
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Cloud-based just-in-time computation of
dynamic transformations of

biomechanical models

Author:
Dmytro MYKHAILOV

Supervisor:
Dr. Sergiy YAKOVENKO

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2024

http://www.ucu.edu.ua
https://www.linkedin.com/in/mykhailov-dmt/
https://scholar.google.com/citations?hl=en&user=svyOQfUAAAAJ&sortby=pubdate
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Dmytro MYKHAILOV, declare that this thesis titled, “Cloud-based just-in-time
computation of dynamic transformations of biomechanical models” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“The best mistake is the one that is made during training.”

Hryhorii Skovoroda

iv

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Cloud-based just-in-time computation of dynamic transformations of
biomechanical models

by Dmytro MYKHAILOV

Abstract

To manage the movement control of the human body or robotic systems, the problem
of calculating dynamic transformations must be solved. Solving the dynamic trans-
formation problem in real-time can be a complex task due to the complex human
structure with a large number of degrees of freedom. To solve such problems, a large
amount of computing resources or the use of artificial neural networks, which must
be created for each model separately, are required. The following study presents a
cloud-based solution for the problem of real-time dynamics transformation with the
ability to collect the processing data. Such a solution will help solve the problem
of limited computing and energy resources on edge devices, as well as systematize
and collect data for subsequent research. The proposed solution faces the task of
computing dynamic transformation in real time with the conditions of network de-
lays. This master thesis proposes to extrapolate previously obtained data by dead
reckoning the simulated model using Unscented Kalman Filter.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

v

Acknowledgements
I extend my deepest gratitude to my project advisor, Sergiy Yakovenko, whose guid-
ance, expertise, and unwavering support have been invaluable throughout the jour-
ney of this research. His insightful feedback and encouragement propelled this the-
sis forward.

I would like to express my sincere appreciation to Joost B. Wagenaar and Ed-
more Moyo from the University of Pennsylvania for their technical assistance and
collaboration. Their expertise and contributions played a pivotal role in shaping the
development and implementation of the proposed framework.

Furthermore, I am indebted to the Ukrainian Catholic University, particularly
the Faculty of Applied Sciences, for providing the conducive academic environment
and resources essential for conducting this research.

Lastly, I would like to extend my heartfelt gratitude to the Armed Forces of
Ukraine for their unwavering dedication to protecting our nation and ensuring our
safety. Their sacrifices and commitment to duty serve as a constant source of inspi-
ration and motivation.

To all those mentioned above and to countless others who have supported me
along the way, I am profoundly grateful for your encouragement, guidance, and
unwavering belief in my abilities. This thesis is as much a reflection of your contri-
butions as it is of my own efforts. Thank you!

vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Structure . 2

2 Related Work 3
2.1 Review of Related Work . 3

2.1.1 OpenSim Package . 3
2.1.2 MuJoCo Physics Engine . 3
2.1.3 Unscented Kalman Filters for Real-Time State Estimation 4
2.1.4 Real-Time Inverse Dynamics for Arm and Hand Using ANN . 4
2.1.5 Distributed Interactive Simulations in Game Development . . . 4

2.2 Research Gap . 6

3 Problem Setting and Approach to Solution 7
3.1 Problem Setting . 7
3.2 Physics Engine and Models . 7
3.3 State Estimation . 8
3.4 Summary . 10

4 Experiments 11
4.1 Pendulum Model . 13

4.1.1 Constant Velocity Pendulum . 13
4.1.2 Controlled Pendulum . 15
4.1.3 Externally Controlled Pendulum 17

4.2 Biped Model . 20
4.2.1 Controlled Biped . 20
4.2.2 Externally Controlled Biped . 21

4.3 Biomechanical Models . 24
4.4 State Estimation Duration . 25

5 Conclusions 27
5.1 Discussion . 27
5.2 Future Work . 27

Bibliography 28

vii

List of Figures

2.1 Average forward propagation latencies as a function of sequence length.
From Manukian, Bahdasariants, and Yakovenko, 2023. 4

2.2 Corrections to incorrect states predicted by dead reckoning. From
Savery and Graham, 2012. 5

2.3 Time-offsetting technique. From Savery and Graham, 2012. 6

3.1 Musculoskeletal models included in MyoSuite. A - MyoFinger (4
joints - 5 muscles), B - MyoElbow: (1 joint - 6 muscles), C - MyoHand:
(23 joints - 39 muscles). From Vittorio et al., 2022. 8

3.2 Basic steps of Kalman filtering. From Aimonen, 2011. 9
3.3 Proposed dynamic transformations of biomechanical models frame-

work structure. 10

4.1 Pendulum models built in MuJoCo. A - 1-dof pendulum, B - 2-dof
pendulum, C - 3-dof pendulum. 11

4.2 1-dof Constant Velocity Pendulum State Estimation. 14
4.3 2-dof Constant Velocity Pendulum State Estimation. 14
4.4 3-dof Constant Velocity Pendulum State Estimation. 14
4.5 1-dof Controlled Pendulum State Estimation. 16
4.6 2-dof Controlled Pendulum State Estimation. 16
4.7 3-dof Controlled Pendulum State Estimation. 17
4.8 1-dof Externally Controlled Pendulum State Estimation. 18
4.9 2-dof Externally Controlled Pendulum State Estimation. 19
4.10 3-dof Externally Controlled Pendulum State Estimation. 19
4.11 Biped model built in MuJoCo. 20
4.12 Controlled Biped State Estimation. 22
4.13 Externally Controlled Biped State Estimation. 23
4.14 Externally Controlled MyoElbow State Estimation. 24
4.15 Externally Controlled MyoHand RMSE of 23-rd joint. 25
4.16 UKF overhead for Pendulums Simulations. 26
4.17 Average delays of Constant Velocity Pendulums. 26

viii

List of Tables

4.1 Constant Velocity Pendulums Hyperparameters. 13
4.2 Constant Velocity Pendulums Errors. 13
4.3 Controlled Pendulums Hyperparameters. 15
4.4 Controlled Pendulums Errors. 15
4.5 Externally Controlled Pendulums Hyperparameters. 18
4.6 Externally Controlled Pendulums Errors. 18
4.7 Controlled and Externally Controlled Bipeds Hyperparameters. 21
4.8 Controlled Biped Errors. 21
4.9 Externally Controlled Biped Errors. 23
4.10 Externally Controlled MyoElbow Errors. 24

ix

List of Abbreviations

SotA State-of-the-Art
ANN Artificial Neural Networks
dof degree-of-freedom
UKF Unscented Kalman Filter
EKF Extended Kalman Filters
NEES Normalized Estimated Error Squared

x

Dedicated to my family and friends.

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, one of the prior tasks of neuroscientists and physiatrists is the develop-
ment of prosthetics with human-machine interaction support. The successful devel-
opment of such advanced prosthetics can significantly enhance the quality of life of
people with disabilities caused by different traumas or aging. Due to the complex
human structure described by Winter, 2009, the real-time simulation of biomechan-
ics of human movement is considered to be a challenging task.

