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Abstract

Recent studies have highlighted the exceptional capabilities of open-sourced foun-
dational models like LLaMA, Mistral, and Gemma, particularly in scenarios requir-
ing writing assistance. These models demonstrate proficiency in various tasks both
in zero-shot settings and when fine-tuned with task-specific, instruction-driven data.
Despite their adaptability, the application of these models to Grammatical Error Cor-
rection (GEC) tasks, critical for producing grammatically accurate text in writing
assistants, remains underexplored. This thesis explores the performance of open-
sourced Large Language Models (LLMs) in GEC task across multiple setups: zero-
shot, supervised fine-tuning, and Reinforcement Learning from Human Feedback
(RLHF). Our research shows that task-specific fine-tuning significantly enhances
LLM performance on GEC tasks. We also highlight the importance of precise prompt
configuration in zero-shot settings to align models with the specific requirement
of the CoNLL-2014 and BEA-2019 benchmarks, aiming for minimal necessary ed-
its. Further, our experiments with RLHF, particularly Direct Preference Optimiza-
tion, provide insights into aligning LLMs for specific applications, showing an im-
provement of 0.3% in scores and indicating a further path for improvement. The
best-performing model, Chat-LLaMA-2-13B-FT, matched the performance of state-
of-the-art models with considerably less data, achieving an F0.5 score of 67.87% on
the CoNLL-2014-test and 73.11% on the BEA-2019-test benchmarks. This thesis ex-
pands our understanding of the capabilities of open-sourced LLMs in GEC and sets
the stage for future enhancements in this area. The code and trained model are pub-
licly available.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/
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Chapter 1

Introduction

1.1 Motivation

Grammatical Error Correction (GEC) is a crucial component of Natural Language
Processing (NLP) that significantly enhances text writing tasks, especially for non-
native speakers, to produce complex texts and improve their writing performance
and clarity, which is crucial in business communication. The development of GEC
began in the 1980s (Kwasny and Sondheimer, 1981; Jensen et al., 1983) and continues
to evolve today (Bryant et al., 2023).

GEC consists of correcting sporadic spelling, punctuation, and word choice mis-
takes but also involves enhancing text fluency and clarity with minimal edits, con-
sidering learner-specific suggestions, and understanding context (Napoles, Sakaguchi,
and Tetreault, 2017). Consequently, researchers have shifted from traditional rule-
based systems to data-driven sequence-to-sequence (seq2seq) approaches (Junczys-
Dowmunt et al., 2018) that utilize deep learning and Neural Machine Translation
(NMT). These approaches rely heavily on large training datasets (Tarnavskyi, Chern-
odub, and Omelianchuk, 2022; Rothe et al., 2021), making their development data
resource-intensive, limiting scalability, particularly when adapting to specific tasks.

Recently, there has been rapid development in writing assistants powered by
Large Language Models (LLMs) with capacities exceeding 1 billion parameters and
general-purpose language generation capabilities (Radford et al., 2019). These mod-
els can handle various tasks (Brown et al., 2020), including GEC. Studies Loem et al.,
2023; Fang et al., 2023 show that LLM-powered writing assistants like ChatGPT have
excellent error detection capabilities and can correct errors to make sentences more
fluent, often due to over-correction that does not align with the principle of minimal
edits.

Recent research by Omelianchuk et al., 2024 in GEC using seq2seq models has
highlighted the significant potential for improvements in these systems. Therefore,
further research and development could considerably impact advancing the GEC
industry.

We selected English GEC system development for our study because it has seen
the most progress, with the most annotated training data and extensive research
outcomes (Bryant et al., 2023). However, it is important to note that our approach,
which is based on Large Language Models, supports multi-lingual tasks and can be
applied to other languages. In our work, we focus on enhancing current seq2seq
approaches using LLMs for English, leaving the development of systems for other
languages to future research.
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1.2 Goals of the master research

The goal of this Master’s thesis is to investigate and enhance sequence-to-sequence
approaches with the application of Large Language Models for Grammatical Error
Correction. We aim to advance the performance on prominent benchmarks, specifi-
cally the CoNLL-2014 and BEA-2019 shared tasks. We set the following goals:

1. We would like to perform an analysis of existing GEC approaches and define
the strengths and weaknesses of existing systems. This analysis will help us
identify best practices and areas where improvements can be made, particu-
larly in enhancing the quality of corrections through fine-tuning strategies.

2. Then, we will explore how different prompt formulations in a zero-shot set-
ting affect the performance metrics of LLMs, with a particular focus on the
precision of grammatical error corrections. This investigation will include ex-
perimenting with various prompt modifications to determine their influence
on the model’s ability to correct errors accurately.

3. We also plan to assess the effectiveness of supervised fine-tuning by examin-
ing various components, such as the choice of GEC datasets and model size.
We also will compare full model fine-tuning against parameter-efficient tun-
ing methods to determine the best practices for optimizing performance while
managing computational resources efficiently.

4. We aim to integrate RLHF methods to refine LLM performance using human-
like preference data on GEC task. This approach will be tested to see how well
it enhances the model’s ability to align with preference data, thus potentially
improving the metrics on GEC benchmarks.

1.3 Structure of thesis

In Chapter 1, we provide an overview of the Grammatical Error Correction field and
outline the research goals for this thesis. This initial chapter sets the stage for an ex-
ploration of the topic and establishes the framework for subsequent investigations.

Chapter 2 reviews existing GEC models, including sequence-to-sequence, sequence-
to-tag, and ensembling methods. This review identifies gaps in the current research
and helps formulate strategies for improvement, aiming to advance the state of the
art in GEC methodologies.

Chapter 3 examines publicly available English datasets commonly used in GEC
research. We also discuss the metrics employed to evaluate the performance of GEC
models, providing a basis for consistent and reliable benchmarking across different
studies.

Chapter 4 details our experiments within various training frameworks, includ-
ing zero-shot inference settings and supervised fine-tuning. We also introduce Di-
rect Preference Optimization as an alternative to traditional Supervised Fine-Tuning.
This chapter aims to evaluate approaches considered to enhance the performance of
GEC models, with a focus on how different training settings affect model quality.

Throughout these chapters, we aim to build a coherent narrative that highlights
the technical aspects of GEC and contextualizes our research within the broader aca-
demic and practical realms of Natural Language Processing.
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Chapter 2

Literature review

Grammatical Error Correction field commenced with rule-based methods in the early
1980s (Kwasny and Sondheimer, 1981; Jensen et al., 1983) and has since evolved
into sophisticated data-driven approaches, employing supervised machine learning
models trained on annotated corpora of error-laden text with exemplary sugges-
tions. Pioneering investigations in this domain include the seminal works of (Brock-
ett, Dolan, and Gamon, 2006; De Felice and Pulman, 2008; Rozovskaya and Roth,
2010; Tetreault, Foster, and Chodorow, 2010; Dahlmeier and Ng, 2012).

2.1 Existing GEC systems

A seminal moment in the analysis and correction of grammatical errors unfolded
with the establishment of The Helping Our Own shared task in 2012, marking a
significant shift from rule-based to data-driven methods and releasing the First Cer-
tificate in English (FCE) corpus in Yannakoudakis, Briscoe, and Medlock, 2011. Sub-
sequently, Leacock et al., 2010 conducted a comprehensive survey summarizing the
progress in the field.

Over the past decade, the evaluation of grammatical error correction systems has
advanced significantly through key public benchmarks such as CoNLL-2013 (Ng et
al., 2013), CoNLL-2014 (Ng et al., 2014), and BEA-2019 (Bryant et al., 2019). The
F0.5 score, utilized in the MaxMatch (M2) (Dahlmeier and Ng, 2012) and ERRANT
(Bryant, Felice, and Briscoe, 2017) metrics, has become the primary standard for
evaluating GEC systems. Studies by Grundkiewicz, Junczys-Dowmunt, and Gillian,
2015 and Chollampatt and Ng, 2018 demonstrate that the F0.5 score aligns closely
with human judgment, underscoring its effectiveness and reliability in assessing
grammatical accuracy.

A notable breakthrough in GEC was the incorporation of deep learning method-
ologies, which are mostly used in Machine Translation tasks. The introduction of
Transformer architectures in Vaswani et al., 2023; Junczys-Dowmunt et al., 2018,
marked a significant evolution in the field. The application of these architectures has
enhanced the performance of GEC systems and aligned them more closely with the
latest advances in machine learning and natural language processing. This integra-
tion highlights the continuous evolution of GEC systems, leveraging cutting-edge
technologies to improve their accuracy and efficiency.

Presently, two primary methodologies are employed for constructing GECs us-
ing Neural Machine Translation. The first set of methods leverages low-resource
sequence-to-sequence approaches (Yuan, Briscoe, and Felice, 2016). These methods
augment text generation by incorporating additional contextual information during
encoding, such as BERT representations (Kaneko et al., 2020) or the utilization of pre-
trained models (Junczys-Dowmunt et al., 2018). This category of approaches takes
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input text containing grammatical errors and employs an encoder-decoder architec-
ture to produce corrected outputs.

Another methodology is based on sequence tagging, where the model generates
an action for each input token to correct grammatical errors (Omelianchuk et al.,
2020). Given the inherent nature of GEC, suggestions can be represented as a series
of independent actions (keep, add, delete, replace), and grammatically correct text is
derived by executing these actions in sequence. The following chapters reveal these
two prominent families of methods.

2.2 Sequence-to-sequence error correction approaches

Bryant et al., 2023 conducted a comprehensive survey of state-of-the-art sequence-to-
sequence (seq-to-seq) methodologies applied in the domain of GEC. Their findings
indicate that the current advanced methods in GEC are similar to low-resource NMT
systems configured in conditions with limited parallel data (Malmi et al., 2019).
This insight implies that similar techniques also help improve neural GEC systems
(Junczys-Dowmunt et al., 2018). The authors indicate a set of techniques that can
help to perform better than traditional statistical machine translation systems and
become a standard practice, even outperforming the quality of state-of-the-art sys-
tems. Key strategies to achieve state-of-the-art GEC tasks include:

• pre-training on large amounts of data, including synthetic, which is especially
helpful in low-resource scenarios;

• increase model size;

• using multiple models together in an ensemble.

The advances of Transformer-based language models enable more adequate cap-
ture of syntactic phenomena Wei et al., 2021, making them capable GEC systems
when little or no data is available. These systems can, however, become even more
capable when exposed to a small amount of parallel data Mita and Yanaka, 2021.
However, using synthetic data generated from error type tags led to significant per-
formance gains on standard test sets and is effective in adapting systems for native
English Stahlberg and Kumar, 2021.

