with base architecture tuned for sentiment classification task on manu-
ally collected Twitter sentiment data.

The first mDeBERTa model can be used with either original data, transcription
and translation, while the latter two must be evaluated using English translation
obtained through ASR system.

ASR model. Our initial dataset contains transcription for conversations in both
Ukrainian and Russian manually provided by annotators. However, our system
will work with raw audio in a real-world setup. Because of that, we need to select
the model that may work with non-ideal text transcription obtained automatically.
Additionally, as reported in Wu, Zhang, and Woodland, 2021, there might be a sig-
nificant drop in model performance when the bi-modal model was trained on the
original text and evaluated on ASR transcription, in comparison with results when
the model was trained and evaluated on ASR transcription: 63.47% vs. 71.9% UA.

To obtain transcription from the audio, we will use an ASR model, such as Whis-
per (Radford et al., 2023), which was trained on multi-lingual data, including the
Ukrainian language.

Pipeline. As a result of this initial step, we will obtain an end-to-end pipeline con-
sisting of an ASR model followed by an LLM model. The pipeline will take audio as
input, and the output will be conflict classification (see Figure ??).

At the experimental stage we will select LLM and ASR model with highest per-
formance to use in the baseline. Further experiments with SSC acoustic models will
be compared with the baseline. We will explore whether end-to-end audio or bi-
modal models can enhance the performance of the text-only model, particularly for
the Ukrainian language. We expect to confirm the results of Wu, Zhang, and Wood-
land, 2021; Morais et al., 2022; Atmaja, Sasou, and Akagi, 2022 on our bilingual
dataset, that the acoustic model alone results in lower accuracy than the text base-
line model.

Acoustic model

Hand-crafted features To have a starting point for the acoustic component, we will
use hand-crafted feature with Logistic Regression classifier, since it is less prone to
overfitting, than more complex models like neural networks, when training on a
small data set, as ours (90 audio files). We will leverage an open-source openSMILE
(Eyben, Wöllmer, and Schuller, 2010) feature extractor to obtain audio features for

1https://huggingface.co/SamLowe/roberta-base-go_emotions
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FIGURE 4.2: Diagram of an early fusion pipeline

this experiment. The software is able to extract Low-Level Descriptors (LLD), such
as signal energy, pitch, FFT spectrum, Mel spectrum, and Spectral. Then, it calcu-
lates functional features (statistical, polynomial regression coefficients, and transfor-
mations) from the LLD. We use the ComParE 2016 feature set (Schuller et al., 2016),
which provides 6373 functional paralinguistic features.

Wav2Vec2.0 architectures. As suggested by Wagner et al., 2023, pre-trained in self-
supervised way models based on Wav2Vec2.0 architecture may perform less on the
specific dataset but are more generalized. To evaluate if the Wav2Vec2.0 model will
show better performance compared to ComParE features, we will evaluate the XLS-
R model (Mohamed et al., 2022, Figure 2.2), based on Wav2Vec2.0 architecture with
a different number of parameters: 300 million, 1 billion, 2 billion.

Pipeline. The pipeline for acoustic model contain only possible audio preprocess-
ing step (not discussed in this work) following by the audio model itself. In our case
it can be Logistic Regression classifier or tuned Wav2Vec2.0 on SSC task.

4.2.2 Bi-modal fusion

As proposed by Wu, Zhang, and Woodland, 2021 and Atmaja, Shirai, and Akagi,
2019, combining audio and text components may enhance model performance. Since
some of the negative conversations contain text with neutral or positive sentiment
but are spoken with angry intonation, adding an acoustic component to the text
model should improve classification results.

For the text component we will use hidden states obtained from LLMs suggested
for baseline. For acoustic component we will use either ComParE feature set as well
as audio encodings extracted from Wav2Vec2.0 architecture.