To develop advanced prosthetics, it is necessary to solve the problem of de-
coding limb control signals followed by the computation of limb dynamics. This
task includes processing nonlinear and high-dimensional neural and mechanical
signals. To solve the speed-accuracy tradeoff for the calculation of limb dynamics,
researchers have focused on applying both classical numerical methods of approx-
imation described by Featherstone, 2008 and state-of-the-art (SotA) methods with
the use of artificial neural networks (ANN) researched by Manukian, Bahdasariants,
and Yakovenko, 2023.

Kinematics and dynamics are two branches of mechanics in physics that study
the movement of bodies. Kinematics describes motion without considering what
causes that motion, while dynamics looks at the forces and moments that cause mo-
tion.

Kinematics studies ways of describing the movement of bodies, such as trajecto-
ries, velocities, and accelerations, without considering the forces and moments that
cause movement. In robotics and biomechanics, kinematics describes the movement
of joints and links of robots or body parts.

At the same time, dynamics studies the reasons for the movement of bodies, i.e.,
forces and moments causing this movement. In robotics and biomechanics, forward
and inverse dynamics problems are crucial in understanding and controlling move-
ment.

The task of forward dynamics is to determine the motion of a system (position,
speed, acceleration) under known forces and moments. In this problem, the initial
conditions (position and velocity) and applied forces are known, but we need to
determine how the system will move in time.

The task of inverse dynamics is to determine the forces and moments necessary
to achieve the system’s given motion (position, speed, acceleration). In this problem,
the trajectories of movement (usually positions and velocities) are known, but it is
necessary to determine the forces and moments that cause this movement.

In biomechanics, these problems are used to analyze human and animal move-
ments. Forward dynamics helps to understand how muscles and external forces
influence body movement, which is essential for sports training and rehabilitation.
Inverse dynamics is used to estimate forces in joints and muscles when performing

2 Chapter 1. Introduction

movements, which is important for developing orthopedic devices and analyzing
movement patterns.

At the current network coverage and bandwidth level, an alternative option
would be moving the computations to the cloud. This approach has proven itself
with great results for robot control. The use of clouds also could potentially seri-
ously expand the possibilities of neuroscience. SotA research in the Cloud Robotics
field made it possible to increase computational power, gain access to big data, and
standardize data storage and processing, which saves energy and physical space and
reduces processing delays, according to Saha and Dasgupta, 2018.

Adapting the achievements in Cloud Robotics would make it possible to reduce
the sizes of advanced prosthetics and increase their autonomy, bringing a new im-
petus to prosthetics. Additionally, cloud computing will also be able to expand the
functionality of wearable smart-health solutions and expand the possibilities in the
fields of rehabilitation, sports, or general health.

1.2 Thesis Structure

The following position paper holds the following structure:

• Chapter 2, "Related Work", describes current SotA methods for computing
real-time limb dynamics, fundamental research in the Cloud Robotics field,
and distributed simulations.

• Chapter 3, "Problem Setting and Approach to Solution", sets the research ques-
tions, proposes research hypotheses, and forms a particular approach to solve
problems.

• Chapter 4, "Experiments", includes a description of the methodology, setting
up experiments, conducting research, analyzing the data obtained, and dis-
cussing the results in the context of the hypotheses.

• Chapter 5, “Conclusions,” includes a summary analysis of the study, a discus-
sion of the significance of the findings, and ideas for further research.

3

Chapter 2

Related Work

2.1 Review of Related Work

2.1.1 OpenSim Package

The software package OpenSim, first introduced by Delp et al., 2007 and its cur-
rent ability presented by Seth et al., 2018, has now become one of the main tools in
biomechanics and rehabilitation research. This open-source package includes all the
necessary components for simulating musculoskeletal dynamics and neuromuscu-
lar control. It allows the creation and editing of biomechanical models, simulation of
musculoskeletal dynamics and neuromuscular control, and visualization of results.
OpenSim computes the dynamics of multibody systems using an order-N recursive
formulation and is not initially designed to simulate real-time dynamics. Despite
that, Pizzolato et al., 2016 were able to develop a real-time inverse kinematics and
inverse dynamics solver for the lower limb using OpenSim. For lower limb models
with three-dimensional and 23-degree-of-freedom (dof), they were able to achieve
inverse kinematics and dynamics calculations without simplifications at 2000 frames
per second with less than 31.5 milliseconds of delay. This was achieved by taking
advantage of multi-threaded data processing with inverse kinematics and inverse
dynamics calculations on different threads. The mentioned experiments were con-
ducted using a Dell Precision Workstation T7500, with 2 Intel® Xeon® Processors
X5660 (12MB Cache, 2.80 GHz, 6 cores) and 8GB of RAM.

2.1.2 MuJoCo Physics Engine

An alternative tool for the simulation of biomechanical data is the MuJoCo physics
engine developed by Todorov, Erez, and Tassa, 2012. In comparison with OpenSim,
MuJoCo is not a tool created for biomechanics specifically, but it is a general physics
engine for modeling multi-joint dynamics with contact. MuJoCo also provides the
ability to create and modify physical models and simulate model dynamics. The
implementation of MuJoCo is based on numerical optimization since numerical op-
timization is the most powerful and generally applicable tool for automating pro-
cesses by engine creators. The multi-thread out-of-the-box implementation is the
main feature of MuJoCo. Erez and Todorov, 2012 by using the 15-millisecond time-
step, were able to achieve the results 500 times faster than during the real-time for
the inverse dynamics computing (without inverse kinematic) for the 31-dof simu-
lated humanoid. Todorov, 2014 also reported that with the use of a time-step of
10-millisecond, he was able to achieve the results 100 times faster than during real-
time (one cycle per 0.1 milliseconds) for calculating forward dynamics for the 27-dof
humanoid with ten contacts. The mentioned results were obtained with the use of
an Intel® Xeon® X5860 processor (12MB Cache, 3.33 GHz, 6 cores).

4 Chapter 2. Related Work

FIGURE 2.1: Average forward propagation latencies as a function of
sequence length. From Manukian, Bahdasariants, and Yakovenko,

2023.

2.1.3 Unscented Kalman Filters for Real-Time State Estimation

Lowrey, Dao, and Todorov, 2016 presented a method for the estimation of whole-
body dynamics state in real-time. Darwin-OP humanoid biped robot with a 26-dof
was used for the experiment. The calculations were performed on a laptop with a
Core-i7 4710HQ processor. Under these conditions, a complete update cycle takes
seven milliseconds. For this purpose, the Unscented Kalman Filter (UKF) with a
uniform weighting scheme was developed. Applying uniform weighting enhances
resilience against samples that defy contact constraints. One of the critical points
of efficiency is also the calculation of forward dynamics with the MuJoCo physics
engine, which effectively uses the capabilities of multithreading.

2.1.4 Real-Time Inverse Dynamics for Arm and Hand Using ANN

Another possible option for computing biomechanical dynamics is the use of ANN
networks. For example, ANN guided by signal processing in the human brain-
computer interface was used to decode arm dynamics in Manukian, Bahdasariants,
and Yakovenko, 2023. In the mentioned work, for a realistic musculoskeletal hand
and arm model consisting of 23-dof, ANNs were faster than real-time, but this var-
ied depending on the number of ANN layers and the computing device used (CPU
or GPU).The results can be seen on the Fig. 2.1.