More recently, with the advances in large pre-trained language models, direct
model fine-tuning with GEC parallel data showed state-of-the-art performance Rothe
et al., 2021. For example, in Rothe et al., 2021, authors adopted the mT5 (Xue et al.,
2021) pre-trained on a corpus covering 101 languages as the base model for the mul-
tilingual GEC task. Another study Loem et al., 2023 shows no need for LLM fine-
tuning to perform competitively in the GEC tasks, outperforming the Transformer
model in all test sets. Zhang et al., 2023 proposed multi-task instruction fine-tuning
that significantly improves LLMs ability on writing tasks, including GEC.

In Bryant et al., 2023, authors also note that while NMT is better at fixing complex
errors, considering context, it has limitations, especially in needing a large amount
of high-quality data (Rothe et al., 2021). Additionally, it is hard to understand the
reason for the edit made by the model. However, NMT systems are advantageous
because they perform grammatical error correction end-to-end.

Large Language Models present promising results in this context due to their
proven effectiveness in various end-to-end NLP tasks, including GEC (Loem et al.,
2023). However, the integration of LLMs into GEC is still an area in need of further
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exploration, particularly regarding the assessment of the capabilities of newer LLMs
(Zhang et al., 2023). This exploration provides rationales for adapting models to spe-
cific domains. Notably, fine-tuning LLMs on domain-specific data incurs significant
training expenses for domain adaptation and is heavily dependent on the quality of
data (Zhang et al., 2023).

2.3 Sequence-to-tag approaches

In the realm of Natural Language Processing, for many tasks such as GEC, the in-
put and output sentences may overlap significantly. Recent advancements have
witnessed the emergence of innovative architectures, such as the Copy-Augmented
Transformer, to address these challenges effectively (Hotate, Kaneko, and Komachi,
2020; Wan, Wan, and Wang, 2020). These models typically employ a full sequence
approach, wherein the majority of tokens are directly transferred from input to out-
put. While this method ensures lexical consistency, it often results in sub-optimal
decoding speeds and increased computational loads due to the extensive vocabu-
lary size. Moreover, this approach lacks an explanatory mechanism for its proposed
target sequences.

To address these limitations, Awasthi et al., 2019 introduced a Parallel Iterative
Edit model reducing decoding time for local sequence transduction tasks. In con-
tradistinction to full-sequence models (Junczys-Dowmunt et al., 2018), this approach
generates a sequence of edits, each aligned with input sentence tokens, focusing on
specific edits rather than rewriting entire sentences.

Further refinement in this domain is evident in the sequence-to-edit and se-
quence tagging approaches, which accommodate multi-token edits (Omelianchuk
et al., 2020; Tarnavskyi, Chernodub, and Omelianchuk, 2022). A primary advantage
of these methods is their capacity for iterative refinement, enhancing the inference
capabilities of parallel models.

Source A ten years old boy go school
Target A ten- year- old boy goes to school.
Tags KEEP KEEP,

MERGE
NOUN,
MERGE

KEEP KEEP VERB,
APPEND

KEEP, AP-
PEND

TABLE 2.1: Example task formulation of edit generation in the
sequence-to-tag approach from Omelianchuk et al., 2020. Each tag

represents the edit type and a replacement string.

For illustrative purposes, consider the sequence tagging approach applied to the
sentence "A ten years old boy go school" and its corrected version "A ten-year-old
boy goes to school." (Table 2.1). The necessary corrections can be represented as:
[A → A], [ten → ten -], [years → year -], [old → old], [boy → boy], [go → goes to],
[school → school.]. The optimal number of edits at the token level can be achieved
by minimizing Levenshtein distance during tranduction, with each edit type cate-
gorized into labels such as KEEP, APPEND, DELETE, REPLACE, MERGE. Complex
errors may require multiple actions; for instance, [years → year -] necessitates a RE-
PLACE of the original token and a MERGE with dash . In Omelianchuk et al., 2020,
authors recommend an iterative correction method, executing one edit per iteration
for efficiency.

Despite its effectiveness, the sequence-tagging approach is limited by its token-
level focus and the need for iterative execution to correct errors. Concurrently, alter-
native solutions like in Stahlberg and Kumar, 2020 proposal of edit-span operations
have been developed. These operations involve a 3-tuple representing the action of
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replacing a span from positions n − 1 to n in the source sentence with a replacement
token and an explainable tag. Span-level edits offer a more compact representation
than token-level edits and are simpler to learn due to the ease of capturing local
dependencies within a span.

Certain approaches’ methodologies exhibit a notable divergence from the archi-
tectures of LLMs. A key challenge lies in integrating these distinct methods into
the framework of LLMs. In this context, the study by Kaneko and Okazaki, 2023
is particularly noteworthy. This research shows the feasibility of adapting LLMs
to the sequence-to-edit task, a process markedly different from the more conven-
tional sequence-to-tag methods. The primary distinction of this method from the
sequence-to-tag approach is its ability to predict a set of edit spans, representing the
changes in the target text relative to the source tokens. By omitting unedited tokens,
which constitute the majority of the target text, the method significantly reduces the
length of the target text and the inference time for local sequence transduction tasks.

2.4 Models ensembling

Ensembling, a prevalent methodology in machine learning, combines the outputs of
multiple independently trained models. This technique is also significant in the do-
main of GEC, where diverse approaches exhibit distinct strengths and weaknesses.
In Susanto, Phandi, and Ng, 2014, authors have demonstrated that the varying
strengths of different GEC models can be used to enhance grammatical error cor-
rection through a method known as system combination. Recent advancements in
GEC have largely been attributed to the ensembling of outputs from single models,
as highlighted in the studies Awasthi et al., 2019; Omelianchuk et al., 2020; Tar-
navskyi, Chernodub, and Omelianchuk, 2022.

In the context of GEC, ensembling typically entails averaging the probabilities
or employing majority voting from individually trained GEC models. This process
is applied when predicting the next token in a sequence-to-sequence approach or
determining the edit tag in an edit-based approach.

The models selected for ensemble configurations generally possess similar prop-
erties, with minor variations such as differences in the random seed as noted by
Stahlberg and Kumar, 2020, the choice of pre-trained model (Omelianchuk et al.,
2020). Tarnavskyi, Chernodub, and Omelianchuk, 2022 have observed that the qual-
ity of corrections improves with the ensembling of output tag probabilities, indicat-
ing that a larger combination of models tends to yield better results. The application
of majority vote aggregation for span-level edits has been shown to facilitate the
combination of various models, achieving the best results at the time of publication
on the BEA-2019 test benchmark.

Qorib, Na, and Ng, 2022 presented a novel paradigm ESC by reframing the com-
bination of GEC systems as a binary classification task. This methodology is pri-
marily based on the classification of isolated edits, without considering context or
other edits into account, and can substantially enhance the quality of the ensemble
GEC models. In further extension of the research Qorib and Ng, 2023 introduced
an innovative approach for GEC quality estimation - GRECO. Their methodology
diverges from the traditional practice of selecting the optimal correction from vari-
ous GEC model outputs of different architectures (seq-to-seq or seq-to-tag). Instead,
they proposed using a BERT-like pre-trained language model to evaluate the quality
of edits on each iteration of the correction. The model, trained on the W&I train set
with hyper-parameters tuning on BEA-2019 development set and the CoNLL-2013
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test sets, evaluates the pairs of sentences – the original and the hypothesized correc-
tion – to verify whether an edit contributes to an improved grammatical structure.
This technique was adapted specially for both CoNLL-2014 and BEA-2019 bench-
marks and was marked a significant advancement in the field, achieving the latest
state-of-the-art result on the CoNLL-2014 benchmark with an F0.5 score of 71.12%.

2.5 Results analysis

System Type CoNLL-2014 BEA-2019 BEA-2019
test test dev

Single model
Marian Transformers EncDec, Seq-to-seq 56.25 - -
Junczys-Dowmunt et al., 2018
PIE, BERT Awasthi et al., 2019 Seq-to-tag 59.7 - -
Seq2Edits, Transformer-big Seq-to-tag 58.6 - 48
Stahlberg and Kumar, 2020
BERT-fuse GEC Kaneko et al., 2020 Seq-to-seq 62.6 65.6 -
GECToR Omelianchuk et al., 2020 Seq-to-tag 65.3 72.4 -
Seq-tag, Tranformer-big Stahlberg and Kumar, 2021 Seq-to-seq 66.6 70.4 -
gT5, T5-xxl Rothe et al., 2021 Seq-to-seq 68.75 75.88 -
Large Sequence Tagger, RoBERTa, Seq-to-tag - 73.21 55.8
Tarnavskyi, Chernodub, and Omelianchuk, 2022
EditSpans LLM (LLaMA) Kaneko and Okazaki, 2023 Decoder-only 68.2 - -
LLaMA-7B-GEC Zhang et al., 2023 Decoder-only 65.2 - 54.6
LLaMA-13B-GEC Zhang et al., 2023 Decoder-only 67 - 56.1
Zero-shot LLM
GPT-3 Loem et al., 2023 Decoder-only 57.06 57.41 -
Zero-shot ChatGPT Fang et al., 2023 Decoder-only 50.3 34.4 -
Zero-shot CoT ChatGPT Fang et al., 2023 Decoder-only 51.7 36.1 -
Ensemble methods
PIE, BERT Awasthi et al., 2019 Seq-to-tag 61.2 - -
Seq2Edits Stahlberg and Kumar, 2020 Seq-to-tag 62.7 70.5 -
Ensemble of BERT-fuse GEC Kaneko et al., 2020 Seq-to-tag 65.2 69.8 -
GECToR Omelianchuk et al., 2020 Seq-to-tag 66.5 73.7 -
Seq-tag, Tranformer-big Stahlberg and Kumar, 2021 Seq-to-tag 68.3 74.9 -
Large Sequence Tagger, Seq-to-tag - 76.05 -
Tarnavskyi, Chernodub, and Omelianchuk, 2022
Edit scorers
ECS Qorib, Na, and Ng, 2022 Scorer 69.51 79.9 63.09
GRECO Qorib and Ng, 2023 Scorer 71.12 80.84 63.4
Chat-LLaMA-2-13B-FT (Ours) Decoder-only 67.87 73.11 56.43

"-" - denotes to no data provided in the original paper.

TABLE 2.2: Comparison of the F0.5 scores for GEC systems on
CoNLL-2014, BEA-2019 benchmarks.

