UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Real-time simulation of arm and hand
dynamics using SNN

Author:
Andrii KAPATSYN

Supervisor:
Dr. Sergiy YAKOVENKO

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2024

http://www.ucu.edu.ua
https://orcid.org/0009-0002-9379-0234
https://scholar.google.com/citations?user=svyOQfUAAAAJ&hl=en&oi=sra
https://apps.ucu.edu.ua/
https://apps.ucu.edu.ua/

ii

Declaration of Authorship

I, Andrii KAPATSYN, declare that this thesis titled, “Real-time simulation of arm and

hand
that:

dynamics using SNN” and the work presented in it are my own. I confirm

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I'have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY
Faculty of Applied Sciences
Master of Science

Real-time simulation of arm and hand dynamics using SNN

by Andrii KAPATSYN
Abstract

The nervous system solves the complex problem of body dynamics in real-time,
both during the planning and execution of movements. The resulting neural com-
mands are expressed as spike trains formed by the interaction of the feed-forward
and feedback pathways that encode limb posture and movement. While body biome-
chanics and neural recordings have been well characterized at different levels in the
nervous system, we have no integrated view of this process.

In this study, we propose a feed-forward Spiking Neural Network (SNN) to
tackle the inverse and forward dynamics problems for an arm and hand model. We
designed human hand and arm models with 1 and 3 degrees of freedom (DoF) to
simulate movements and developed corresponding SNNs. These SNNs predict joint
angles, velocities, and accelerations based on the joint torques for the forward dy-
namics problem, and predict torques based on joint angles for the inverse dynamics
problem.

We evaluated our models by comparing them with ideal controllers derived from
kinematic equations for kinematic simulation and employed the state-of-the-art Mu-
JoCo physical engine for dynamics simulation. Our 3-DoF model for dynamics sim-
ulation operates in real-time with a latency of 0.44 ms and achieves a mean absolute
error of 0.0545 m. This performance demonstrates potential for integration with
brain-computer interfaces for neuroprosthetics.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/

iv

Acknowledgements

I'm grateful to Dr. Sergiy Yakovenko for his guidance and support throughout this
research. I was fortunate to have a supervisor who calmly guided me through the
challenges of this research and provided me with the tools to overcome them. I
appreciate the detailed explanations from Serhii Bahdasariants, who helped me to
understand the concepts of neuroscience and spiking neural networks better. Also, I
want to thank Yurii Prima for his well-documented work on the Nengo framework,
which was a valuable source of advanced techniques for my research.

I extend my gratitude to the Ukrainian Catholic University and the Faculty of
Applied Sciences for their exemplary organization of the Master’s Program in Data
Science, which has greatly enriched my educational journey. My heartfelt thanks
also go to Oleksii Molchanovsky and Ruslan Partsey for their outstanding leader-
ship and their exceptional skill in managing organizational aspects of the program.
I appreciate the time with my classmates, who have inspired and motivated me
throughout this program.

I cannot conclude without expressing my heartfelt gratitude to my family and
friends, whose unwavering support and encouragement have been my constant
source of strength and inspiration. Their endless love and belief in me have been
invaluable throughout this journey.

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction
1.1 Motivation e e e e
1.2 ResearchGoals e
1.3 Structureof Master Thesis

2 Related Work
2.1 Arm and Hand Dynamics Simulation
2.2 Inverse Dynamics and Forward Dynamics Problems
2.3 Spiking Neural Networks Perspective

3 Methodology and Research Approach
3.1 Problem Statement
3.2 SNN Simulation Toolkit
33 ExperimentSetup o oL
34 Metricsand Evaluation Lo 0L
35 Requirements oo

4 Experiments Implementation and Results
41 Neural Integrator Implementation
4.2 Model Parameters Selection
421 Inputpreprocessing
422 Intercepts configuration
43 Kinematics Model Implementation
43.1 1DoFkinematicsmodel
432 3 DoF kinematicsmodel
44 Dynamics Model Implementation.
441 3DoFdynamicsmodel.
4.4.2 3 DoF dynamics model optimization

5 Conclusions and Future Work

A Experiment simulation results
A.1 1DoF kinematics model simulation.
A.2 3 DoF kinematics model simulation.
A.3 3 DoF dynamics model simulation
A4 Evaluationresults

Bibliography

ii

iii

iv

12
12
13
14
14
15
15
16
17
17
18

20

21
21
21
22
23

24

Vi

List of Figures

1.1

2.1

3.1

3.2
3.3

4.1
4.2
4.3

4.4

4.5

4.6
4.7

4.8

Al
A2
A3
A4

Kinematic models of the human arm (A) and hand (B). 1

Comparison of the speed of the forward and inverse dynamics com-
putations.. 4

The visualization of the Neural Engineering Framework principles.