2.1.5 Distributed Interactive Simulations in Game Development

A similar problem is solved by distributed interactive simulation techniques during
the development of networked games. The main complexities in the development of
such systems are shared state and its synchronization. This is due to the nature of the
network communication – a shared state from a remote device is always available
with a delay. To synchronize shares data, the following types of lag compensation
techniques are used:

• The dead reckoning technique (see Fig. 2.2) involves the exchange of informa-
tion about the position of an object, its speed, and acceleration at a specific
moment in time between remote simulations described in “IEEE Standard for
Distributed Interactive Simulation (DIS) – Communication Services and Pro-
files - Redline” 1996. Next, with the use of this information, it is possible
to calculate the expected location of a remote object. Globally synchronized
clocks between remote simulations are an essential aspect for improving the
accuracy of position prediction demonstrated by Yahyavi et al., 2013.

2.1. Review of Related Work 5

FIGURE 2.2: Corrections to incorrect states predicted by dead reckon-
ing. From Savery and Graham, 2012.

• The local perception filter, presented by Sharkey, Ryan, and Roberts, 2002, and
remote lag, proposed by Bernier, 2001, techniques are based on the use of con-
stant lag to the actions of other clients in local simulation, but not for their own
(see Fig. 2.3). Authoritative server arbitrates decisions based on the local states
of clients. Thus, each client has its own representation of the state, and the
server must be able to rewind time to restore the local state (perception) of the
client to check actions. The main idea is by exploiting the human perceptual
limitations to hide the communication delays.

• The bucket synchronization technique demonstrated by Bettner and Terrano,
2001 consists of slowing down the execution of commands (actions), combin-
ing them into batches, and continuing the simulation after synchronizing all
states.

• The local lag technique is about slowing down all commands (actions) for a
selected amount of time was explained by Mauve et al., 2004. Thus, the local
lag of command execution will allow us to cover the network costs and apply
them simultaneously to all clients (assuming globally synchronized clocks).
The main difficulty is choosing the local lag size so that it is longer than the
required time for data delivery but does not significantly affect the responsive-
ness.

Thus, Savery and Graham, 2012 distinguish the following categories of algo-
rithms for lag compensation:

• Predictive techniques - dead reckoning.

• Delayed input techniques - bucket synchronization, local lag.

• Time-offsetting techniques - remote lag, local perception filters.

6 Chapter 2. Related Work

FIGURE 2.3: Time-offsetting technique. From Savery and Graham,
2012.

2.2 Research Gap

As shown, achieving real-time speed when calculating biomechanical data is possi-
ble. In the presented works, the real-time speed was achieved by the use of large
computing resources or with the use of machine learning approximate solutions.
However, placing such hardware, as well as providing the power it requires, into
prosthetics or wearable smart health devices is not possible. A possible solution to
the described problem could potentially be to move calculations to the cloud, where
such hardware could be placed. The move to the cloud could also make it possible
to create a data warehouse for all the obtained biomechanical data for the further de-
velopment of machine learning solutions. In addition to all the obvious advantages
of such a model, difficulties with network communication arise. Since communica-
tion over the network always has latency or even frame loss, the cloud simulation
would constantly lag behind real-time.

Cloud Robotics could be a possible solution to such a problem since it is a pop-
ular solution to simplify and minimize the cost of a robot. Most probably, due to
the smaller requirements of robotics for the size and computing resources, in com-
parison to wearable devices, Cloud Robotics is not used for calculating dynamics
problems. Nothing other than general rules for minimizing odometry sizes to re-
duce network latency was found.

Fortunately, the problem of distributed simulations and state synchronization
is a common problem in networked game development. In this area, there are a
number of lag compensation techniques to solve the problem of networking latency
and the variance of latency over time. However, the categories of time-offsetting
and delayed input techniques are not applicable since there is no task of network
communications between several biomechanical models. At the same time, the dead
reckoning approach for lag compensation could suit our problem well. Still, the
way with which to build dead reckoning remains an open question since the classic
absolute position extrapolation with polynomials option can cause a significant error
for complex biomechanical models. For this, the use of Kalman Filters would be a
good choice since the use of Kalman Filters for the problems of dynamic estimation
in real time has already been showcased by Lowrey, Dao, and Todorov, 2016.

7

Chapter 3

Problem Setting and Approach to
Solution

3.1 Problem Setting

Developing the framework for dynamic transformations of biomechanical models is
challenging yet achievable. Producing simulations of biomechanical models in real-
time is also accomplishable, with different ways to achieve it being very appreciated.
When the mentioned tasks are advanced to the cloud, things change dramatically.

Performing calculations in the cloud means we have to deal with network com-
munications. If the simulation rate in the cloud exceeds latency time, which may
occur due to instability in network communication, the simulation will be blocked
until the missing packets are received, thus violating the real-time condition. It is
significantly aggravated by the simple fact that biomedical signals are taken from
complex biomechanical structures, and high-volume data represent them. At the
same time, data is often collected at high rates, so the volumes of collected data are
pretty large, which undoubtedly will affect the latency of the network. A possible
option is to extrapolate previous data by dead-reckoning the simulated model anal-
ogously with the game development. Consequently, the first problem is to develop
a short-term state estimation method for biomechanical models.

Another challenge that is resolvable lies in the use of cloud resources to the
fullest. The possibility of highly parallel computing characterizes cloud resources.
Since the goal is to achieve real-time computing, the capabilities mentioned before
are thus to be benefited from. Accordingly, choosing a solution that allows you to
parallelize calculations and simultaneously be flexible enough to describe the data
pipeline is necessary.

3.2 Physics Engine and Models

An integral part of the framework that is under development is a Physics Engine.
Physics Engine can be defined as software designed to simulate the physical inter-
actions between objects in the virtual space. Correctly selected Physic Engine makes
it possible to create authentic computer simulations to help understand the physical
principles behind the movement process and develop SotA technologies and meth-
ods in the biomechanics field. Hence, making use of the Physic Engine comes to be
a crucial element in the development of the framework for dynamic transformations
of biomechanical models.

After thoroughly analyzing the physics engines currently actively used in biome-
chanics, I eventually chose the MuJoCo. MuJoCo is a freely available general-purpose
Physics Engine engineered for robotics and biomechanics. Successful simulations in

8 Chapter 3. Problem Setting and Approach to Solution

FIGURE 3.1: Musculoskeletal models included in MyoSuite. A - My-
oFinger (4 joints - 5 muscles), B - MyoElbow: (1 joint - 6 muscles), C -

MyoHand: (23 joints - 39 muscles). From Vittorio et al., 2022.

real-time for the humanoid model, demonstrated by Lowrey, Dao, and Todorov,
2016, were a crucial factor that made me choose the mentioned Physic Engine. An
additional factor for such a decision was that MuJoCo was initially developed as a
multi-threading solution, making it possible to utilize the cloud resources fully.

MuJoCo offers an extensive specter of capabilities for modeling contact interac-
tions. It allows the creation of models of physical contact between objects, such as
friction, adhesion, and reaction force. Such ability is crucial in biomechanics, where
interactions with contact play a vital role in the movement of live species and their
interactions with their environment.