Pipeline. Our work explored two fusion methods: early fusion and late fusion. For
early fusion (Figure 4.2), we will concatenate text encodings with audio encodings
and passed a new vector to the classifier. For late fusion (Figure 4.3, we will adopt
the ensemble method with majority voting on the resulting probabilities.
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FIGURE 4.3: Diagram of a late fusion pipeline

4.3 Conclusion

The proposed methodology aims to fill a gap in research on SSC for the Ukrainian
language and mixed Ukrainian-Russian datasets. It leverages advancements in the
SER and NLP fields, utilizing LLMs and recent techniques like Wav2Vec2.0 as well
as audio ComParE features.
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Chapter 5

Experiments

This chapter discusses experiments on sentiment classification using both textual
and acoustic data. We started our experiments by creating a baseline, which will be
further used for comparison. For the baseline, the ASR model is chosen experimen-
tally in Section 5.1.1, and Zero-Shot classification LLMs were evaluated in Section
5.1.2. Then we used a Linear Regression classifier to evaluate text encodings (Sec-
tion 5.1.3), audio hand-crafted (Section 5.2.1) features, and audio representations
extracted from Wav2Vec2.0 model (Section 5.2.2). We combined audio and text com-
ponents together in Section 5.3. Obtained results are summarized in Section 5.5.

5.1 Text model

5.1.1 ASR model evaluation for transcription extraction

To select the best ASR model, we evaluated Whisper ASR models and models trained
by the Ukrainian Speech Recognition community 1. We used HuggingFace 2 model
hub, along with the transformer library, to load models.

Given that both the Whisper and Wav2Vec2 models were trained on audio with
a sampling rate of 16kHz, it was necessary to resample the original audio. Fur-
thermore, for the Whisper model, the audio needed to be split into chunks, with
a maximum duration of 30 seconds. These preprocessing steps were automatically
executed using the ’automatic-speech-recognition’ pipeline for Whisper.

According to the obtained results in Table 5.1, Whisper large-v2 and large-v3
models showed the best results for both Russian and Ukrainian language. We de-
cided to use the transcription from the v2 model, as the v3 model has a higher ten-
dency to hallucinate, particularly in low-resourced languages. This is due to the v3
model’s training dataset, which includes 4 million hours of audio that was pseudola-
beled using the Whisper large-v2 model. In addition to transcription, we collected
translations into English for further experiments.

In the original annotation, the text was split into separate utterances by speaker.
We attempted to utilize the Whisper feature to return word timestamps and combine
them into similar sentences. However, this experiment failed as the received utter-
ance timestamps were not aligned with the original ones. In order to obtain similar
annotation, a speaker detection tool should have been used to map the speaker to
the received timestamp. Consequently, we have chosen to postpone this experiment
for future iterations.

1https://github.com/egorsmkv/speech-recognition-uk
2https://huggingface.co/
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Model (HF) RU UK
openai/whisper-large-v2_wer 0.40 0.39
openai/whisper-large-v3_wer 0.38 0.41
arampacha/wav2vec2-xls-r-1b-uk_wer 0.89 0.42
openai/whisper-medium_wer 0.44 0.50
Yehor/w2v-bert-2.0-uk_wer 0.92 0.51
openai/whisper-large_wer 0.42 0.52
Yehor/wav2vec2-xls-r-1b-uk-with-lm_wer 0.91 0.53
Yehor/wav2vec2-xls-r-300m-uk-with-small-lm_wer 0.92 0.58
robinhad/wav2vec2-xls-r-300m-uk_wer 0.91 0.58

TABLE 5.1: WER for Ukrainian and Russian texts. Lower WER indi-
cates better performance.

Labels ACC F1
"щастя" "нейтральне" "злiсть" 81.11 0.76
"позитив" "негатив" "нейтральне" 78.89 0.72
"позитив" "негатив" 76.67 0.70
"конфлiкт" "нейтральне" 64.44 0.67

TABLE 5.2: Labels tuning on annotated text for
MoritzLaurer/mDeBERTa-v3-base-mnli-xnli model

5.1.2 Zero-Shot classifiers

In alignment with our original dataset, we combined labels associated with positive-
ness and neutrality together to evaluate a binary classification task. In our experi-
ments, first we conducted zero-shot classification using various labels in Ukrainian
on the original data annotations with the MoritzLaurer/mDeBERTa-v3-base-mnli-
xnli model (Table 5.2). We then translated some of these labels into Russian and
English and repeated the evaluation (Table 5.3). Finally, we used ASR transcription
and English translation for the final evaluation (Table 5.4).

As we may observe in the obtained results, models trained specifically for senti-
ment classification tasks perform better on noisy data produced by ASR and transla-
tion than the zero-shot classification model evaluated on original texts. Furthermore,
there are two interesting observations related to the zero-shot classification model:

• The model performs slightly better for Ukrainian and English labels when us-
ing 3 labels (a more fine-grained sentiment scale) instead of 2.