(Bekolay etal., 2014) 8
The illustration of LIF neuron dynamics. (Lee et al., 2020) 9
The example of the nengo experimentsetup. 10
Integrator response comparison 12
Scheme of the neural integrator network. 12
Two populations of neurons that represents a sine wave with firing

ratesof I0Hzand 100Hz 13

The density plots of the intercepts distribution for the 8-dimensional
input and corresponding proportion of points neuron is active for
with default approach (top) and area distribution approach (bottom). . 15
Visualization of the structure of the arm and hand kinematics model

for1DoF. 16
Visualization of the 3 DoF arm and hand model. 17
Visualization of the 3 DoF arm and hand model implemented in Mu-

JoCo. . . o e 17
Visualization of the structure of the arm and hand dynamics model

for3DoF. 18
The simulation for the 1 DoF kinematics model. 21
The simulation for the 3 DoF kinematics model. 21
The simulation for the 3 DoF dynamics model. 22

The simulation for the optimized 3 DoF dynamics model. 22

List of Tables

A.1 The evaluation results for the implemented kinematics and dynamics

vii

viii

List of Abbreviations

SNN
DoF
BCI
NEL
WVU
EMG
EEG
ECoG
MRI
fMRI
RNN
LSTM
GRU
IDM
FDM
LIF

Spiking Neural Network
Degrees of Freedom
Brain-Computer Interface
Neural Engineering Lab

West Virginia University
Electromyography
Electroencephalography
Electrocorticography
Magnetic Resonance Imaging
Functional Magnetic Resonance Imaging
Recurrent Neural Network
Long Short-Term Memory
Gated Recurrent Unit
Inverse Dynamics Model
Forward Dynamics Model
Leaky Integrate and Fire

List of Symbols

S T 300 ~\’:1°;1‘-°-r4&:®.®

joint positions
joint velocities
joint velocities
joint torques

time

gravitational force
joint friction force
moment of inertia
gravitational constant
links mass

links length

links radius
task-space force

(rad)
()
o
(Nm)
(s)

(N)

(N)

(kg m?)
(9.813)
(kg)
(m)

(m)

(N)

iX

To the heroes of AFU and their families.

Chapter 1

Introduction

1.1 Motivation

The realistic musculoskeletal model of hand and arm consists of about 27 degrees
of freedom (DOF) actuated by 52 force-generating musculotendon units scaled by
limb segment geometry (Agur, Dalley, and Grant, 2008). This complexity is a chal-
lenge for real-time simulations, for example, for brain-computer interfaces (BCI),
and can benefit from approximations of musculoskeletal transformations and limb
physics (Sobinov et al., 2020). Neuroprosthetics require similar computations for
the decoding of intent and encoding of sensory feedback. Previously, Manukian,
Bahdasariants, and Yakovenko, 2023 have shown that the inverse dynamics prob-
lem can be solved by a relatively shallow network expressed as RNN and LSTM.
But the real-time accurate and stable solution of the forward dynamics problem re-
mains an open question, since it involves predicting the motion of a system based
solely on the forces and torques applied, without prior knowledge of the resulting
movement. This requires solving complex differential equations that describe the
system’s dynamics, which can be computationally intensive and sensitive to the ini-
tial conditions and system parameters of the complex mechanical linkage along the
chains forming the multi-body system (Leeuwen, Aerts, and Otten, 2003).

Addressing the stated challenge holds the potential for future advances in pros-
thetic limb control. We could improve the robustness of human-machine interactions
by solving limb dynamics problem with the help of Spiking Neural Networks (SNN)
formulation. Ultimately, optimizing the efficiency and responsiveness of prosthetic
during daily tasks can significantly enhance the quality of life for amputees.

Shoulder

(A) Zanchettin et al., 2010 (B) Jaworski and Karpinski, 2017

FIGURE 1.1: Kinematic models of the human arm (A) and hand (B).

2 Chapter 1. Introduction

1.2 Research Goals

The goal of this project is to develop a feed-forward Spiking Neural Network (SNN)
that will be trained, based on the rigid-body dynamics equations (Featherstone,
2008) to predict the arm and hand position in response to the input from the mus-
culoskeletal model (forward dynamics). We will use the musculoskeletal model cre-
ated by Neural Engineering Lab (NEL) at West Virginia University (WVU) to pro-
vide the input (inverse dynamics feedback) as well as the target position data for the
SNN training. The SNN will be implemented using the Nengo framework proposed
by Bekolay et al., 2014, that takes advantage of the Neural Engineering Framework
(NEF) to build and simulate large-scale neural models.