Furthermore, MuJoCo provides a flexible and easily operated API that allows its
users to create, customize, and manipulate models of biomechanical systems with-
out difficulty, as well as integrate such models with other tools and technologies. At
the same time, MuJoCo is compatible with operational systems such as Windows,
Linux, and macOS, which makes it, together with the developed framework, acces-
sible to a wide circle of researchers and developers in the biomechanics field.

A pivotal aspect for subsequent experiments is the availability of the MyoSuite
ecosystem, presented by Vittorio et al., 2022, that is compatible with the chosen Mu-
JoCo physics engine. MyoSuite is a collection of musculoskeletal models, tasks, and
agents that are already available for such tasks simulated with the MuJoCo physics
engine. Thus, it will allow to conduct experiments not just with the passive dynamic
models of human limbs but also with the all-set agents for simulating experiments
with the control signal.

MyoSuite consists of five different models: myoFinger, myoElbow, myoHand,
myoArm, and myoLeg (see Fig. 3.1). These include simple models, like myoEl-
bow, that contain 2-dof and 6 muscles-tendon units, and complex models, such as
myoArm, that contain 2-dof and 63 muscles-tendon units. Different tasks, from sim-
ple reaching movements ones to those that include contact-rich movements with
object manipulation, are developed for the mentioned models.

3.3 State Estimation

Due to the complex structure of biomechanical models and nonlinear dependencies,
for example, due to contact phenomena, it is quite challenging to estimate the state
of the biomechanical model. For this problem, it proposed to consider the ability to
estimate the state of the model using Kalman Filters, specifically Extended Kalman
Filter (EKF) and UKF, since EKF and UKF are good ways to estimate nonlinear state,

3.3. State Estimation 9

FIGURE 3.2: Basic steps of Kalman filtering. From Aimonen, 2011.

and also in the work of Lowrey, Dao, and Todorov, 2016 described above it was
shown that it is possible to use UKF to control the 26-dof robot in real-time.

Kalman Filter is a method for estimating the state of the dynamic system based
on the sequence of the measurements. This method works by combining the previ-
ous states of the system with the new measurements to achieve the best evaluation
of the current system state. The essential idea of the Kalman Filter lies in using the
information from two sources - the previous state of the system and its new mea-
surements - while taking into account their confidential intervals.

The operation of the Kalman Filter can be split into just two essential stages (see
Fig. 3.2):

• Prediction: At this stage, the filter uses the system’s model to estimate the
following states of the system based on the previous state.

• Correction: Succeeding the first stage, the filter combines the predicted state
with the new measurements, using the weighted average, to obtain the best
estimate of the current state of the system. At this stage, the covariance of the
estimation error is also updated.

EKF is an extension of the Kalman Filter for nonlinear systems. Instead of utiliz-
ing the system’s lineal models and measurements, just as in the basic Kalman Filter,
EKF linearizes these models around an estimate of the current mean and covariance,
using Taylor series expansions. This approach allows the use of the linear Kalman
filter at each step. However, EKF can be unstable and quickly diverge for complex
systems owing to its linearization. Since biomechanical models are expected to be
highly non-linear, the use of EKF will not help solve the state estimation problem.

UKF is an alternative method for evaluating nonlinear systems that avoid analyt-
ical linearization of systems. Instead, it uses statistical linearization approximating
state distribution by a Gaussian random variable. This allows you to avoid lineariza-
tion problems and more accurately model nonlinear systems, capturing the posterior
mean and covariance accurately for any nonlinearity (up to the third order of Taylor
series expansion). Therefore, UKF is an extension of the Kalman Filter that allows
us to evaluate the operation systems and is an excellent option for evaluating states
in the developed framework.

10 Chapter 3. Problem Setting and Approach to Solution

FIGURE 3.3: Proposed dynamic transformations of biomechanical
models framework structure.

3.4 Summary

The core purpose of the current project is to design a cloud-based tool to calculate
dynamic transformations based on streamed biomechanical signals in real time with
the possibility of collecting the received data. As a result, the framework will consist
of three parts (see Fig. 3.3):

1. The Client wraps a real-world experiment or simulation and is responsible for
collecting and sending measurements to the server side.

2. Model State Estimation module - the part of the server responsible for short-
term predictions of the simulation state in case the latency of simulation fre-
quency data exchange is exceeded.

3. Physics Engine module - the part of the server responsible for calculating prac-
tical dynamics transformations using the API of the physics engine and storing
the historical data.

In the process of developing the pipeline for data streaming, the necessity of
subsequent data processing in real-time should be taken into account. This means
that there is a need to minimize network latency when streaming so that they have
the least possible impact on the overall experience. A possible way to achieve this
would be a minimization of the size of the sent data, as well as using protocols
with a larger payload but with the possible loss of packets. The only mandatory
requirement for the data exchange is to guarantee the integrity of the package. Also,
the developed pipeline must provide sufficient functionality to describe the model
under study (model’s metadata).

When organizing a data warehouse, it is important to take into account the speci-
ficity of the data being stored. Biomedical signals recorded in laboratories are taken
from complex biomechanical structures that represent high-volume data. At the
same time, data is often collected at high rates, and the volumes of collected data
are also quite large. It is also necessary to remember about the anonymization of
data.

11

Chapter 4

Experiments

The process of calculating the dynamics of the model with the use of a physics engine
is an engineering problem - the correct decision on technologies, parallelization of
calculations, ensuring the integrity of shared data, etc. Measuring the time spent on
calculations is crucial to understanding the solution’s capabilities fully. However,
the primary module of the framework that needs to be tested is the state estimation
module based on UKF. In experiments, it is needed to test how accurately it can
predict the state of the model to compensate for network latencies.

In addition to the standard examination of the operability of the model in the
selected simulation, it is necessary to check the estimator on the simple model, the
complexity of which can be scaled up in order to make a comparison of the results
with each other. The simplest option to conduct a series of experiments such as this
would be to use a mathematical pendulum with a different number of links (see
Fig. 4.1). For this purpose, a pendulum model was created consisting of a rod with
a radius of 0.05 meters, a length of 1 meter, and a mass of 1 kilogram connected by
frictionless fasteners.

Furthermore, during the experiment, it is necessary to test several scenarios of
working with the framework. Altogether, there are three scenarios for interaction
with the model:

1. Constant velocity models that move along the predictable trajectories (their
speed changes slowly or does not change at all) (passive walking system, for
instance).

2. Models that utilize a control signal to perform specified actions, which we can
measure. Moreover, both options are suitable when the framework generates
such a signal or comes from the research object.

3. Models that are subject to external forces that we cannot model or measure
(capture data from actual human limbs, for example).

FIGURE 4.1: Pendulum models built in MuJoCo. A - 1-dof pendulum,
B - 2-dof pendulum, C - 3-dof pendulum.

12 Chapter 4. Experiments

The mentioned scenarios need to be separated due to the necessity of being simu-
lated differently using the Kalman Filters. First of all, this affects the parameters that
are included in the Kalman Filters state, the generation of noise for process noise (a
measure of the sensitivity of the internal state to new measurements), and the choice
of other hyperparameters.