• Despite being fine-tuned on XNLI, which includes Russian, the model’s per-
formance significantly deteriorates when using Russian labels compared to

Labels ACC F1
"щастя" "нейтральне" "злiсть" 81.11 0.76
"happy" "angry" "neutral" 70.00 0.54
"счастье" "неитральное" "злость" 62.22 0.26
"positive" "negative" 75.56 0.74
"позитив" "негатив" 76.67 0.70

TABLE 5.3: UK/RU/ENG labels for annotated text for
MoritzLaurer/mDeBERTa-v3-base-mnli-xnli model
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Model Text Labels ACC F1
cardiffnlp
/twitter-roberta-base-sentiment-latest

transl 84.44 0.81

SamLowe
/roberta-base-go_emotions

transl 80.00 0.77

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transl
"positive" "negative"
"neutral"

75.56 0.72

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transl "positive" "negative" 74.44 0.72

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transc
"позитив" "негатив"
"нейтральне" 80.00 0.71

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transc
"щастя" "нейтральне"
"злiсть" 75.56 0.69

TABLE 5.4: LLM classifiers evaluation on ASR transcription and
translation

Model Text ACC F1
cardiffnlp
/twitter-roberta-base-sentiment-latest

transl 84.44 0.85

SamLowe
/roberta-base-go_emotions

transl 82.22 0.81

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transc 71.11 0.72

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

origin 70.00 0.67

MoritzLaurer
/mDeBERTa-v3-base-mnli-xnli

transl 65.56 0.62

TABLE 5.5: Logistic Regression classifier results (5-fold CV) using last
hidden state of LLMs

Ukrainian or English (Table 5.3).

5.1.3 Classifier training

To further assess the potential of pre-trained models for our task, we trained a logis-
tic regression classifier on the last hidden states extracted from the models evaluated
in Section 5.1.2. We performed 5-fold cross-validation and report the F1 score and
accuracy. The results are available in Table 5.5. As expected, models, tuned specif-
ically for emotion or sentiment classification performs better, than general features
obtained from the model trained for NLI task. Even more, even with training, NLI
model performs worse in training case, than zero-shot classification using experi-
mentally selected labels (see Table 5.3)

As expected, the hidden states of the models that are specifically trained for emo-
tion or sentiment classification encode more valuable information for our task than
the general features obtained from the model that was trained for the NLI task. Fur-
thermore, the LR classifier trained on domain data using NLI model features per-
forms worse than zero-shot classification using experimentally selected labels (see
Table 5.3).
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Audio level Aggregation ACC F1
utterance propagation-clients-only 76.19 0.77
utterance propagation-all 74.12 0.76
conversation - 75.56 0.75
utterance max pooling 67.06 0.64
utterance min pooling 64.71 0.62
utterance - 82.94 0.60
utterance avg pooling 57.65 0.50

TABLE 5.6: Cross validation results for Logistic regression training
using opensmile ComParE features

5.2 Acoustic model

Our aim is to evaluate acoustic only model. We will experiments with both on
conversation-level (using audio file of the whole conversation, with average du-
ration 50 sec ) and on utterance-level (using parts of the conversation said by one
speaker and annotated by hand, with average duration 7 sec). We will use hand-
crafted audio features and experiment with XLS-R Wav2Vec2.0 model. For utterance-
level we will mainly use 2 aggregation strategies along with speaker split: propagation-
all, where we consider sentiment of the conversation is negative if at least one utter-
ance is negative, propagation-clients-only, where we train only on client utterances
and apply the same negative sentiment propagation.

5.2.1 ComParE audio features

We used an open-source openSMILE (Eyben, Wöllmer, and Schuller, 2010) feature
extractor to obtain audio features for this experiment. The ComParE feature set pro-
vides 6373 functional paralinguistic features. The experiments executed with these
features are similar to those executed for the text component: training of LR and SVC
models with 5-fold cross-validation. We extracted audio features for both the whole
conversation and each utterance in the conversation. To classify the sentiment of
the conversation based on the utterances, we tried multiple aggregation strategies:
mean, average and max pooling of audio features of the utterances in the conversa-
tion before training; label propagation - if at least one utterance in the conversation
has negative sentiment the whole conversation considered to have negative senti-
ment; label propagation, but the model is trained only on utterances said by the cus-
tomer, since 97% of the replicas that support person says are neutral. Also, we run
one experiment to evaluate how well the model may learn to classify each utterance.
Results of the experiments are available in Table 5.6.