In the current discourse, we examine the recent advancements in state-of-the-
art systems for Grammatical Error Correction, particularly those developed within
the last few years, and delineate the innovative methodologies that have enhanced
their performance beyond preceding efforts. Table 2.2 consolidates the assessments
conducted on models using GEC benchmarks: BEA-2019 (Bryant et al., 2019) and
CoNLL-2014-test (Ng et al., 2014).

A significant observation from Table 2.2 is the prevalence of evolved sequence-
to-tag methods, notably PIE (Awasthi et al., 2019) and GECToR (Omelianchuk et
al., 2020). Omelianchuk et al., 2020 advanced this field by integrating a pre-trained
language model, such as BERT, into a sequence tagging framework. Enhancements
such as increasing the size of the pre-trained language model and introducing addi-
tional mechanisms for selecting final edits – either through edit-scoring or majority
voting – have been shown to augment baseline performance (Tarnavskyi, Chern-
odub, and Omelianchuk, 2022).
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Recent developments in Large Language Models have proven to be significant.
Zhang et al., 2023 have shown that fine-tuning LLMs with extensive in-domain data
significantly outperforms multi-task fine-tuning strategies, achieving results that are
on par with established baseline models on both the CoNLL-2014 and BEA-2019
benchmarks. On the other hand, research by Loem et al., 2023 and Fang et al., 2023
suggests that while zero-shot and few-shot approaches show strong error detection
capabilities with fluently corrected text, they underperform across most error types
and fall short of delivering high-quality outcomes in Grammatical Error Correction.

In addressing a different aspect of GEC, the GRECO approach by Qorib and
Ng, 2023 for GEC quality estimation not only provides more accurate estimates
but achieves state-of-the-art results, further contributing to the advancements in the
field.

Notably, most approaches have predominantly utilized small—to medium-sized
language models for specific tasks such as edit generation or scoring. However, the
application of Large Language Models for both edit generation and edit scoring in
ensembles in this domain remains underexplored. Our research will focus on apply-
ing LLMs for grammatical error correction, recognizing the potential for significant
advancements in this area.
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Chapter 3

Data review and evaluation

Data and the evaluation of model performance metrics serve as foundational com-
ponents for the majority of NLP tasks, including GEC. The literature review section
acknowledges that GEC can be considered as low-resource machine translation task
(Junczys-Dowmunt et al., 2018). Researchers showed that increasing dataset size
is critical for achieving state-of-the-art results. The acquisition of high-quality, an-
notated data presents a significant challenge. Therefore, we observe GEC datasets
in English, including both human-annotated and synthetic, that can be used in this
research.

Moreover, this section describes most widely recognized evaluation metrics in
GEC - the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012) and ERRANT (Bryant,
Felice, and Briscoe, 2017). It addresses the issue of metric reliability, especially con-
cerning their correlation with human judgments, and describes the challenges asso-
ciated with deriving definitive conclusions.

3.1 Datasets

Dataset Part # Sent. # Toks. Error types Domain
Lang-8 Train 1.03m 11.8m 28 Essays
NUCLE Train 57.1k 1.16m 28 Essays

CoNLL-2013 Dev/Test 1.4k 28.2k 28 Essays
CoNLL-2014 Test 1.3k 29.2k 28 Essays

FCE Train 28.3k 454k 71 Exams
Dev 2.2k 34.7k 71 Exams
Test 2.7k 41.9k 71 Exams

cLang-8 Train 2.37M 28.0M 58 Essays
Troy-1BW Train 1.2M 30.88M - General
Troy-Blogs Train 1.2M 21.49M - General

TABLE 3.1: Statistics of GEC datasets used in this work for training
and evaluation.

Lang-8. Corpus of Learner English, initially introduced by Mizumoto et al., 2012;
Tajiri, Komachi, and Matsumoto, 2012, represents a subset of the broader multilin-
gual Lang-8 Learner Corpus. This corpus aggregates texts from different domains
and proficiency levels. Despite the corpus being officially designated as the official
training dataset for BEA-2019 (Bryant et al., 2019) shared task and its status as one
of the largest corpora accessible to the public, the Lang-8 Corpus was annotated by
fellow users, as opposed to professional annotators, which impacts the consistency
and reliability of the data.

NUCLE. The National University of Singapore Corpus of Learner English (Dahlmeier,
Ng, and Wu, 2013), officially used as a training corpus in CoNLL-2013 and CoNLL-
2014 Ng et al., 2013; Ng et al., 2014 as well as BEA-2019 Bryant et al., 2019 shared
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tasks. It has been created from the essays authored by undergraduate students at
the National University of Singapore (NUS) who required support in English as a
second language (L2). Predominantly aligned with the C1 proficiency level of the
Common European Framework of Reference for Languages (CEFR), these essays
cover a broad spectrum of subjects such as technology, healthcare, and finance. Each
essay underwent correction by a singular annotator, who identified and categorized
every modification under a comprehensive framework comprising 28 distinct error
types.

The test subset for the CoNLL-2013 contains essays on topics of surveillance tech-
nology and population aging and CoNLL-2014 - genetic testing and social media.
Notably, the CoNLL-2014 test set (marked in research as CoNLL-2014-test) contains
18 annotated references collected by two independent annotators and Bryant and
Ng, 2015; Sakaguchi et al., 2016.

While the CoNLL-2013 dataset occasionally serves as a development set, the
CoNLL-2014 dataset remains among the most frequently used benchmark test sets
for GEC tasks. However, a notable limitation of the CoNLL-2014 test set is its lack
of diversity; it comprises essays exclusively penned by a relatively homogeneous
group of learners, focusing only on two distinct topics. This specificity could poten-
tially restrict the generalizability of findings derived from its use as a benchmark.

FCE. The First Certificate in English corpus Yannakoudakis, Briscoe, and Med-
lock, 2011 is a publicly available subset of the Cambridge Learner Corpus (CLC)
Nicholls, 1999 containing writings from international learners of English as a second
language (L2 learners). Each text submitted as a short essay, letter, or description
is scored and corrected by a singular annotator. Each edit in correction is classified
within 88 distinct error types, although only 71 unique error types are represented
within the FCE subset, which makes this corpus extremely useful for error detection
tasks Yuan et al., 2021. The FCE corpus was used as the training dataset of BEA-2019
and Helping Our Own (HOO) 2012 Dale, Anisimoff, and Narroway, 2012 shared
tasks.

The Write & Improve (W&I) and LOCNESS corpus Bryant et al., 2019, also
known as BEA-2019, contains essays authored by international learners across all
proficiency levels (A1-C2) and native British and American English undergraduate
students. This corpus was designated as the official dataset for training, develop-
ment (market in research as BEA-2019-dev), and testing within the context of the
BEA-2019 shared task Bryant et al., 2019. Its construction aimed to achieve a more
equitable distribution across proficiency levels—beginner, intermediate, advanced,
and native—than observed in other corpora, ensuring a roughly equal representa-
tion of sentences from each category. Essays within the training and development
sets were subject to correction by a single annotator. Conversely, essays within the
test set were reviewed by five annotators, yielding five sets of parallel reference an-
notations. Although edits were explicitly defined, they were not manually classified;
instead, error types were automatically assigned utilizing the ERRANT framework
Bryant, Felice, and Briscoe, 2017. The test set references are not publicly accessi-
ble to ensure equality of assessment of GEC systems, facilitating fair and consistent
comparisons across research efforts.

cLang-8 (Rothe et al., 2021) corpus is a large cleaned version of the Lang-8 Mizu-
moto et al., 2012 corpus. The original Lang-8 corpus contains user-annotated cor-
rections that frequently contain unnecessary paraphrasing and erroneous or incom-
plete corrections. Model-based scoring was used to select the best pairs of source
and corrected sentences.
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Troy-1BW and Troy-Blogs (Tarnavskyi, Chernodub, and Omelianchuk, 2022),
synthetic datasets produced from the One Billion Word Benchmark Chelba et al.,
2014 and Blog Authorship Corpus (Schler et al., 2006) with using model ensembles.

JFLEG - The Johns Hopkins Fluency-Extended GUG corpus (Napoles, Sakaguchi,
and Tetreault, 2017) consists of 1,500 sentences randomly sampled from essays by L2
learners. These sentences have been revised for fluency beyond the minimal neces-
sary grammatical corrections by crowdsourced annotators on Amazon Mechanical
Turk, with each sentence having four reference versions. We excluded this dataset
from our research due to its relatively small size, the inclusion of non-grammatical
corrections, and the fact that the corrections were not made by professionals.

3.2 Evaluation

Evaluating the performance of models is a crucial aspect of any machine learning
task, including Grammatical Error Correction. There are two main approaches to
evaluating GEC systems: reference-based and reference-less. This section outlines
the most commonly used reference-based evaluation metrics in the field. These in-
clude the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012) and ERRANT (Bryant,
Felice, and Briscoe, 2017), which are frequently cited in GEC research.

3.2.1 MaxMatch (M2) Scorer

Source A ten years old boy go school
Hypothesis A ten years old boy go market
Reference A ten years - old boy goes to school .
Edit label TP TP TP FN TP TP TP FN FP FN

TABLE 3.2: Example error labels for M2 metrics calculation.

The MaxMatch (M2) scorer, a primary evaluation tool in GEC research, uses Fβ-
score for system comparison based on hypothesis edits and human-annotated ref-
erence edits. This reference-based metric assesses (Table 3.2) True Positives (TPs),
False Positives (FPs), and False Negatives (FNs) to calculate Precision (P), Recall (R).
Research conducted by Grundkiewicz, Junczys-Dowmunt, and Gillian, 2015 and
Chollampatt and Ng, 2018 found that the F0.5 score, that weights precision twice
as much as recall, exhibits a higher correlation with human judgment compared to
other GEC metrics, establishing its relevance and reliability in assessing grammati-
cal correctness on the public shared tasks. A unique feature of the M2 scorer is its
use of Levenshtein alignment to dynamically explore various combinations of ed-
its, thereby maximizing the match between hypothesis and reference edits, which
addresses limitations seen in prior metrics.