As an algorithm for calculating sigma points, the classic version presented by
Julier, 2002; Wan and Van Der Merwe, 2000 is used. It has α, β, κ parameters as a
hyperparameters:

• α is responsible for the spread of the sigma points around the mean;

• κ secondary scaling parameter responsible for the spread of the sigma points
around the mean;

• β is responsible for incorporating prior knowledge of the input distribution.

The values for these hyperparameters are taken from the recommended ones by
Julier, 2002; Wan and Van Der Merwe, 2000:

• α - small positive value, α = 0.001;

• κ = 3 − n, where n is the dimensionality of the state or κ = 0;

• β = 2, this value is optimal for the Gaussian distribution and will be changed
if necessary.

An essential part of setting up Kalman Filters is the initial values of state esti-
mate vector x and covariance estimate matrix P. Since the experiment environment
is completely controlled, we can set the real starting value of the experiment in x
and, accordingly, P with low initial uncertainty. Thanks to this, the Kalman Filter
will converge much faster, and this will not affect estimation (average of RMSE, for
example).

Another vital part of setting up Kalman Filters is constructing the measurement
noise matrix R and process noise matrix Q. For the measurement noise matrix R, the
situation with state estimate vector x is repeated - the simulation is completely con-
trolled, and the measurements do not contain noise (the sensors are absolutely accu-
rate). Accordingly, the variance of noise measurement will be low. For the process
noise matrix Q, a discrete noise model was chosen since the simulation frequency is
relatively high (for the pendulum model - 50ms). At the same time, the variance in
the noise for Q varies depending on the model and experiment since this is impor-
tant for capture maneuvers.

The filter performance must evaluate the obtained state estimation results. In
addition to the expected evaluating methods based on residuals (RMSE, MAE, etc.),
due to the fact that we have a controlled simulation, we can use Normalized Esti-
mated Error Squared (NEES). This method is one of the simplest and, at the same
time, robust methods, but it is only suitable for simulating systems in which we
know the actual value. Let x be the true state, x̂ - Kalman Filter state estimate and P
- covariance matrix, then:

x̃ = x − x̂

ϵ = x̃TP−1x̃

The main idea of NEES is based on the fact that the estimation error x̃ shall be
zero in an ideal Kalman Filter:

4.1. Pendulum Model 13

E[[x − x̂]] = E[x̃] !
= 0

And the covariance matrix P shall be equal to the covariance matrix of the esti-
mation error:

E[[x − x̂][x − x̂]T] = E[x̃x̃T]
!
= P

Thus, given ϵ is chi-squared distributed with n degrees of freedom, we can test
the hypothesis:

H0: The estimation error x̃ is consistent with the covariance matrix P.

4.1 Pendulum Model

4.1.1 Constant Velocity Pendulum

The first experiment is carried out on models of a pendulum (see Fig. 4.1) on which
no external forces act, with the exception of the force of gravity. The simulation runs
at a high frequency of 50ms, and the pendulum model does not change its trajectory
abruptly, which results in the UKF being able to capture state changes as if the model
had constant velocity and zero acceleration. For such a scenario, it is enough for us
to have the following state x and measurement vector x̂:

x = [Θ1, · · · , Θn, Θ̇1, · · · , Θ̇n]

x̂ = [Θ′
1, · · · , Θ′

n, Θ̇′
1, · · · , Θ̇′

n],

where Θn - angle of the n-th joint, Θ̇n - angular velocity of the n-th joint.
The remaining hyperparameters are located in the Table 4.1. The chosen values

for covariance estimate matrix P are quite small since the initial value of the state
estimate vector x corresponds to the real one. The value of the variance of process
noise matrix Q is also quite low since large perturbations are not expected in the
simulation. The results of the experiments are depicted in Fig. 4.2, Fig. 4.3, Fig. 4.4
and Table 4.2.

α β κ dt P Q Var R
0.001 2 3 − 2n, where n - is dof 50 ms 0.2 ∗ I 0.1 0.01 ∗ diag(I)

TABLE 4.1: Constant Velocity Pendulums Hyperparameters.

DoF Θ aRMSE Θ̇ aRMSE Average NEES NEES CI
1 2.3912e-5 1.0518e-4 0.9586e-4 [0.0506; 7.3778]
2 2.0877e-5 1.0.9652e-4 2.2982e-4 [0.4844; 11.1433]
3 3.5730e-5 1.5348e-4 7.9482e-4 [1.2373; 14.4494]

TABLE 4.2: Constant Velocity Pendulums Errors.

As we can see, the predicted value completely repeats the actual values of the
angles and angular velocities of the pendulums without the influence of the com-
plexity of the model. This is confirmed by the extremely small average RMSE values

14 Chapter 4. Experiments

FIGURE 4.2: 1-dof Constant Velocity Pendulum State Estimation.

FIGURE 4.3: 2-dof Constant Velocity Pendulum State Estimation.

FIGURE 4.4: 3-dof Constant Velocity Pendulum State Estimation.

4.1. Pendulum Model 15

for angles and angular velocities. The NEES values are below the lower confidence
interval limit, which indicates that the variance values for process noise Q are greater
than necessary, given that measurement noise R is modeled correctly. For simula-
tions with such stability, this seems perfectly normal. As a result, we can say that for
constant velocity simulations, UKF can provide sufficiently accurate estimations for
subsequent calculations of custom dynamics data.

4.1.2 Controlled Pendulum

Afterward, I would like to test the pendulum scenario for which a control signal is
generated on the “server” side. Such a case requires a completely different approach
to forming the UKF state. In this scenario, it is necessary to capture sudden changes
in trajectories. To achieve this, we need to estimate the angular acceleration of the
model additionally. In the given scenario, the pendulum will change its position
every second to a symmetrical position under the influence of a control signal. For
such a case the state x UKF and the measurement vector x̂ will have the following
form:

x = [Θ1, · · · , Θn, Θ̇1, · · · , Θ̇n, Θ̈1, · · · , Θ̈n]

x̂ = [Θ′
1, · · · , Θ′

n, Θ̇′
1, · · · , Θ̇′

n, Θ̈′
1, · · · , Θ̈′

n],

where Θn - angle of the n-th joint, Θ̇n - angular velocity of the n-th joint, Θ̈n -
angular acceleration of the n-th joint.

α β κ dt P Q Var R
0.001 2 3 − 3n, where n - is dof 50 ms 0.2 ∗ I 0.2 0.01 ∗ diag(I)

TABLE 4.3: Controlled Pendulums Hyperparameters.

The hyperparameters for experiments are indicated in the Table 4.3. In the fol-
lowing case, hyperparameters are slightly modified to better comply with the simu-
lation conditions. The value of the κ for the algorithm for calculating sigma points
has changed since for each joint now we have three parameters in the state - Θn,
Θ̇n and Θ̈n, and not two parameters as for the previous experiment. The value for
the variance of process noise matrix Q is also changed - it became larger. This de-
cision was made due to the fact that the simulation would have more perturbations
compared to the previous experiment. Additionally, the control signal is calculated
based on the UKF state, which does not fully correspond to the real state, which can
cause deviations between the research object and its estimated state. The results of
the experiments are depicted on the Fig. 4.5, Fig. 4.6, Fig. 4.7 and Table 4.4.