We anticipate that the neurons within the SNN will demonstrate directional tun-
ing analogous to that observed in biological counterparts. Furthermore, it is ex-
pected that the motor transformations facilitated by the SNN will maintain robust-
ness in the presence of sensorimotor noise. Additionally, we project that the SNN
will offer a more computationally and energy-efficient solution, particularly for ap-
plications in wearable technologies.

1.3 Structure of Master Thesis

The remainder of the thesis is structured as follows. In Chapter 2 we provide an
overview of the related work in the field of inverse and forward dynamics problems
and perspective of using SNN for solving these problems. In Chapter 3 we present
our methodology and research approach, including the experiment setup and eval-
uation details. Chapter 4 contains the details of the conducted experiments and the
results obtained. Finally, we provide conclusions and outline future work directions
in Chapter 5.

Chapter 2

Related Work

21 Arm and Hand Dynamics Simulation

The problem of arm and hand dynamics simulation can be divided into two sub-
problems. The first one is the collection of signals from the human body to decode
the limb movements or its intentions. The second one is the prediction of the applied
joint torques (inverse dynamics problem) to control the arm and hand model as well
as joint angles, joint velocities and accelerations (forward dynamics problem).

For the limb movement decoding problem, electromyography (EMG), electroen-
cephalography (EEG), electrocorticography (ECoG), magnetic resonance imaging
(MRI), and functional MRI (fMRI) signals are used (Tiwari et al., 2018). The most
popular are EMG and EEG sensors for this task since they are relatively non-invasive
and can be easily integrated into wearable devices for real-time applications, making
them practical choices for limb movement decoding studies (Yoshimura et al., 2017).

Some studies propose using bioelectrical signals directly to solve the inverse dy-
namics problem (Ren et al., 2019). However, using those signals for such a complex
task is challenging and requires thorough data processing and feature extraction ap-
proaches (Olmo and Domingo, 2020; Garg et al., 2021). But, the bioelectrical signals
are often used to solve simpler limb movement decoding problems such as gesture
recognition (Garg et al., 2021; Gautam et al., 2020; Ceolini et al., 2020).

Also, researchers suggest using systems for the musculoskeletal model dynamics
simulations of movement that already implemented inverse and forward dynamics
simulation and supported work with the bioelectrical data Pizzolato et al., 2016;
Yough et al., 2021, such as OpenSim' or Matlab Simulink®. Such musculoskeletal
models can be used for data generation to be passed to high-level algorithms to
solve inverse dynamics or forward dynamics problems. These models significantly
simplifies task, allowing researches to focus on solving directly inverse dynamics
problem (Manukian, Bahdasariants, and Yakovenko, 2023; Porsa, Lin, and Pandy,
2015) or forward dynamics problem (Kvrgic and Vidakovic, 2020).

2.2 Inverse Dynamics and Forward Dynamics Problems

In the Manukian, Bahdasariants, and Yakovenko, 2023 work, three different archi-
tectures were considered to solve the inverse dynamics problem: RNN, GRU and
LSTM. Authors showed that a single-layer LSTM could maintain prediction accu-
racy of 0.1 Nm with only 20 ms input sequences. Authors have proven that the pro-
posed approach of using ANN is suitable for real-time applications for predicting
kinetics in complex multijoint systems. Despite the low latency and great prediction

Ihttps://opensim.stanford.edu/
2https://www.mathworks.com/products/simulink.html

https://opensim.stanford.edu/
https://www.mathworks.com/products/simulink.html

4 Chapter 2. Related Work

accuracy was achieved, the proposed approach has some limitations. The limited
exploration of behavioral space and training dataset specification are weak spots of
approaches that uses ANN. Such a model can’t accurately solve inverse dynamics
for the unseen behavior, such as object interactions or pathologies like tremor.

The Polydoros, Nalpantidis, and Kruger, 2015 work proposes the online learning
based approach, that uses a reservoir layer for the deep learning model to serve as
a memory and Bayesian linear regression as a learning rule to optimize the model
weights. Results show that the proposed algorithm can adapt to real-time changes
of the inverse dynamics models significantly better than other ANN models, such
as Manukian, Bahdasariants, and Yakovenko, 2023. The proposed model presents a
limitation due to its computationally intensive nature. Although the authors state
about real-time applications of the model, it models only 6 DoF robotic manipulator
arm.