P =
TP

TP + FP
R =

TP
TP + FN

Fβ = (1 + β2)
P · R

β2 · P + R

The method has several limitations. The first issue is that overlapping edits can
be unclear, which might cause even correct edits in the hypothesis to be counted as
errors if they aren’t presented in the same way in the references. To address this,
using multiple references can help find the best match. Another limitation is that the
method can’t evaluate systems based on the type of errors they can fix.
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3.2.2 ERRANT

The alternative to M2 scorer is ERRANT, which measures performance via an edit-
based F-score but extends its capabilities by categorizing edits into error types and
is considered as the primary metric in the BEA-2019 (Bryant et al., 2019) benchmark.
It employs a Damerau-Levenshtein alignment algorithm from Bard, 2006 to extract
and classify edits according to a rule-based framework. The framework can operate
on different levels like edit operations types (missing, unnecessary or replacement),
or error types. The advantage of the method is its ability to evaluate GEC systems
based on error types, offering insights into system performance on specific grammat-
ical issues. Although initially developed for English, ERRANT has been adapted for
other languages, showcasing its flexibility and applicability in a broader linguistic
context.

3.2.3 Discussion on Metric Reliability

Metric r ρ
ERRANT F0.5 0.919 0.887

M2 F0.5 0.860 0.849
GLEU 0.838 0.813

I-measure 0.819 0.839

TABLE 3.3: Pearson r and Spearman ρ correlation coefficients for GEC
metrics on FCE evaluation set, presented in Napoles, Nădejde, and

Tetreault, 2019 Table 8.

Beyond M2 and ERRANT, several other metrics have been developed that rely
on references or do not require them at all (Bryant et al., 2023), like I-measure or
GLUE. Each metric has its own advantages and disadvantages. Finding the "best"
metric that matches human judgments is still an open question (Napoles, Nădejde,
and Tetreault, 2019). However, Table 3.3 shows the correlation between GEC metrics
and human evaluations, helping us find the metric that best reflects human judg-
ment. The ERRANT F0.5 and M2 F0.5 metrics have the highest correlation and are
considered the primary metrics in this research. It’s important to note that while
human judgments are common and best benchmark GEC systems evaluating, they
are also subjective and should be approached with well-defined guidelines (Bryant
et al., 2023).

Considering this, there is no empirical evidence to favor one metric over another.
However, in practice, the most widely used benchmarks in grammatical error cor-
rection tasks are:

• CoNLL-2014 is evaluated with the M2 scorer;

• BEA-2019 is evaluated with ERRANT.

We primarily use both benchmarks due to historical practices, which helps en-
sure consistency when comparing our systems with the current state-of-the-art.
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Chapter 4

Experiments with Large Language
Models

Recent studies demonstrate that Large Language Models, such as ChatGPT, LLaMA
(Touvron et al., 2023), exhibit remarkable proficiency in grammar correction (Fang
et al., 2023; Zhang et al., 2023). A notable example is the study by Loem et al., 2023,
which explored the capabilities of the proprietary LLM GPT-3 in the GEC task with-
out fine-tuning. Another study by Rothe et al., 2021 highlighted the effectiveness
of fine-tuning LLMs, specifically the mT5 model with up to 11 billion parameters,
in establishing new baselines for GEC and defines yet simple configuration of GEC
systems.

We investigated the capabilities of LLMs in GEC through various settings, iden-
tifying three main approaches (Brown et al., 2020):

• Supervised Fine-Tuning (SFT) updates the weights of a pre-trained model through
training on a task-specific supervised dataset, typically ranging from thou-
sands to hundreds of thousands of labeled examples. The primary advantage
is improved performance across many benchmarks, while the main disadvan-
tages include the need for extensive datasets, potential overfitting, strong de-
pendency on data quality, and the high costs associated with fine-tuning.

• Zero-Shot (ZS) refers to the method in which the model is prompted to solve a
task at inference time without weight adjustments. This approach maximizes
convenience and potential robustness, minimizing biases present in training
datasets. However, it requires accurate task formulation, which can be chal-
lenging without prior examples. In GEC, a precise definition is essential, as
errors can be corrected through direct fixes or paraphrasing. Despite its limi-
tations, zero-shot resembles how humans approach unfamiliar tasks, such as
translation, based only on instructions.

• Few-Shot (FS) resembles zero-shot but introduces several examples during the
task setup. This method enhances output quality through contextual condi-
tioning, even with vague task definitions. However, it still underperforms
compared to state-of-the-art fine-tuned models and requires task-specific data.

This study concentrates on evaluating the zero-shot and supervised fine-tuning
approaches in two modes, full and parameter-efficient tuning settings, to assess their
effectiveness and find the trade-off between model quality and the time required for
training. We exclude the few-shot setting due to its heavy reliance on data quality,
and it will be considered in separate studies.

We chose three open-source Large Language Models that have been trained across
tasks involving language understanding, reasoning, and safety. These include Mis-
tral v0.2 7B (Instruct-Mistral-7B(13B)-ZS, Jiang et al., 2023), Gemma of size 2B and
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7B (Instruct-Gemma-7B(2B)-ZS, Team et al., 2024), and LLaMA2 of 7B and 13B sizes
(Chat-LLaMA-2-7B(13B)-ZS, Touvron et al., 2023). These models were selected be-
cause they demonstrate comparable performance within similar sizes (Team et al.,
2024) on question-answering and reasoning tasks.

4.1 Zero-shot prompting

Recent studies Coyne and Sakaguchi, 2023; Fang et al., 2023; Loem et al., 2023 have
explored the effectiveness of prompt-based methods in GEC benchmarks. These
studies indicate that hard prompt tuning significantly enhances GPT-3’s performance
in both zero-shot and few-shot settings, with consistency improving as the model is
exposed to more examples. Tailoring prompts to include specifics like the language
proficiency levels of L2 learners and the types of errors to be corrected can mitigate
the common issue of LLMs over-correcting, thereby increasing recall but reducing
precision (Fang et al., 2023). To our knowledge, existing research has investigated
the capabilities of proprietary models only in the zero-shot setting, and there has
been no exploration of open-source Large Language Models like LLaMA (Touvron
et al., 2023), Gemma (Team et al., 2024), or Mistral (Jiang et al., 2023). This section
aims to assess the capabilities of these instruction-tuned models on the GEC task
using various prompts.

In the zero-shot setting, we evaluated the ability of open-source LLMs to perform
GEC tasks without prior examples. We utilized model-specific templates and task
instruction prompts as follows:

You are helpful AI assistant.
# Task
{instruction}

# Output format
Answer with corrected text only. If there are no errors,
respond with the original text.

# Prediction
Text: {text}
Corrected text:
[____]

We use the task preamble (system prompt) to condition model behavior as a writ-
ing assistant and enable the generation of output in a convenient for post-processing
format.

We vary the task formulation to find its influence on final metrics (Table 4.1).
We use the generation parameters during inference to temperature = 10−3 and

beamsize = 1 to eliminate stochastic generation and ensure the reproducibility of
our experiments. We performed response parsing to extract corrected text from the
model’s output or retain the input text if the model classifies it as error-free and
requiring no correction.

Table 4.2 presents an ablation study evaluating open-source LLMs on the selected
GEC benchmarks: CoNLL-2014-test and BEA-2019-dev.

Model performance depends on how tasks are formulated, which aligns with
findings from Loem et al., 2023 that LLMs often exhibit over-correction, leading to
high recall but lower precision, as seen with prompt #2. Directing the model to
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Prompt ID Prompt text
#1 Fix grammatical errors for the following text . Keep only one variant .
#2 Rewrite this text to make it grammatically correct .
#3 Rewrite the text to fix any grammatical errors .
#4 Correct the grammar mistakes in the following text .
#5 Rewrite the text . The output text should not contain any grammatical or spelling mistakes .
#6 Fix all grammatical errors , do not rephrase .
#7 Fix only grammatical errors precisely.
#8 Precisely fix grammatical errors :
#9 Revise the following sentence with proper grammar
#10 Correct grammatical errors in this sentence
#11 Revise grammatical mistakes in the following text.
#12 Revise mistakes in the following text written by a beginner learner with a lot of mistakes .
#13 Revise mistakes in the following text written by a advanced learner with a few of mistakes .

TABLE 4.1: GEC Task formulation for Zero-Shot setting.

CoNLL-2014-test BEA-2019-dev
Prompt ID Precision Recall F0.5 Precision Recall F0.5

1 50.85 50.03 50.68 32.57 41.08 33.98
2 42.17 54.76 44.20 22.40 40.99 24.63
3 46.81 52.03 47.77 28.33 41.56 30.26
4 50.94 50.54 50.86 32.38 41.36 33.85
5 44.39 51.76 45.69 25.68 40.34 27.70
6 53.62 48.39 52.61 35.64 40.22 36.47
7 51.4 50.27 51.17 33.01 40.88 34.33
8 50.03 50.20 50.00 31.78 41.62 33.36
9 45.16 52.52 46.46 26.48 41.90 28.58

10 51.62 49.77 51.24 32.94 40.89 34.27
11 51.17 50.80 51.10 31.82 41.43 33.37
12 50.44 51.14 50.58 30.76 40.50 32.32
13 51.19 50.71 51.10 32.06 40.28 33.34

TABLE 4.2: Comparison of the zero-shot setting for Chat-LLaMA2-
7B-ZS on CoNLL-2014-test and BEA-2019-dev.

avoid rephrasing the input sentence (prompt #6) or to focus exclusively on correct-
ing grammatical errors (comparison of prompt #6 and prompt #7) has improved
precision by 2 percentage points across both benchmarks.

Moreover, adding specific details to the task formulation, such as the learner’s
proficiency level (prompt #12 and #13) or the extent of required edits, enhances the
precision (prompt #7 and #8) of the outputs (Table 4.2 and A.2). This approach was
used for GPT-3 models in Loem et al., 2023 and is applicable for open-source foun-
dational LLMs like Chat-LLaMA-2-7B-ZS.

To substantiate these observations, we use prompt #6 with selected open-source
LLMs, including models of different sizes like Chat-LLaMA-2-13B-ZS and other ar-
chitectures such as Instruct-Mistral-7B-ZS and Instruct-Gemma-2B-ZS, to evaluate
their performance under comparable conditions.

CoNLL-2014-test BEA-2019-dev
System Prompt # Precision Recall F0.5 Precision Recall F0.5
Chat-LLaMA-2-7B-ZS 6 53.62 48.39 52.61 35.64 40.22 36.47
Chat-LLaMA-2-13B-ZS 6 51.12 54.47 52.75 32.47 44.14 34.28
Instruct-Mistral-7B-ZS 6 40.44 56.02 42.83 21.29 31.66 22.78
Instruct-Mistral-7B-ZS 7 43.21 53.33 44.9 21.94 31.89 23.4
Instruct-Gemma-2B-ZS 6 35.39 45.55 37.04 15.35 29.65 16.99
Instruct-Gemma-7B-ZS 6 50.3 53.32 50.87 31.44 42.92 33.22

TABLE 4.3: Comparison of the zero-shot setting for LLaMA2, Mistral
and Gemma LLMs on CoNLL-2014-test, BEA-2019-dev.
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The comparative performance of various open-source LLMs, as shown in Table
4.3, illustrates distinct outcomes based on model size and architecture. For instance,
while the larger Chat-LLaMA-2-13B-ZS model shows an improvement in recall, it
maintains comparable precision with its 7B version, indicating that increased model
size can enhance recall without a significant drop in precision.