DoF Θ aRMSE Θ̇ aRMSE Θ̈ aRMSE Average NEES NEES CI
1 6.3058e-5 6.7594e-5 1.8365e-3 0.8221e-3 [0.982e-03; 9.348]
2 1.4820e-5 6.0486e-5 0.8388e-3 1.1257e-3 [1.2373; 14.4494]
3 3.4770e-5 8.2194e-5 1.0114e-3 1.8903e-3 [2.7004; 19.0228]

TABLE 4.4: Controlled Pendulums Errors.

16 Chapter 4. Experiments

FIGURE 4.5: 1-dof Controlled Pendulum State Estimation.

FIGURE 4.6: 2-dof Controlled Pendulum State Estimation.

4.1. Pendulum Model 17

FIGURE 4.7: 3-dof Controlled Pendulum State Estimation.

The results of this experiment turned to be similar to the results of the previous
experiment:

• State Estimation repeats the actual values with high accuracy.

• Average Θ and Θ̇ RMSE are small.

• The NEES values are below the lower limit of the confidence interval (process
noise overestimated). However, they are already closer to the lower limit com-
pared to the previous experiment.

As for the Θ̈, the confidence interval of Θ̈ if much wider, average Θ̈ RMSE is
several orders of magnitude higher than the deviations Θ and Θ̇, however this is
still enough for calculations with the use of the Physics Engine. In general, we can
conclude that the suggested approach with the use of the UKF is suitable for the
given scenario.

4.1.3 Externally Controlled Pendulum

The following experiment has a similar logic to the controlled pendulum, except that
during the prediction process, there is no access to the control signal for the UKF. As
a result, the UKF is not able to simulate the force applied to the pendulum and is
only able to adjust the state of the filter after receiving measurements. In order to
compensate for this, we can use the Physics Engine feature, calculate inverse dynam-
ics, and restore the previous force that acted on the object. Taking into account that
the object will not rapidly change its trajectory, we can have a reasonably accurate

18 Chapter 4. Experiments

FIGURE 4.8: 1-dof Externally Controlled Pendulum State Estimation.

estimation. To model such a process, we need the same state as for constant velocity
pendulum pendulum:

x = [Θ1, · · · , Θn, Θ̇1, · · · , Θ̇n]

x̂ = [Θ′
1, · · · , Θ′

n, Θ̇′
1, · · · , Θ̇′

n]

α β κ dt P Q Var R
0.001 2 3 − 2n, where n - is dof 50 ms 0.2 ∗ I 50 0.01 ∗ diag(I)

TABLE 4.5: Externally Controlled Pendulums Hyperparameters.

In comparison with the previous experiments, there will be significantly more
unknowns in the estimation, which is why we cannot use any of the hyperparam-
eters from the previous experiments. The final hyperparameters after the selection
are in the Table 4.5. To successfully model this simulation, it was necessary to in-
crease the variance of process noise Q up to a significantly large value. The final
results are displayed in the Fig. 4.8, Fig. 4.9, Fig. 4.10 and Table 4.6.

DoF Θ aRMSE Θ̇ aRMSE Average NEES NEES CI
1 6.3386e-3 0.113 2.0765 [0.0506; 7.3778]
2 55.2721e-3 0.4826 11750.1188 [0.4844; 11.1433]
3 71.3011e-3 0.5848 3488.8626 [1.2373; 14.4494]

TABLE 4.6: Externally Controlled Pendulums Errors.

4.1. Pendulum Model 19

FIGURE 4.9: 2-dof Externally Controlled Pendulum State Estimation.

FIGURE 4.10: 3-dof Externally Controlled Pendulum State Estima-
tion.

20 Chapter 4. Experiments

FIGURE 4.11: Biped model built in MuJoCo.

As can be seen, the obtained results do not so perfectly replicate the actual values,
even though the results obtained are still quite accurate. Average Θ RMSE does not
exceed 4.09◦, which, as I consider, is a fairly good result. We are also now able to
see an explicit dependency between errors and the amount of dof - the larger the
dof, the higher the RMSE. Furthermore, with an extreme value of the variance of
process noise Q, NEES for the 2-dof and 3-dof is higher than the upper limit of the
confidence interval, which means that this value is not yet sufficient.

4.2 Biped Model

The next phase of the experiments on UKF is to move to models with a large num-
ber of steps of freedom and with contact with the surface. As an example of such a
model, I chose a biped (See Fig. 4.11), which consists of six joints (two hinge joints
and four slide joints) and two rods with a radius of 0.05 meters, a length of 1 meter
and a mass of 1 kilogram. The chosen model is already much more complicated since
it contains a larger number of joints that have different types (different measurement
units), and there is contact with the ground, so for satisfactory results, it was neces-
sary to reduce the frequency of simulations to 5 ms. The model is also not capable
of passive movement (only falling), so two scenarios will be tested: controlled biped
and externally controlled biped.

4.2.1 Controlled Biped

The following experiment is identical to the experiment with the controlled pen-
dulum: biped simulation controlled by a signal calculated from the data from the
Kalman Filter state. The state, in this case, is much more complex not only for an-
gular units and derivatives but also for values to describe slide joints (measured in

4.2. Biped Model 21

meters). Generally, the state x UKF and measurement vector x̂ will look the follow-
ing:

x = [x1, · · · , xn, ẋ1, · · · , ẋn, ẍ1, · · · , ẍn]

x̂ = [x′1, · · · , x′n, ẋ′1, · · · , ẋ′n, ẍ′1, · · · , ẍ′n],

where x1 - x axis position, x2 - z axis position, x3 - value of the left leg hinge, x4 -
left leg shock absorber, x5 - value of the right leg hinge, x6 - right leg shock absorber.
The hyperparameters of the experiment are located in the Table 4.7.

Controlled Biped Externally Controlled Biped
α 0.001 0.001
β 2 2
κ 0 0
dt 5 ms 5 ms
P 0.2 ∗ I 0.2 ∗ I

Q Var 5 50
R 0.01 ∗ diag(I) 0.01 ∗ diag(I)

TABLE 4.7: Controlled and Externally Controlled Bipeds Hyperpa-
rameters.

In accordance with the results of the experiment (See Fig. 4.12 and Table 4.8),
UKF can successfully perform state estimation for much more complex models with
contact. The same situation is repeated as for the controlled pendulum - variance
of process noise Q is overestimated (NEES is below the confidence interval). The
main challenge is the necessity of increasing the simulation frequency to 5 ms in
order to be able to generate the control signal using MuJoCo (numerical integration
limitation).

№ RMSE of x RMSE of ẋ RMSE of ẍ Average NEES NEES CI
1 14.0307e-6 4.6299e-5 2.054e-3

12.7856e-3 [8.2308; 31.5264]

2 3.7699e-6 2.3872e-5 7.6856e-3
3 8.3939e-6 4.0312e-5 7.1893e-3
4 0.6027e-6 10.9725e-5 96.4136e-3
5 2.5343e-6 2.8387e-5 12.7e-3
6 0.1032e-6 0.3612e-5 6.8851e-3

TABLE 4.8: Controlled Biped Errors.