In the results we may observe, that pooling strategy of individual utterances
together shows worse results, than extracting features for the whole conversation.
Training model on client utterances, while support utterances are ignored, performs
on 2% better in terms of F1 score, than classifying the whole conversation. Our
experiment on classifying each individual utterance shows overfitting signs and bias
towards no-conflict class: we obtained 82% accuracy with only 0.6 F1 score.

Feature selection

ComParE feature set contains 6373 different paralinguistic functional features. In
order to assess the features with the most significant impact on the SSC task for
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N params Feature level ACC F1
2b hidden states 68.89 0.67
2b CNN features 62.22 0.62
1b hidden states 67.78 0.67
1b CNN features 62.22 0.61
300m CNN features 61.11 0.61
300m hidden states 57.78 0.57
300m hidden states ranom init 47.78 0.46
300m CNN features random init 41.11 0.40

TABLE 5.7: Wav2Vec2.0 XLS-R Facebook model embeddings evalua-
tion: conversation-level

our dataset, simplify the model, and potentially enhance accuracy, we run logistic
regression cross-validation with L1 regularization (max_iter=100, C=1).

As a result, the feature set was reduced by a factor of 10 to 643 features, which
contains statistics for: magnitude of a Fast Fourier Transform (FFT) function (fft-
Mag); relative spectral transform and filtering applied to auditory spectrum (aud-
Spec_Rfilt, audspecRasta); MFCC (mfcc); local jitter and shimmer (jitterLocal, shim-
merLocal); fundamental frequency (F0) (F0final); logarithmic harmonics-to-noise ra-
tio (logHNR).

After retraining LR classifier with cross-validation on the conversation level we
obtained 77% accuracy and 0.76 F1 score, which improved results by 1.5% accuracy
and 0.01 F1 score compared to the original ComParE feature set results.

5.2.2 Wav2Vec2 embeddings

We want to evaluate if pre-trained on multimodal data Wav2Vec2 embeddings will
perform well on our data.

No tuned

First we are going to evaluate how well pre-trained in self-supervices way models
will work for SSC task for specifically mix of Ukrainian and Russian languages. For
this experiment we used XLS-R model based on Wav2Vec2.0 architecture trained to
learn cross-lingual speech representation with 3 sets of parameters: 300m, 1b and 2b.
We extracted hidden state from the last transformer layer as well as audio features
from CNN feature extraction layer for the whole conversation and individual utter-
ances. Also, we initialize 300m model with random weights in order to evaluate if
pre-training really makes difference specifically for our out-of-domain dataset with
original sampling rate 8kHz up-sampled to 16kHz. Than as usual we trained LR
with 5-fold cross validation.

The evaluation results of the LR classifier using conversation-level data can be
found in Table 5.7. As expected, randomly initialized weights led to poor results.
The low-level audio features extracted from the feature extraction CNN layers showed
a decrease in performance by approximately 5% for each model, in contrast to the
high-level language representations extracted from the final transformer layer of the
model (hidden states). Additionally, we observed only a minimal improvement be-
tween a model with 1 billion parameters and a model with 2 billion parameters.

Performance of LR classifier trained on utterance-level data (all or only client
utterances) are similar to ones obtained from
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N params Feature level Aggregation ACC F1
1b CNN features propagation-clients-only 67.86 0.70
1b hidden states propagation-all 67.06 0.69
1b hidden states propagation-clients-only 66.67 0.67
1b CNN features propagation-all 62.35 0.67
300m CNN features propagation-clients-only 61.90 0.66
300m hidden states propagation-all 60.00 0.65
300m CNN features propagation-all 58.82 0.62
300m hidden states propagation-clients-only 59.52 0.61

TABLE 5.8: Wav2Vec2.0 XLS-R Facebook model embeddings evalua-
tion: utterance-level

Features Fusion ACC F1 F1 (audio)
twitter-roberta translation (T) - 84.44 0.85 -
T+ComParE early 85.56 0.85 0.75
T+ComParE ensemble 78.89 0.79 0.75
T+Wav2Vec-1b-CNN early 84.44 0.84 0.61
T+Wav2Vec-1b-CNN ensemble 82.22 0.82 0.61
T+Wav2Vec-1b-HS early 82.22 0.82 0.67
T+Wav2Vec-300m-EF ensemble 78.89 0.79 0.67
T+Wav2Vec-300m-EF early 83.33 0.83 0.61
T+Wav2Vec-300m-HS early 82.22 0.82 0.61

TABLE 5.9: Evaluation of the fusion of ’cardiffnlp /twitter-roberta-
base-sentiment-latest’ hidden states (using ASR English translation)
with audio features. The original score for the text component is in
the 1st row, and the original F1 score for the audio component is in

the last column

For hidden states of model with 300m parameters, classifier performed signifi-
cantly worse, than model trained on hand-crafted ComParE features.