The Instruct-Mistral models, particularly the 7B version, exhibit superior recall
on CoNLL-2014-test benchmark, while BEA-2019 became a challenging task, align-
ing with their design goal to support complex writing tasks (Jiang et al., 2023) and
content generation. At the same time, the smaller Gemma 2B model demonstrates
limitations in generating high-quality grammatical corrections, likely due to its smaller
size and reduced capacity relative to larger models.

In conclusion, our findings prove the critical role of precise task formulation and
model-specific strategies in optimizing LLM performance for grammatical error cor-
rection. This led to a change in up to 11.8% of F0.5 on CoNLL-2014-test and BEA-
2019-dev benchmarks (Table A.2). Specific prompts have proven effective across
various models, suggesting a robust approach to improving LLM accuracy in real-
world applications.

4.2 LLM supervised fine-tuning

4.2.1 Full weights fine-tuning

LLM finetuning shows exceptional performance on the GEC task (Rothe et al., 2021)
and is a required stage to achieve SOTA results (Zhang et al., 2023). In this section,
we explored open-source LLM fine-tuning settings to find the best configuration that
minimizes the number of fine-tuning stages and defines the training data, dataset
size, instruction tuning, and other parameters that may influence the model quality.

We fine-tune the official version of LLaMA2 with the Huggingface Transformers1

toolkit to conduct 1000–1200 updates with 250 warm-up steps, a batch size of 8, and
a learning rate of 10−5. During training, we optimize LLM to output the reference
response via cross-entropy loss on the next token prediction task. Considering the
time and computational resources, we perform parameter-efficient fine-tuning and
full-model fine-tuning to show the trade-off between the training costs and the result
in model quality. Specifically, we mainly utilize the low-rank adaptation (LoRA) Hu
et al., 2021 technique for computational effectiveness in some of our experiments.
We also compare LoRA with full model fine-tuning. All experiments are carried out
on 4 Nvidia A10G 24GB GPUs.

Dataset combination

In the following experiments, we fine-tune the LLaMA2 model on three histori-
cally most popular datasets we defined in the previous chapter: NUCLE, W&I, and
cLang-8. We use several setups to identify the best dataset in single dataset training
and also combine datasets in different proportions.

The training results on the joined dataset can be seen in Table 4.4.
Results from the ablation study of the best dataset combination search for fine-

tuning LLM show the significant change in F0.5 scores for a single dataset and the
combination. In single datasets experiments, the model trained on W&I outper-
forms the one trained on NUCLE on 6 F0.5 points, making this dataset highly valu-
able in our experiments. Using only true positives, samples that contain corrections

1https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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Model Datasets CoNLL-2014-test BEA-2019-dev
NUCLE W&I cLang-8 Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT - 34.3k - 68.66 54.27 65.20 57.90 48.63 55.77
LLaMA-2-7B-FT - - 2.3M 67.25 50.44 63.05 57.99 42.11 53.93
LLaMA-2-7B-FT 57.1k 34.3k - 72.45 46.98 65.37 58.00 45.82 55.07

Chat-LLaMA-2-7B-FT 57.1k - - 70.39 36.31 59.42 50.72 24.51 41.79
Chat-LLaMA-2-7B-FT - 34.3k - 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMA-2-7B-FT - 34.3k 100k 68.94 52.78 64.96 57.94 45.53 54.94
Chat-LLaMA-2-7B-FT 57.1k 34.3k 48k 75.40 46.84 67.20 58.26 46.03 55.32
Chat-LLaMA-2-7B-FT 8k, TP 8k, TP 24k, TP 68.01 52.84 64.32 53.94 46.03 52.15

TABLE 4.4: A search of the best training dataset combination for
fine-tuning Large Language Models. For fine-tuned models, differ-
ent training dataset combinations were evaluated: Here, "TP" ("true
positives") denotes when only the dataset’s samples containing cor-

rections are used.

significantly improve recall but force the model to overcorrect, reflecting a drop in
precision. The best model in all sets of experiments with data combination was fine-
tuned on all used datasets. We vary the combination of several datasets and use only
a random subsample of the cLang-8 dataset in our experiments to ensure the model
also uses all data from other datasets. Still, we don’t find any single-model system
approach dominant across all benchmarks. In our next experiments, we take only
the W&I dataset as training to avoid extra complexity with mixing the dataset, as it
does not significantly improve quality across both benchmarks.

Model size

Next, we investigate the influence of using instruction and no-instruction tuning
setups for full weights fine-tuning. Not surprisingly, our results (Table 4.5) indicate
that instructions work better for "Chat" versions of models adapted to chatbot use-
case.

At the same time, we varied the model size, and the experiments showed that
the bigger model performed better on both benchmarks.

Model Instructions CoNLL-2014-test BEA-2019-dev
are used Precision Recall F0.5 Precision Recall F0.5

LLaMA-2-7B-FT No 69.33 50.26 64.44 59.45 46.29 56.25
LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77

Chat-LLaMA-2-7B-FT No 67.53 53.59 64.19 58.00 47.37 55.51
Chat-LLaMA-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50

LLaMA-2-7B-FT Yes 68.66 54.27 65.20 57.9 48.63 55.77
LLaMA-2-13B-FT Yes 71.49 55.67 67.65 60.28 49.26 57.69

Chat-LLaMA-2-7B-FT Yes 70.45 52.59 65.97 59.19 47.81 56.50
Chat-LLaMA-2-13B-FT Yes 72.35 54.48 67.90 59.04 48.73 56.64

TABLE 4.5: Ablation study on instructions’ usage in fine-tuned on
W&I dataset Large Language Models.

The model trained using a full weights fine-tuning approach demonstrates per-
formance comparable to other state-of-the-art GEC systems, as shown in (Table 2.2),
while utilizing significantly less training data—34k from the W&I train set compared
to 800k for gT5 (Rothe et al., 2021). However, this approach is computationally ex-
pensive (Table A.6). In the following section, we will explore parameter-efficient
tuning as an alternative method that reduces computation time by limiting the num-
ber of trainable parameters. This approach aims to provide a balance between model
quality and the number of trained parameters.
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4.2.2 Parameter efficient fine-tuning

Transformers have significantly enhanced tracking performance but are resource-
intensive, particularly in Large Language Models. High-performance Transformer
models often require expensive computational resources, including multiple top-
tier data-center GPUs and time to perform training. To mitigate these demands,
the Parameter-Efficient Fine-Tuning (PEFT) approach was developed for Large Lan-
guage Models, which face prohibitive costs with full fine-tuning (Ding et al., 2022).
PEFT techniques, such as fine-tuning a small subset of parameters while keeping the
rest unchanged, drastically cut computational and storage expenses.

In this section, we explore the use of PEFT in training LLMs for the Grammatical
Error Correction task. Among the various PEFT methodologies, we focus on Low-
Rank Adaptation (LoRA) (Hu et al., 2021). LoRA enhances parameter efficiency
by integrating trainable rank decomposition matrices into specific dense layers of
the model, maintaining performance comparably with other PEFT strategies like
adapters (Houlsby et al., 2019) and prompt tuning (Li and Liang, 2021) without in-
creasing inference time. Below, we detail the parameter update process derived from
this fine-tuning approach.

W f inetuned = Wpretrained + ∆W = Wpretrained + A · B,

where A and B are the rank decomposition matrices and their product approxi-
mates ∆W - the trainable parameters.

Under Transformer architecture, certain weight matrices are linked with the self-
attention mechanism, namely query Wq, key Wk, value Wv, and outputs Wo weight
matrices, besides two more in the Multi-Layer Perceptron (MLP) module.

Following the recommendation of the original LoRA paper (Hu et al., 2021), we
conducted experiments by optimizing the Wq and Wv matrices with a rank of 8 and
alpha of 16. We also enabled fine-tuning of all available parameters Wq, Wk, Wv, Wo
for the LLaMA2, Gemini, and Mistral open-source LLMs. For model conditioning,
we used a model-specific template and system prompt as defined in the Zero-shot
prompting section, employing prompt #6 (see Table 4.1). We found that the absence
of a system prompt led to a significant drop in generation quality for all models
adapted for instruction settings. The training was performed using the W&I dataset,
with settings including 2000 updates, 250 warm-up steps, a batch size of 8, and a
learning rate of 10−5, assuming models of the same size have similar training con-
figurations.

Model Adapters CoNLL-2014-test BEA-2019-dev
are used Precision Recall F0.5 Precision Recall F0.5

Chat-LLaMA-2-7B-FT Wq, Wv 59.93 45.29 56.29 48.88 32.58 44.44
Chat-LLaMA-2-7B-FT Wq, Wk , Wv, Wo 63.42 50.83 60.42 53.49 44.2 51.33
Chat-Gemma-7B-FT Wq, Wk , Wv, Wo 63.87 52.59 61.24 51.68 44.34 50.02
Chat-Mistral-7B-FT Wq, Wk , Wv, Wo 60.83 53.59 61.48 53.58 46.27 51.94

Chat-LLaMA-2-7B-FT Full 70.45 52.59 65.97 59.19 47.81 56.50

TABLE 4.6: Comparing the impact of fine-tuning LoRA adapters on
model quality.

The results show that increasing trainable parameters improve the model per-
formance significantly (from 4 to 7 points) for Chat-LLaMA-2-7B-FT models. At the
same time, full model fine-tuning significantly outperforms the LoRA settings by
5 percentage points on both CoNLL-2014-test and BEA-2019-dev benchmarks, sug-
gesting that this optimization may not be worthwhile.
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4.3 Direct preference optimization
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FIGURE 4.1: Reinforcement learning from Human Feedback on GEC.

In the realm of fast Large Language Model development, aligning models with
human preferences and ethical standards is crucial for creating practical, control-
lable, and socially accepted writing assistants (Ouyang et al., 2022). Reinforcement
Learning from Human Feedback (RLHF) is a method developed to enhance LLM
performance by integrating human feedback (Touvron et al., 2023; Team et al., 2024).
The RLHF process involves three main steps: (1) supervised fine-tuning, (2) reward
modeling, and (3) RL fine-tuning, using datasets DSFT for initial supervised training
(1) and preference dataset D for refining the model πθ based on human feedback.