4.2.2 Externally Controlled Biped

An experiment with biped, which is controlled by an external control signal, repli-
cates the setup of an experiment with externally controlled only with an increased
simulation frequency (hyperparameters for the experiment in Table 4.7) and with a
state of the following form:

x = [x1, · · · , xn, ẋ1, · · · , ẋn]

x̂ = [x′1, · · · , x′n, ẋ′1, · · · , ẋ′n]

22 Chapter 4. Experiments

FIGURE 4.12: Controlled Biped State Estimation.

4.2. Biped Model 23

FIGURE 4.13: Externally Controlled Biped State Estimation.

The obtained results (See Fig. 4.13 and Table 4.9) are pretty accurate. The UKF
is good at predicting the value for the hinge joint and the x-axis position, but it is
systematically wrong about the remaining joints responsible for changes in the z-
axis. Visually, the simulation based on predicted values looks smooth, periodically
deviating from the true simulation and gradually returning back to it.

№ RMSE of x RMSE of ẋ Average NEES NEES CI
1 3.9037e-2 4.4376e-2

859631.6084 [4.4038; 23.3367]

2 12.6587e-2 10.1083e-2
3 8.033e-2 11.1617e-2
4 4.5617e-2 30.0764e-2
5 2.3774e-2 13.3222e-2
6 4.7128e-2 30.3672e-2

TABLE 4.9: Externally Controlled Biped Errors.

24 Chapter 4. Experiments

FIGURE 4.14: Externally Controlled MyoElbow State Estimation.

4.3 Biomechanical Models

The final part of the experiments with state estimate with UKF is its testing on
biomechanical models from MyoSuite. The experiment was carried out on two mod-
els: MyoElbow and MyoHand (See Fig. 3.1). The MyoElbow model as the simplest
model with 1-dof, and the MyoHand model as a highly complex model with 23-dof.
A real-world scenario, when the biomechanical model will make some movements
and Kalman Filter will not have access to the control signal (capturing data from
the subject limb), was tested. For the MyoElbow model, this is a gradual raising
and lowering of the forearm; for the MyoHand model, this is alternate bending of
the fingers. The hyperparameters were reused from the experiment with externally
controlled biped (Table 4.8) only with an even higher simulation frequency - 2 ms.
For both models, the state x and measurement vector x̂ look like this (description of
each joint is omitted due to the complexity of the MyoHand):

x = [Θ1, · · · , Θn, Θ̇1, · · · , Θ̇]

x̂ = [Θ′
1, · · · , Θ′

n, Θ̇′
1, · · · , Θ̇′

n]

RMSE of x RMSE of ẋ Average NEES NEES CI
9.4534e-2 2.9799e-1 1160.0789 [0.0506; 27.3778]

TABLE 4.10: Externally Controlled MyoElbow Errors.

The elbow movements were captured quite well (See Fig. 4.14 and Table 4.10),
while for the hand model, it was not possible to achieve acceptable results. During

4.4. State Estimation Duration 25

FIGURE 4.15: Externally Controlled MyoHand RMSE of 23-rd joint.

the MyoHand simulation, UKF accumulated an error and began to diverge very
quickly (See Fig. 4.15). In general, we can see that estimating a biomechanical model
state using UKF is possible, but only for fairly simple body parts, such as the elbow.
For models comparable in complexity to MyoHand, you need to look for another
method.

4.4 State Estimation Duration

The last aspect that needs to be assessed is the overhead that UKF creates as a state
estimator. The UKF contains several resource-intensive operations:

• In the state prediction step, the UKF calculates 2n + 1 sigma points, where n
- is the number of state dimensions to approximate the state. That is, at each
step, it is necessary to solve 2n + 1 dynamics equations.

• In the state update step, UKF calculates the inverse of the weighted variance
of the measurement matrix, which can be a fairly lengthy operation for high-
dimensional problems.

If we cannot significantly influence the inverse of a matrix, then the process of
calculating sigma points can be parallelized. There is no need for sequential calcu-
lations of sigma points since these are completely independent processes. Thus, the
calculation of each point can be run on a separate thread, reducing the calculation
time by several times.

As we can see in the graph Fig. 4.16, increasing the number of processes allows
us to reduce the amount of network time by one step. We can also see that adding

26 Chapter 4. Experiments

FIGURE 4.16: UKF overhead for Pendulums Simulations.

FIGURE 4.17: Average delays of Constant Velocity Pendulums.

angular velocity Θ̈ to the state in Controlled Pendulums significantly increases UKF
overhead. Despite this, in the worst case, the 3-dof Controlled Pendulum, overhead
is 10 ms, which gives another 40 ms for useful calculations.

Fig. 4.17 shows the average total delays for simulating constant-velocity pendu-
lums during network interaction with the cloud. We can see that the average net-
work latencies were about 30-35ms, and the rest is overhead from the framework.
All pendulums, on average, have a total delay of less than the simulation frequency.

27

Chapter 5

Conclusions

5.1 Discussion

In the present work, the capabilities of the Physics Engine and UKF combination
were tested in order to solve the problem of just-in-time dynamics computations in
the cloud. The developed framework was tested in different scenarios and on mod-
els of varying complexity. The proposed method performed well on models of low
and medium complexity in terms of accuracy. For models of very high complexity,
such as the MyoHand model, it is necessary to look for other ways to compensate
for network lags if it is needed to achieve real-time.

Taking into consideration the modern capabilities of networks with stable laten-
cies of no more than 40 - 50 ms, and in some cases up to 10 ms, it is possible to
simulate a wide range of scenarios in real time using the proposed framework. UKF
has compiled well with the cloud‘s ability to have access to the multi-core CPU,
which can help significantly speed up not only state estimation but also potentially
custom dynamics computations. A limitation of the proposed method is the inabil-
ity to achieve real-time in tasks that require a high simulation frequency (5 ms for
biped or 2 ms for biomechanical models). However, that is rather a challenge not for
the proposed method but for the environment that includes network interaction. In
general, achieving real-time dynamics transformations highly depends on the com-
plexity of the model and the complexity of the problem, with no universal method.
Cloud computing will significantly expand the existing set of options.

5.2 Future Work

The primary direction of possible future research is related to the search for meth-
ods of lag compensation. Such could be applying improvements to Kalman Filters
or searching for entirely different methods to produce short-term state estimation
since UKF is insufficient for complex biomechanical models. Among the possible
enhancements for Kalman Filters, it is necessary to check the influence of signal
smoothing, as well as adaptive process and measurement noises on state estima-
tion. At the same time, the results are unlikely to help simulate models similar to
MyoHand but may improve accuracy for other models.

Regardless of the success of state estimation, the community needs a standard-
ized solution for dynamics and kinematics problems in the cloud. The experiments
demonstrated a vast number of use cases that need to be covered in order to get a
production-ready solution. Additionally, special attention calls for the need to cal-
ibrate hyperparameters for each task and model. By collecting a more significant
number of models and tasks, it is possible to formulate the final requirements for
such a platform.