The inverse dynamics are in fact easier to compute than the forward dynamics,
because the optimization problem becomes diagonal and decomposes into indepen-
dent optimization problems over individual contacts - which can be solved analyt-
ically, as shown by Todorov, 2014, which describes the implementation details of
MuJoCo. MuJoCo® stands for Multi-Joint dynamics with Contact. It is a physics
engine that is widely used in robotics and biomechanics research and represents the
state-of-the-art implementation of the dynamics simulations. Todorov, 2014 presents
real-time performance for the both inverse and forward dynamics problems. The
forward dynamics is slower by an order of magnitude but still fast enough to run in
real-time on single core of a desktop processor (see Figure 2.1) using the projected
Gauss-Siedel method (PGS). The recursive Newton-Euler algorithms (RNEA) is used
for the forward dynamics problem and considered to be the most efficient algorithm
(Todorov, 2014; Kvrgic and Vidakovic, 2020).

500 20

-

ot

2 400 Forward(50) / Inverse

= 15

L =

éi300 %

o Forward(50) S

8] a 10

©n =

5 200 2

o 2,

g)

-5 100 Forward(5) Forward(5) / Inverse

) Inverse

¥

O 0 0
0 20 40 60 80 100 0 20 40 60 80 100
Size of contact Jacobian Size of contact Jacobian

FIGURE 2.1: Comparison of the speed of the forward and inverse dy-

namics computations. Left: CPU time per simulation step is shown

for different sizes of the contact Jacobian. The PGS iterative solver

in the forward dynamics was run for 5 or 50 iterations. Right: the

speedup factor is the ratio of forward dynamics CPU time to inverse
dynamics CPU time. Todorov, 2014.

Shttps://mujoco.org/

https://mujoco.org/

2.3. Spiking Neural Networks Perspective 5

2.3 Spiking Neural Networks Perspective

Spiking Neural Networks aims to mimic the remarkable properties of the human
brain, such as online learning, massive parallelism, low power consumption, and
analog computations. Similarly to human brains, SNNs don’t use all neurons simul-
taneously, but only regions needed for the current tasks (Stone, 2018). Thus, it is
possible to create low energy hardware based on the property that information is
sparse in time and concentrated in spikes (Rueckauer et al., 2017; Pande et al., 2013).
It is one of the biggest advantages of SNNs. Also, there are some disadvantages for
SNNs. Because spikes signals are sparse and not differentiable, we can not apply
backpropagation to train a model. There are three common ways for SNN to learn:
unsupervised learning such as spike timing-dependent plasticity (STDP); indirect
supervised learning such as ANNs-to-SNNs conversion; direct supervised learning
such as gradient descent-based backpropagation. Another option to train SNN is to
use Neural Engineering Framework, which is expalined in details in the section 3.2.

Most of the researches on the inverse and forward dynamics problem solved by
SNN focused on the robotics domain to control the robotic arm. The primary mo-
tivation for using SNNs is to reduce the power consumption of embedded devices
required to run the robot DeWolf, Jaworski, and Eliasmith, 2020; Hwu et al., 2016.
The work of DeWolf et al., 2016 presents the recurrent error-driven adaptive control
hierarchy (REACH) model. This model is neurally plausible and implements the
fundamental biological process of dynamic adaptation for limb control similar to the
one in the cerebellum. As well as Polydoros, Nalpantidis, and Kruger, 2015 work,
this one implements the adaptive learning rule and online-learning approach. The
biggest limitation of this work is that the model is significantly less complex than
any of the reviewed previously. Authors presented only 3 DoF model and didn’t
discuss speed of the solution or the real-time constraints.

Chapter 3

Methodology and Research
Approach

3.1 Problem Statement

The arm and hand dynamics simulation consists of two models that should compen-
sate for each other. The Inverse Dynamic Model (IDM) predicts joint torques given
the current body state and the desired position in the task space. The Forward Dy-
namic Model (FDM) predicts the next arm state by given joint torques (Featherstone,
2008).

The FDM accounts for gravitational force F, and the moment of inertia I, and
some constant joint friction force Fy, to update corresponding joint angles, velocities,
and accelerations g, 4, j by given applied joint torques 7 for every degree of freedom.
The moment of inertia I and the gravitational force F; for the FDM are calculated by
equations 3.1 and 3.2, where g is the gravitational constant, m is the vector of links
mass, | is the vector of links length, and r is the vector of links radius.

ml% mr?
I="5+ (3.1)
. !
Fy =sin(q) -m-g- 5 (3.2)

The corresponding model state variables are calculated as follows:

T—Fg—Ffr

§=—"7T (3.3)
j= / Gidt (3.4)
g = / g dt (3.5)

The IDM model uses a Jacobian matrix | that relates the movement of the joint
angles g to the movement of the task space position x. The Jacobian is a function of g,
so it can represent a complex relationship, including the joint movement constraints
as described by Featherstone, 2008. The Jacobian also defines an approximate re-
lationship between forces in the task space and joint space (Place, 2017). Also, it
should estimate the inertia matrix in task space M,, allowing the effects of inertia to
be canceled out (Khatib, 1987).