RL fine-tuning requires a reward model rΦ, which learns from the preference
dataset D. The objective is to maximize expected rewards while minimizing de-
viations from a reference model πre f (the model obtained on SFT stage) before RL
fine-tuning, using policy gradient methods such as proximal policy optimization
(Schulman et al., 2017). The optimization objective is defined as follows (Rafailov
et al., 2023):

max
θ

Ex∼D

[
Ey∼πθ(·|x)

[
rϕ(x, y)

]
− βDKL [πθ(·|x)∥πref(·|x))]

]
(4.1)

where DKL is Kullback–Leibler divergence of a distribution p from another dis-
tribution q, defined as DKL(p, q) = Ex∼p

[
log p(x)

q(x)

]
Here, β is a hyper-parameter that controls the penalty for the deviations from the

reference model πre f .
The prior RLHF methods require a large diverse preference dataset and trained

reward model to perform fine-tuning, making a problem computationally expen-
sive and unstable in training (Rafailov et al., 2023). Direct Preference Optimization
(DPO) joins the reward modeling and RL fine-tuning into a single phase, focusing
on aligning the model πθ directly with preference D data without needing a separate
reward model (Rafailov et al., 2023). User preferences are directly incorporated into
the optimization process, making it much easier to use and understand.

By eliminating the need for a separate reward model, DPO significantly reduces
the computational cost of fine-tuning. With DPO, users have a more direct influence
on the LLM’s behavior. They can directly express their preferences, guiding the
model towards specific goals and ensuring it aligns with their expectations. Due to
its simpler structure and direct optimization approach, DPO often achieves desired
results faster than RLHF (Rafailov et al., 2023).

The DPO objective function aims to maximize the ratio of probabilities for the
chosen responses, optimizing the LM to imitate human preferences:

LDPO(θ) = E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc|x)
πref(yc|x)

− β log
πθ(yr|x)

πref(yr|x)

)]
(4.2)
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where β is a hyper-parameter and has a similar role as in Eq. 4.1 to control devia-
tion of πθ from reference πre f model, yc, yr are chosen and rejected generated text for
x input of preference dataset. DPO simplifies the optimization process by not requir-
ing the generation of responses y from πθ during training and scoring them with a
reward model or incorporating human feedback, unlike the standard RL fine-tuning
of Eq. 4.1.

4.3.1 Reformulating GEC as Preference Tuning task

Creating a preference dataset for RLHF involves selecting pairs of model outputs,
where "chosen" outputs contain preferred corrections for the GEC task, and "re-
jected" outputs contain incorrect corrections. Gathering this dataset manually can
be labor-intensive. To simplify this process, we propose using preference tuning,
where human feedback is replaced by automatic metrics to evaluate and select pairs
of chosen and rejected samples based on their grammatical error correction quality.
In this work, we use the GRECO Quality Estimation model (Qorib and Ng, 2023)
and the Scribendi reference-less metric (Islam and Magnani, 2021) as a scoring ap-
proach for model outputs. These metrics help identify the most accurate corrections
and aim to achieve state-of-the-art results on GEC benchmarks.

We hypothesized that the language model, fine-tuned in the previous stage, would
perform the best error correction using a greedy generation strategy. However, the
experiments (Table A.3) show that the model can produce higher-quality outputs in
sampling mode, improving scores on CoNLL-2014-test benchmark, highlighting the
value of this feature. In these experiments, we use a single model to generate several
hypotheses in sampling mode, allowing us to select the chosen and rejected ones us-
ing a scoring approach and align the model to generate the preferred output. With
this in mind, let’s discuss these two scoring approaches.

4.3.2 GRECO

The GRECO model (Qorib and Ng, 2023) is the quality estimation model for GEC
capable of identifying which words are correct or incorrect and also recognizing
where additional words or phrases need to be inserted. It employs a BERT-like ar-
chitecture to perform sequence classification considering concatenated source text
and corrected hypothesis.

The quality score from the GRECO model is independent of the system gener-
ating the hypothesis and is based only on the text itself. The authors incorporated
additional data in a system combination approach to achieve state-of-the-art results
on the GEC task. This includes considering the number of systems that suggest
a particular edit and the identities of these systems to generate the most accurate
combined hypothesis of grammatically correct text. In our research, we utilize these
scores to rank the corrections, identifying the chosen with high score and the rejected
with low score samples of the preference dataset.

4.3.3 Scribendi score

The Scribendi Score, introduced in Islam and Magnani, 2021, evaluates the gram-
matical correctness of text using language models as a probabilistic method that
calculates the word probability distribution in sequences within a corpus. These
models are typically trained to minimize cross-entropy loss, effectively reducing
perplexity, which has recently been used as a measure of writing quality (Islam and
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Magnani, 2021). However, perplexity is an unbounded metric; thus, the Scribendi
Score converts it into an absolute score (1=positive, -1=negative, 0=no change). This
conversion uses a combination of language model perplexity (Radford et al., 2019)
and sorted token/Levenshtein distance ratios to ensure that the corrected sentence
is similar to the input and is more probable than the original.

Although these scores intuitively correlate with sentence grammatical correct-
ness, they are not the most robust method for evaluating GEC systems, as the orig-
inal approach used a pre-trained GPT-2 model without specific task conditioning.
In this study, we believe this metric could be valuable for ranking hypotheses and
creating a preference dataset for DPO.

4.3.4 Experiment results
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FIGURE 4.2: The dependency of F0.5 score on DPO hyper-parameter
β for fine-tuned Chat-LLaMA2-7B-FT model with DPO approach on

CoNLL-2014-test and BEA-2019-dev benchmarks.

In this experiment, we use the Chat-LLaMA-2-7B-FT model as both the reference
model πref and the initial model for fine-tuning with DPO. We fine-tune the model
using the PERF LoRA setting, updating Wq, Wk, Wv, Wo, Wgate, Wup weights matri-
ces, allowing us to fine-tune as much as possible weights. We used learning rate
10−5, batch size of 2 with gradient accumulation 8. The final GEC quality measured
on BEA-2019-dev and CoNLL-2014-test benchmarks for fine-tuned model in non-
sampling mode with temperature = 10−3 and beamsize = 1. We sourced sentences
from the One Billion Word Benchmark corpus (Chelba et al., 2014) that was also
used for Troy-1BW GEC dataset (Tarnavskyi, Chernodub, and Omelianchuk, 2022)
and used a sampling strategy to generate 5 responses with grammatical corrections
for each of the 20,000 sentences. Each response was evaluated by a scoring model to
select pairs with the highest and lowest scores considered as chosen and rejected.

We adjusted the β hyper-parameter to control the penalty for deviations of the
πθ model from the reference model πref. Analysis of the F0.5 score dependency
on β (Figure 4.2) shows that the GRECO Quality Estimation approach for creat-
ing a preference dataset outperforms the Scribendi score across the CoNLL-2014-
test and BEA-2019-dev benchmarks. This advantage likely stems from the model
hyper-parameters being specifically adapted to the open subsets CoNLL-2014-test
and BEA-2019-dev, thus aligning more closely with the benchmarks’ preferred ed-
its. However, a higher β value, which penalizes the model for deviations from the
reference model, unexpectedly resulted in lower scores.
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Experiment Training CoNLL-2014-test BEA-2019-dev
steps Precision Recall F0.5 Precision Recall F0.5

All data 400 68.06 48.51 62.98 57.23 46.19 54.62
All data 800 67.92 49.26 63.14 57.21 46.86 54.79

Only TPs 400 67.73 47.87 62.54 57.65 46.82 55.1
Only TPs 800 68.29 49.14 63.35 57.22 46.8 54.78
Reference - 68.42 46.24 62.43 57.35 45.93 54.63

TABLE 4.7: Compare DPO of Chat-LLaMA-2-7B-FT on preference
data with sources from One Billion Word Benchmark corpus with-
out filtering (all data) and on only pair with different chosen/rejected

sentences.

The application of DPO for the GEC task yielded mixed results, showing a marginal
increase of only 0.2 percentage points in the F0.5 score on the BEA-2019-dev, but a de-
crease in performance on the CoNLL-2014-test benchmarks when β = 1. Nonethe-
less, the metrics generally improved with increasing the number of training steps on
both benchmarks (Table 4.7).

In our subsequent experiments (Table 4.7), we employed a preference dataset of
100,000 samples generated using the GRECO method from the One Billion Word
Benchmark corpus. This dataset was organized into two configurations: one that
included all data, resulting in 26% of the pairs (chosen/rejected) being identical, and
a second, named "only TPs," which exclusively featured distinct chosen and rejected
examples in each sample. Our results indicated that increasing the dataset size and
using only distinct chosen and rejected pairs resulted in an improvement of 0.9% on
the CoNLL-2014-test and 0.16% on the BEA-2019-dev. While these enhancements
are not substantial, they indicate potential directions for further research.

We hypothesize that the limited improvement observed is due to the nature of
the source data, which shares journalistic style and may not accurately reflect the
error distribution found in benchmarks. Consequently, this limits our ability to
provide a preference signal needed to improve model performance on the selected
benchmarks. We employed the BEA-2019-train set to sample inputs using the Chat-
LLaMA-2-7B-FT model to address this.

Furthermore, we suspect that the model’s performance could not be significantly
enhanced due to a bias introduced by our greedy chosen/rejected sampling strategy.
In this strategy, the model generates samples in a sampling mode, making it highly
likely that the rejected samples could never be produced by the model in a non-
sampling generation mode. To mitigate this bias, we introduced a new dataset that
includes the top-1 chosen and a randomly selected rejected sample from the remain-
ing samples, aiming to diversify the preference data (Random rejected selection in
Table 4.8).

Additionally, to improve the model’s precision, we aimed to maintain the posi-
tive signal present in the original GEC dataset, W&I train set, and use all true neg-
atives as chosen samples in the preference dataset as well as randomly selected re-
jected samples (Random rejected selection with TNs in Table 4.8).