5.3 Bi-modal fusion

To combine audio and text component we conducted experiments involving early
(Atmaja, Shirai, and Akagi, 2019) and late fusion (Sahu, 2019) with LR cross-validation.
Two models were utilized to extract hidden states of the text component: MoritzLaurer/mDeBERTa-
v3-base-mnli-xnl with ASR transcription (see Table 5.10), and cardiffnlp/twitter-
roberta-base-sentiment-latest with ASR-generated translation (see Table 5.9). Com-
ParE full functional feature set was used for the acoustic component as well as hid-
den states (HS) and extracted features (EF) from CNN layers of Wav2Vec2.0 1b and
300m architectures.

In the obtaining results for English translation using ’cardiffnlp /twitter-roberta-
base-sentiment-latest’ encodings, we obtained slightly better results with an early
fusion of text component and ComParE feature set.

For the ’MoritzLaurer/mDeBERTa-v3-base-mnli-xnl’ text encodings of ASR tran-
scription (Ukrainian and Russian text), ComParE feature set alone, without fusion,
provides the best results.
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Features Fusion ACC F1 F1 (audio)
mDeBERTa transcript (T) - 71.11 0.72 -
T+ComParE early 74.44 0.73 0.75
T+ComParE ensemble 70.00 0.69 0.75
T+Wav2Vec-1b-CNN early 70.00 0.71 0.61
T+Wav2Vec-1b-CNN ensemble 71.11 0.72 0.61
T+Wav2Vec-1b-HS early 72.22 0.71 0.67
T+Wav2Vec-1b-HS ensemble 72.22 0.73 0.67
T+Wav2Vec-300m-EF early 71.11 0.72 0.61
T+Wav2Vec-300m-EF ensemble 70.00 0.70 0.61
T+Wav2Vec-300m-HS early 68.89 0.68 0.57

TABLE 5.10: Evaluation of the fusion of ’MoritzLaurer /mDeBERTa-
v3-base-mnli-xnl’ hidden states (using ASR transcription) with audio
features. The original score for the text component is in the 1st row,
and the original F1 score for the audio component is in the last column

In the case of ’MoritzLaurer/mDeBERTa-v3-base-mnli-xnl’ text encodings of ASR
transcription (Ukrainian and Russian), the ComParE feature set alone, without fu-
sion, provides the best results.

Additionally, early fusion consistently outperformed the ensemble method in the
majority of experiments.

5.4 Execution time evaluation

To thoroughly evaluate the SSC system, it is crucial to consider the resources re-
quired to run it in addition to the F1 score and accuracy. We measured the accuracy
for each component of the audio-only, acoustic-only, and bi-modal fusion systems.
For Wav2Vec2 features we decided to take 1B model, since the difference with 2B
model is only 1%, but the model has 2 times less parameters. The results can be
found in Table 5.11. The experiments were conducted using Google Colab. For the
CPU, we used a "High-RAM" setup with an Intel(R) Xeon(R) CPU @ 2.20GHz (4
cores, 2 threads per core) and 52GB of RAM. For the GPU, we utilized an "L4" setup
with 22.5GB of GPU VRAM and 52GB of RAM.

It’s interesting to note that ASR models take the longest time to transcribe or
translate audio files. On the other hand, text feature extraction is nearly instanta-
neous. Surprisingly, translating the audio into a different language takes longer than
transcribing it into the original language. Additionally, ComParE feature extraction
is much faster on a CPU than extracting Wav2Vec2.0 last hidden state. However, the
time difference is not as significant when using a GPU.