28

Bibliography

Aimonen, P. (2011). Basic concept of Kalman filtering. https://commons.wikimedia.
org/wiki/File:Basic_concept_of_Kalman_filtering.svg.

Bernier, Y. W. (2001). “Latency Compensating Methods in Client/Server In-game
Protocol Design and Optimization”. In: GDC. URL: https://gamedevs.org/
uploads/latency-compensation-in-client-server-protocols.pdf.

Bettner, P. and M. Terrano (2001). “1500 Archers on a 28.8: Network Programming
in Age of Empires and Beyond”. In: GDC. URL: https://zoo.cs.yale.edu/
classes/cs538/readings/papers/terrano_1500arch.pdf.

Delp, S. L. et al. (2007). “OpenSim: Open-Source Software to Create and Analyze Dy-
namic Simulations of Movement”. In: IEEE Transactions on Biomedical Engineering
54.11, pp. 1940–1950. DOI: 10.1109/tbme.2007.901024.

Erez, T. and E. Todorov (2012). “Trajectory optimization for domains with contacts
using inverse dynamics”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4914–4919. DOI: 10.1109/iros.2012.6386181.

Featherstone, R. (2008). Rigid Body Dynamics Algorithms. Springer eBooks. DOI: 10.
1007/978-1-4899-7560-7.

“IEEE Standard for Distributed Interactive Simulation (DIS) – Communication Ser-
vices and Profiles - Redline” (1996). In: IEEE Std 1278.2-2015 (Revision of IEEE Std
1278.2-1995) - Redline, pp. 1–90.

Julier, S. J. (2002). “The scaled unscented transformation”. In: Proceedings of the 2002
American Control Conference (IEEE Cat. No.CH37301). Vol. 6, pp. 4555–4559. DOI:
10.1109/ACC.2002.1025369.

Lowrey, K., J. Dao, and E. Todorov (2016). “Real-time state estimation with whole-
body multi-contact dynamics: A modified UKF approach”. In: 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), pp. 1225–1232. DOI:
10.1109/humanoids.2016.7803426.

Manukian, M., S. Bahdasariants, and S. Yakovenko (2023). “Artificial physics en-
gine for real-time inverse dynamics of arm and hand movement”. In: PLOS ONE
18.12. DOI: 10.1371/journal.pone.0295750.

Mauve, M. et al. (2004). “Local-Lag and Timewarp: Providing Consistency for Repli-
cated Continuous Applications”. In: IEEE Transactions on Multimedia 6.1, pp. 47–
57. DOI: 10.1109/tmm.2003.819751.

Pizzolato, C. et al. (2016). “Real-time inverse kinematics and inverse dynamics for
lower limb applications using OpenSim”. In: Computer Methods in Biomechanics
and Biomedical Engineering 20.4, pp. 436–445. DOI: 10 . 1080 / 10255842 . 2016 .
1240789.

Saha, O. and P. Dasgupta (2018). “A Comprehensive Survey of Recent Trends in
Cloud Robotics Architectures and Applications”. In: Robotics 7.3, p. 47. DOI: 10.
3390/robotics7030047.

Savery, C. and T. C. N. Graham (2012). “Timelines: simplifying the programming of
lag compensation for the next generation of networked games”. In: Multimedia
Systems 19.3, pp. 271–287. DOI: 10.1007/s00530-012-0271-3.

https://commons.wikimedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg
https://commons.wikimedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg
https://gamedevs.org/uploads/latency-compensation-in-client-server-protocols.pdf
https://gamedevs.org/uploads/latency-compensation-in-client-server-protocols.pdf
https://zoo.cs.yale.edu/classes/cs538/readings/papers/terrano_1500arch.pdf
https://zoo.cs.yale.edu/classes/cs538/readings/papers/terrano_1500arch.pdf
https://doi.org/10.1109/tbme.2007.901024
https://doi.org/10.1109/iros.2012.6386181
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1109/ACC.2002.1025369
https://doi.org/10.1109/humanoids.2016.7803426
https://doi.org/10.1371/journal.pone.0295750
https://doi.org/10.1109/tmm.2003.819751
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.3390/robotics7030047
https://doi.org/10.3390/robotics7030047
https://doi.org/10.1007/s00530-012-0271-3

Bibliography 29

Seth, A. et al. (2018). “OpenSim: Simulating musculoskeletal dynamics and neuro-
muscular control to study human and animal movement”. In: PLOS Computa-
tional Biology 14.7. DOI: 10.1371/journal.pcbi.1006223.

Sharkey, P. M., M. D. Ryan, and D. J. Roberts (2002). “A local perception filter for dis-
tributed virtual environments”. In: Proceedings. IEEE 1998 Virtual Reality Annual
International Symposium (Cat. No.98CB36180), pp. 242–249. DOI: 10.1109/vrais.
1998.658502.

Todorov, E. (2014). “Convex and analytically-invertible dynamics with contacts and
constraints: Theory and implementation in MuJoCo”. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6054–6061. DOI: 10.1109/icra.
2014.6907751.

Todorov, E., T. Erez, and Y. Tassa (2012). “MuJoCo: A physics engine for model-based
control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE, pp. 5026–5033. DOI: 10.1109/iros.2012.6386109.

Vittorio, C. et al. (2022). “MyoSuite – A contact-rich simulation suite for muscu-
loskeletal motor control”. In: DOI: 10.48550/ARXIV.2205.13600.

Wan, E. A. and R. Van Der Merwe (2000). “The unscented Kalman filter for nonlinear
estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158. DOI: 10.
1109/ASSPCC.2000.882463.

Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement. John Wiley
Sons. DOI: 10.1002/9780470549148.

Yahyavi, A. et al. (2013). “Watchmen: Scalable Cheat-Resistant Support for Distributed
Multi-player Online Games”. In: 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 134–144. DOI: 10.1109/icdcs.2013.62.

https://doi.org/10.1371/journal.pcbi.1006223
https://doi.org/10.1109/vrais.1998.658502
https://doi.org/10.1109/vrais.1998.658502
https://doi.org/10.1109/icra.2014.6907751
https://doi.org/10.1109/icra.2014.6907751
https://doi.org/10.1109/iros.2012.6386109
https://doi.org/10.48550/ARXIV.2205.13600
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1002/9780470549148
https://doi.org/10.1109/icdcs.2013.62

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Structure

	Related Work
	Review of Related Work
	OpenSim Package
	MuJoCo Physics Engine
	Unscented Kalman Filters for Real-Time State Estimation
	Real-Time Inverse Dynamics for Arm and Hand Using ANN
	Distributed Interactive Simulations in Game Development

	Research Gap

	Problem Setting and Approach to Solution
	Problem Setting
	Physics Engine and Models
	State Estimation
	Summary

	Experiments
	Pendulum Model
	Constant Velocity Pendulum
	Controlled Pendulum
	Externally Controlled Pendulum

	Biped Model
	Controlled Biped
	Externally Controlled Biped

	Biomechanical Models
	State Estimation Duration

	Conclusions
	Discussion
	Future Work

	Bibliography