From Table 4.8, the results demonstrate the overall positive impact of model
alignment with DPO on the preference data sampled from W&I train set with ran-
domly selected rejected samples, increasing the F0.5 scores on 0.3% and setting the
absolute scores for CoNLL-2014-test to 66.05% and BEA-2019-dev to 56.54%. The
increasing true negatives do not give us the expected precision improvement for
CoNLL-2014-test.
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Experiment CoNLL-2014-test BEA-2019-dev
Precision Recall F0.5 Precision Recall F0.5

Greedy chosen/rejected selection 70.15 53.39 66.01 58.54 47.53 55.95
Random rejected selection 70.63 52.48 66.05 59.63 46.71 56.51

Random rejected selection with TNs 70.48 51.95 65.78 59.83 46.35 56.54
Reference 70.28 52.12 65.71 59.43 46.23 56.22

TABLE 4.8: Compare DPO of Chat-LLaMA-2-7B-FT on preference
data without filtering (all data) and on only pair with different posi-

tives/negatives (only TPs).

4.4 Conclusion

In this chapter, we explored the use of open-source Large Language Models in zero-
shot and supervised fine-tuning settings for the Grammatical Error Correction task.
We demonstrated that the correction quality of a model depends on its size and
can be controlled with specific task formulations to perform precise corrections with
minimal edits. Our findings show that the Instruct-Mistral-7B-ZS and Instruct-Gemma-
7B-ZS models outperform the Chat-LLaMA-2-7B-ZS model in terms of recall, show-
casing their ability to paraphrase and address the GEC task. However, improve-
ments in precision and the F0.5 score remained challenging due to complexities in
defining precise task formulations, establishing Chat-LLaMA-2-7B-ZS as the pre-
ferred choice for this task.

We established that supervised fine-tuning is necessary to develop a model that
can compete with other open-source Grammatical Error Correction systems in a
single-model setup. Utilizing a high-quality dataset such as W&I, we enhanced
the model’s error correction capabilities, achieving a performance that surpassed
LLaMA-2-7B models trained on NUCLE and cLang-8 by 2 percentage points of F0.5
metric. The best-performing model was trained using a combination of all selected
open-source datasets. However, we observed that no single-model approach consis-
tently dominated across all benchmarks. Our experiments demonstrate the benefits
of employing larger models and applying instruction-following tuning to improve
GEC performance.

Although the fine-tuning method shows high-quality results, it is notably com-
putationally intensive, requiring 30 times more time to complete a single training
iteration. Consequently, we investigated the parameter-efficient tuning method,
Low-Rank Adaptation (LoRA), as a less resource-intensive alternative to full fine-
tuning. Our results showed that full model fine-tuning substantially outperformed
the LoRA settings by 5 percentage points on both the CoNLL-2014-test and BEA-
2019-dev benchmarks, indicating that the trade-off between extensive optimization
and computational efficiency may not always be justified.

Finally, our limited set of experiments with model alignment through Direct
Preference Optimization on preferred outputs selected by scoring metrics showed
a modest improvement in the F0.5 score by 0.3%, indicating a further path for im-
provement for future work.
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Chapter 5

Conclusions

5.1 Contribution

This thesis has explored the use of Large Language Models in the domain of Gram-
matical Error Correction, employing various approaches including zero-shot and su-
pervised fine-tuning to improve the correction accuracy. Our research has provided
substantial insights into several key areas:

1. Our investigations confirm that LLMs like Chat-LLaMA, Gemini, and Mistral
are highly capable in GEC tasks. The zero-shot approach has shown promising
results, highlighting the potential of LLMs to adapt to GEC tasks without ex-
tensive training. However, in terms of overall accuracy, zero-shot models still
lag behind those that are fully fine-tuned, achieving 52.61% and 36.47% com-
pared to 67.2% and 55.32% on the CoNLL-2014-test and BEA-2019-dev bench-
marks respectively for Chat-LLaMA-7B-ZS.

2. We demonstrated that the formulation of tasks significantly impacts LLM per-
formance. Adjusting prompts to include instructive elements can control the
models’ precision by up to 11%. Notably, models specifically designed to fol-
low instructions, such as Instruct-Mistral-7B-ZS and Instruct-Gemma-7B-ZS,
outperformed Chat-LLaMA-7B-ZS in terms of recall by 7%. These models
show strong paraphrasing capabilities essential for addressing GEC, though
improving precision and the F0.5 score remains a challenge due to the com-
plexity of defining precise task formulations.

3. Our study compared full model weights fine-tuning and Parameter-Efficient
Fine-Tuning strategies like Low-Rank Adaptation. LoRA fine-tuning offers a
viable way to enhance model performance to 60.42% and 51.33% on CoNLL-
2014-test and BEA-2019-dev benchmarks. However, increasing the fine-tuned
parameter number is required to achieve the highest quality.

4. In full supervised fine-tuning settings, instruction tuning of larger models sub-
stantially improved the performance of the GEC system based on Chat-LLaMA-
2-13B-FT, achieving 67.9% and 56.64% on the respective benchmarks. This
performance is comparable to other state-of-the-art systems in a single-model
setup, while using considerably less training data. Using a high-quality dataset
such as W&I proved particularly effective, resulting in a model that outper-
formed LLaMA-2-7B models trained on NUCLE and cLang-8 by 2 percentage
points F0.5 metric. The best results were achieved using a combination of all se-
lected open-source datasets, although no single-model approach consistently
dominated across all benchmarks.



5.2. Limitations 25

5. We investigated the Preference Tuning approach, specifically Direct Preference
Optimization to align model outputs with automatic metrics for GEC tasks.
This involved the use of the GRECO model and Scribendi score for preference
data generation. We found that incorporating distinct pairs of chosen/rejected
sentences from the W&I train set and selecting randomly rejected text led to a
modest improvement in the performance of the reference Chat-LLaMA-2-7B-
FT model, achieving 66.05% and 56.51% of F0.5 metric on the CoNLL-2014-test
and BEA-2019 dev benchmarks.

6. Our code and trained models are publicly available 1.

Finally, this thesis has significantly enhanced our understanding of LLMs’ ca-
pabilities and optimization strategies in GEC tasks, laying a foundation for future
research. The results underlines a strong potential for these models to transform
writing assistance tools, making them more adaptable, efficient, and aligned with
user expectations. Moving forward, continuing to refine these models and strategies
will be essential in achieving the ultimate goal of developing highly accurate and
user-friendly automated writing assistants.

5.2 Limitations

In this study, we focus only on the English language, potentially limiting the gen-
eralization of our findings to other languages. Additionally, we rely on evaluations
using only two benchmarks and automatic metrics without incorporating human
feedback to assess model quality. This restricts our ability to evaluate certain lan-
guage nuances that might be better judged by humans.

We investigate only 2B, 7B, and 13B LLMs because these models do not have
specific hardware requirements for both training and serving, making them suitable
for production with reasonable costs.

Our study focuses solely on three foundational large language models: LLaMA-
2, Mistral, and Gemma. We assume that the selected prompts and hyper-parameters
originally adopted for the LLaMA-2 model are also applicable to the other models.

Our current work explores preference tuning with an artificial scoring function,
allowing us to test the hypothesis of model alignment on the GEC task. This ap-
proach introduces bias to CoNLL-2014 and BEA-2019 benchmarks and does not in-
corporate human feedback, which is important in certain practical applications.

We investigate the models’ ability to perform GEC tasks only in non-sampling
mode for both supervised and preference fine-tuning settings. The quality of correc-
tions generated in sampling mode was left out of the scope of this research and will
be a topic for future work.

5.3 Future work

1. Develop and test automatic prompt optimization techniques to adapt models
for GEC tasks, potentially enhancing the model’s responsiveness to varied lin-
guistic structures and error patterns.

2. Investigate the capabilities and performance of larger open-source LLMs, specif-
ically those with around 70 billion parameters architectures, to understand
how scale impacts quality in language tasks, especially GEC.

1https://github.com/ironiksk/gec-with-llms

https://github.com/ironiksk/gec-with-llms
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3. Analyze how the rate of true negatives and the distribution of error types
within training datasets affect model alignment with GEC benchmarks, aim-
ing to improve precision and recall in model outputs in full supervised tuning
setup.

4. Study the application of Direct Preference Optimization using preference data
derived directly from the training set to refine model output quality and rele-
vance.

5. Explore Preference tuning techniques such as Kahneman-Tversky Optimiza-
tion and Contrastive Preference Optimization to as an alternative to DPO in
GEC task.

6. Investigate the capabilities and performance of LLMs in languages other than
English, such as Ukrainian, to assess and enhance multilingual error correction
and language understanding capabilities.
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Appendix A

Ablation study

Prompt ID Prompt text
#6 Fix all grammatical errors , do not rephrase .
#14 Fix all spelling, punctuation, grammar errors , do not rephrase .
#15 Fix all grammatical errors (spelling, punctuation, grammar) , do not rephrase .
#16 Fix all grammatical errors (spelling, punctuation) , do not rephrase .
#17 Fix all grammatical errors (spelling) , do not rephrase .
#18 Fix all grammatical errors (punctuation) , do not rephrase .

TABLE A.1: GEC Task formulation for Zero-Shot setting with specific
error types.
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CoNLL-2014-test BEA-dev
System Prompt ID Precision Recall F0.5 Precision Recall F0.5

Chat-LLaMa-2-7B-ZS 1 50.85 50.03 50.68 32.57 41.08 33.98
Chat-LLaMa-2-7B-ZS 2 42.17 54.76 44.2 22.4 40.99 24.63
Chat-LLaMa-2-7B-ZS 3 46.81 52.03 47.77 28.33 41.56 30.26
Chat-LLaMa-2-7B-ZS 4 50.94 50.54 50.86 32.38 41.36 33.85
Chat-LLaMa-2-7B-ZS 5 44.39 51.76 45.69 25.68 40.34 27.7
Chat-LLaMa-2-7B-ZS 6 53.62 48.39 52.61 35.64 40.22 36.47
Chat-LLaMa-2-7B-ZS 7 51.40 50.27 51.17 33.01 40.88 34.33
Chat-LLaMa-2-7B-ZS 8 50.03 50.20 50 31.78 41.62 33.36
Chat-LLaMa-2-7B-ZS 9 45.16 52.52 46.46 26.48 41.9 28.58
Chat-LLaMa-2-7B-ZS 10 51.62 49.77 51.24 32.94 40.89 34.27
Chat-LLaMa-2-7B-ZS 11 51.17 50.80 51.1 31.82 41.43 33.37
Chat-LLaMa-2-7B-ZS 12 50.44 51.14 50.58 30.76 40.5 32.32
Chat-LLaMa-2-7B-ZS 13 51.19 50.71 51.1 32.06 40.28 33.34
Chat-LLaMa-2-7B-ZS 14 54.19 46.52 52.46 36.65 38.45 37
Chat-LLaMa-2-7B-ZS 15 53.39 48.28 52.28 35.73 39.62 36.44
Chat-LLaMa-2-7B-ZS 16 53.91 48.48 52.72 35.96 39.69 36.65
Chat-LLaMa-2-7B-ZS 17 54.19 47.84 52.79 36.56 39.65 37.14
Chat-LLaMa-2-7B-ZS 18 54.77 47.84 53.23 36.86 39.14 37.3