5.5 Discussion

In this section, we conducted multiple experiments involving ASR systems, LLM
classifiers, acoustic hand-crafted features, and Wav2Vec2.0 encodings. Table 5.12
shows the best results for each pipeline. The highest accuracy and F1 for text-only
model are obtained using a text-only LLM classifier trained specifically for sentiment
tasks using an English dataset. Adding an audio component with ComParE features
may enhance this result slightly. For the mix of Ukrainian and Russian languages,
the audio model itself with ComParE paralinguistic features provides the best result
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Task Type Features Model N
params

CPU
time
(s)

GPU
time
(s)

Feature
extraction

Audio ComParE - N/a 2 2

Feature
extraction

Audio HS facebook/wav2vec2-xls-r-1b 1 B 100 3

Feature
extraction

Text HS (trans-
lation)

cardiffnlp /twitter-roberta-
base-sentiment-latest

119 M 0.2 0.03

Feature
extraction

Text HS
(transcript)

MoritzLaurer/mDeBERTa-
v3-base-mnli-xnli

265 M 0.4 0.17

ASR Transcr - openai/whisper-large-v2 1.5 B 120 8.5
ASR Transl - openai/whisper-large-v2 1.5 B 100 7.5
Prediction - - Logistic Regression - 0.4 -

TABLE 5.11: System components execution time for 1 audio file with
duration 50 seconds

Modality Model ACC F1 CPU time (s) GPU time (s)
T (trasl) cardiffnlp/twitter-roberta.. 84.44 0.85 100.6 7.93
T (transc) MoritzLaurer/mDeBERTa.. 71.11 0.72 120.8 9.07
A ComParE 75.56 0.75 2.4 2.4
A facebook/wav2vec2-xls-r-1b 67.78 0.67 100.4 3.4
T+A ComParE+twitter-roberta 85.56 0.85 102.6 9.93
T+A ComParE+mDeBERTa 74.44 0.73 120.8 11.07
T+A wav2vec2-1b+twitter-roberta 84.44 0.84 200.6 10.93
T+A wav2vec2-1b+mDeBERTa 72.22 0.73 220.8 12.07

TABLE 5.12: Models comparison in terms on accuracy, F1 score and
execution time

(see Table 5.10, but the accuracy is 10% lower, compared to the text-only English
model. We also compared the execution time for each system by summing up the
time required to execute each component (for instance, for bi-modal fusion it will be:
ASR + text feature extraction + audio feature extraction + LR). From this perspective,
when only the CPU is available, the acoustic-only model using ComParE features
significantly outperforms all other models in terms of execution time. This difference
is not as significant when using the GPU, but it remains the lowest.
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Chapter 6

Conclusions

6.1 Results

In this study, we aimed to address the research gap on SSC task for Ukrainian and
mix of Ukrainian and Russian languages. Despite limited data, we achieved 85.5%
accuracy through early fusion of text features from the ’cardiffnlp/twitter-roberta-
base-sentiment-latest’ model (using Whisper large-v2 translations) and ComParE
audio features. While an acoustic-only model may yield slightly lower accuracy,
it offers advantages in speed, memory efficiency, and a simpler pipeline with fewer
potential error accumulated sources. This work demonstrates the feasibility of sen-
timent classification for under-resourced languages and highlights the trade-offs be-
tween different modeling approaches.

The aim initially set by Stream Telecom company was to develop an end-to-end
conflict detection system. We made a first step towards this goal by considering the
negative sentiment of the conversation as a conflict situation. Our evaluation and
inference pipelines are published to GitHub repository 1, while the dataset itself is
proprietary and remains private.

6.2 Future work

• Increasing dataset. In this work we mainly used Logistic Regression classi-
fiers to avoid overfitting for more complex DNN-based networks. To further
improve our results and create a more generalized model, we need to explore
such techniques as data augmentation and use pseudo-labeling on the raw
dataset.

• Training more complex models. After increasing the dataset size, we may
increase the generalization of our system by training more complex models,
such as LSTMs, or fine-tuning Wav2Vec2.0 models.

• Time analysis on utterance-level. In this work, we classified the whole con-
versation audio files or performed label propagation at the utterance level
(which didn’t significantly improve the results). Additionally, we may analyze
and train the model to recognize patterns of sentiment change in the conversa-
tion, which may indicate conflict situations.

• Analysis in VAD dimension In this work we used only Valence (positive-
negative) dimension, but adding Arousal and Dominance components may
possible improve conflict detection system.

1https://github.com/lp-ucu/ssc_ukr_ru
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