Chat-LLaMa-2-13B 1 48.66 56.08 49.98
Chat-LLaMa-2-13B 2 42.34 57.50 44.70
Chat-LLaMa-2-13B 3 48.11 56.29 49.55
Chat-LLaMa-2-13B 4 50.42 55.30 51.32
Chat-LLaMa-2-13B 5 41.95 56.79 44.26
Chat-LLaMa-2-13B 6 51.12 54.47 51.76 32.47 44.14 34.28
Chat-LLaMa-2-13B 7 51.35 53.37 51.74
Chat-LLaMa-2-13B 8 50.53 54.57 51.29
Chat-LLaMa-2-13B 12 46.47 56.45 48.18 26.68 44.83 29.03
Chat-LLaMa-2-13B 13 47.07 55.69 48.58

Instruct-Mistral-7B-v0.2 1 39.60 56.10 42.09
Instruct-Mistral-7B-v0.2 2 32.40 55.70 35.37
Instruct-Mistral-7B-v0.2 3 36.39 57.59 39.29
Instruct-Mistral-7B-v0.2 4 40.21 56.89 42.71
Instruct-Mistral-7B-v0.2 5 30.93 54.94 33.89
Instruct-Mistral-7B-v0.2 6 40.44 56.02 42.83 21.29 31.66 22.78
Instruct-Mistral-7B-v0.2 7 43.21 53.33 44.9 21.94 31.89 23.4
Instruct-Mistral-7B-v0.2 8 40.08 53.33 42.1
Instruct-Mistral-7B-v0.2 9 34.86 55.15 37.63 12.68 29.02 13.29
Instruct-Mistral-7B-v0.2 10 39.89 53.83 42.07
Instruct-Mistral-7B-v0.2 11 39.81 55.36 42.18
Instruct-Mistral-7B-v0.2 12 37.45 55.24 40.03
Instruct-Mistral-7B-v0.2 13 38.51 55.28 41.

Instruct-Gemma-2B 1 43.03 26.52 38.27
Instruct-Gemma-2B 2 39.69 38.84 39.52
Instruct-Gemma-2B 3 43.36 34.36 41.2
Instruct-Gemma-2B 4 47.61 33.57 43.93
Instruct-Gemma-2B 5 39.05 37.09 38.64
Instruct-Gemma-2B 6 40.03 37.36 39.46
Instruct-Gemma-2B 7 44.98 32.73 41.84
Instruct-Gemma-2B 8 40.5 33.21 38.82
Instruct-Gemma-7B 6 50.3 53.32 50.87 31.44 42.92 33.22
Instruct-Gemma-2B 6 35.39 45.55 37.04 15.35 29.65 16.99

TABLE A.2: Comparison of the zero-shot setting on CoNLL-2014-test,
BEA-dev.

CoNLL-2014-test BEA-dev
temperature Precision Recall F0.5 Precision Recall F0.5

0.001 74.48 49.59 67.68 56.34 47.02 54.19
0.7 74.68 49.57 67.67 56.37 47.02 54.21
1.0 74.48 49.64 67.71 56.33 47.02 54.18
2.0 74.55 49.68 67.77 56.33 47.03 54.19

Chat-LLaMA-2-7B-FT 75.40 46.84 67.20 58.26 46.03 55.32

TABLE A.3: Comparison of Chat-LLaMA2-7B-FT model quality in
sampling mode with best candidate selected by GRECO depending

on temperature on CoNLL-2014-test and BEA-dev.
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CoNLL-2014-test BEA-dev
β Precision Recall F0.5 Precision Recall F0.5

0.2 68.56 54.15 65.1 57.82 48.88 55.78
0.5 69.23 53.53 65.4 58.75 48.75 56.43
0.7 69.53 53.2 65.51 58.77 48.52 56.38
1.0 69.57 53.08 65.5 58.48 48.33 56.47
4.0 68.61 54.16 65.13 57.97 49.01 55.93

Chat-LLaMA-2-7B-FT 70.28 52.12 65.71 59.43 46.23 56.22

TABLE A.4: Comparison of finetuned with DPO Chat-LLaMA-2-7B-
FT model on GRECO-based preference data for Chat-LLaMA2-7B-FT
on CoNLL-2014-test and BEA-dev. Learning rate 1 · 10−5, number of

updates 500, warm-up steps 20, batch size 8.

CoNLL-2014-test BEA-dev
β Precision Recall F0.5 Precision Recall F0.5

0.2 66.52 57.31 64.45 54.35 51.79 53.82
0.5 66.32 57.73 64.4 54.02 52.15 53.63
0.7 66.91 57.25 64.73 56.7 51.47 54.02
1.0 67.51 56.37 64.94 55.49 50.62 54.44
4.0 66.6 57.38 64.53 54.27 51.76 53.75

Chat-LLaMA-2-7B-FT 70.28 52.12 65.71 59.43 46.23 56.22

TABLE A.5: Comparison of finetuned with DPO Chat-LLaMA-2-7B-
FT model on Scribendi-based preference data for Chat-LLaMA2-7B-
FT on CoNLL-2014-test and BEA-dev. Learning rate 1 · 10−5, number

of updates 500, warm-up steps 20, batch size 8.

Trainable parameters name Trainable parameters number Computational time, sec/it
Full 6.7B 90

Wq, Wk , Wv, Wo 16.2M 3
Wq, Wv 4.2M 2.5

TABLE A.6: Comparison for time of 1 step weights update for Chat-
LLaMA-7B-FT model on 4 Nvidia A10G GPUs with batch size 8.
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https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2021.acl-short.89
https://aclanthology.org/N10-1018
https://doi.org/10.1162/tacl_a_00091
https://aclanthology.org/Q16-1013
https://aclanthology.org/Q16-1013
https://api.semanticscholar.org/CorpusID:2075411
https://api.semanticscholar.org/CorpusID:2075411
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.3115/v1/D14-1102
https://aclanthology.org/D14-1102
https://aclanthology.org/P12-2039
https://doi.org/10.18653/v1/2022.acl-long.266
https://aclanthology.org/2022.acl-long.266
https://arxiv.org/abs/2403.08295


Bibliography 35

for Computational Linguistics, pp. 353–358. URL: https://aclanthology.org/
P10-2065.

Touvron, Hugo et al. (2023). “Llama 2: Open foundation and fine-tuned chat mod-
els”. In: arXiv preprint arXiv:2307.09288.

Vaswani, Ashish et al. (2023). Attention Is All You Need. arXiv: 1706.03762 [cs.CL].
Wan, Zhaohong, Xiaojun Wan, and Wenguang Wang (Dec. 2020). “Improving Gram-

matical Error Correction with Data Augmentation by Editing Latent Represen-
tation”. In: Proceedings of the 28th International Conference on Computational Lin-
guistics. Ed. by Donia Scott, Nuria Bel, and Chengqing Zong. Barcelona, Spain
(Online): International Committee on Computational Linguistics, pp. 2202–2212.
DOI: 10.18653/v1/2020.coling-main.200. URL: https://aclanthology.org/
2020.coling-main.200.

Wei, Jason et al. (2021). Frequency Effects on Syntactic Rule Learning in Transformers.
arXiv: 2109.07020 [cs.CL].

Xue, Linting et al. (2021). mT5: A massively multilingual pre-trained text-to-text trans-
former. arXiv: 2010.11934 [cs.CL].

Yannakoudakis, Helen, Ted Briscoe, and Ben Medlock (June 2011). “A New Dataset
and Method for Automatically Grading ESOL Texts”. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. Ed. by Dekang Lin, Yuji Matsumoto, and Rada Mihalcea. Portland,
Oregon, USA: Association for Computational Linguistics, pp. 180–189. URL: https:
//aclanthology.org/P11-1019.

Yuan, Zheng, Ted Briscoe, and Mariano Felice (June 2016). “Candidate re-ranking for
SMT-based grammatical error correction”. In: Proceedings of the 11th Workshop on
Innovative Use of NLP for Building Educational Applications. Ed. by Joel Tetreault et
al. San Diego, CA: Association for Computational Linguistics, pp. 256–266. DOI:
10.18653/v1/W16-0530. URL: https://aclanthology.org/W16-0530.

Yuan, Zheng et al. (Nov. 2021). “Multi-Class Grammatical Error Detection for Cor-
rection: A Tale of Two Systems”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Ed. by Marie-Francine Moens et al. On-
line and Punta Cana, Dominican Republic: Association for Computational Lin-
guistics, pp. 8722–8736. DOI: 10.18653/v1/2021.emnlp-main.687. URL: https:
//aclanthology.org/2021.emnlp-main.687.

Zhang, Yue et al. (2023). Multi-Task Instruction Tuning of LLaMa for Specific Scenarios:
A Preliminary Study on Writing Assistance. arXiv: 2305.13225 [cs.CL].

https://aclanthology.org/P10-2065
https://aclanthology.org/P10-2065
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.coling-main.200
https://aclanthology.org/2020.coling-main.200
https://aclanthology.org/2020.coling-main.200
https://arxiv.org/abs/2109.07020
https://arxiv.org/abs/2010.11934
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/W16-0530
https://aclanthology.org/W16-0530
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://aclanthology.org/2021.emnlp-main.687
https://aclanthology.org/2021.emnlp-main.687
https://arxiv.org/abs/2305.13225

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals of the master research
	Structure of thesis

	Literature review
	Existing GEC systems
	Sequence-to-sequence error correction approaches
	Sequence-to-tag approaches
	Models ensembling
	Results analysis

	Data review and evaluation
	Datasets
	Evaluation
	MaxMatch (M2) Scorer
	ERRANT
	Discussion on Metric Reliability


	Experiments with Large Language Models
	Zero-shot prompting
	LLM supervised fine-tuning
	Full weights fine-tuning
	Dataset combination
	Model size

	Parameter efficient fine-tuning

	Direct preference optimization
	Reformulating GEC as Preference Tuning task
	GRECO
	Scribendi score
	Experiment results

	Conclusion

	Conclusions
	Contribution
	Limitations
	Future work

	Ablation study
	Bibliography