The force to correct the position error is calculated in the task-space as

uy =kp(x' —x), (3.6)

3.2. SNN Simulation Toolkit 7

where x is the hand’s current position, x’ is the desired position, and k, is the po-
sition gain term. Also, the IDM should account for the velocity error term k,Ij and
corresponding gravity compensation term g,, so the final control signal equation,
which is the joint torques applied to the FDM, is calculated as follows:

U=]Tqux —kolg —gq, (3.7)

3.2 SNN Simulation Toolkit

Neural Engineering Object (Nengo) is a graphical and scripting software for sim-
ulating large-scale neural systems. As neural network software, Nengo is a tool
for modeling neural networks with cognitive science, psychology, artificial intelli-
gence, and neuroscience applications. Nengo is based on the Neural Engineering
Framework (NEF) Eliasmith and Anderson, 2002. This framework proposes three
quantitatively specified principles that enable the construction of large-scale neural
models. Briefly, this mathematical theory defines:

1. Representation: A population of neurons collectively represents a time-varying
vector of real numbers through non-linear encoding and linear decoding.

2. Transformation: Linear and non-linear functions on those vectors are com-
puted by linear decodings that are used to compute the connections between
populations of neurons analytically.

3. Dynamics: The vectors represented by neural populations can be considered
state variables in a (linear or non-linear) dynamical system, and recurrent con-
nections can be computed using principle 2.

The summary of the NEF principles is shown in Figure 3.1. (A) According to
the representation principle, neural signals are encoded within populations of neu-
rons, each defined by its tuning curve (top). This curve indicates the level of neu-
ronal activity in response to an input signal. When the input signal in the middle
panel stimulates the eight neurons shown in the top panel, their activity generates
the spike trains observed in the bottom panel. (B) The representation principle also
allows for the decoding of neural population activity to retrieve the original input
signal or its transformation. First, the firing pattern in the top panel is processed
using a decaying exponential filter (middle panel). This filtered activity is then com-
bined using a set of weights, approximating the input signal (bottom panel, green)
and the cosine of the input signal (bottom panel, purple). (C) A sine wave encoded
by population A (top panel) is transformed and projected as its negative to popula-
tion B (middle panel), while its square is projected to population C (bottom panel).
The transformation principle allows neurons to send signals to another population
by decoding the desired function from one population and encoding it into the next.
This process can be simplified into a single step by calculating connection weights
between neurons in the two populations. (D) In a neurally implemented dynamical
system, negative feedback between its two dimensions creates a harmonic oscillator.
This oscillator’s behavior is plotted over time (top) and within a state space (bottom).
The dynamics principle suggests that signals represented by neural populations can
be understood as state variables within a dynamical system

Based on these principles, Nengo allows to train any ensemble object, a group
of neurons collectively representing a vector, by connecting it to any other object.
This connection won’t directly compute the function defined for that connection, but

8 Chapter 3. Methodology and Research Approach

instead, the function is approximated by solving the set of decoding weights. The
output of a decoded connection is the sum of the ensemble neural activity weighted
by the decoding weights solved in the build process.

Mathematically, it can be formulated as the following equation:

y(t) = Y dlai(x(1)), (38)
i=0

where y(t) is the output of the connection at time ¢, n is the number of neurons in
the ensemble, d{ is the decoding weight associated with neuron i given the function
f,and a;(x(t)) is the activity of neuron i given x(t), the input at time ¢.

A Encoding B Decoding c Transformation D Dynamics

4 M|||I|||||||||IIIII|I||||||I||||]||||II\II|I|||\ o f -
|||||||\\|||||||HlllHIIIlII]IIIH o

0.0

IIIII|IIIiIIIIIIIJ \
. -IIIIIIIIIIIIIIIIIIIIIIIIII|Illmllmlmlmmm -0
7 llllllllllllllllllllllllll||||I||||I||||||| Il ’ ‘II

Firing rate (Hz)

00 05 1.0 15 20 25 30
Time (s)

Input signal

B Y N N

“ l [

L
3 -|||||||||||‘ ||| 00
| LT i
— L‘m(‘lnpu(l , 1o "

T |HI B

0.0 02 04 0.6 08 1.0 0.0 02 0.4 0.6 0.8 1.0

Neuron

Time (s) Time (s) Time (s) X

FIGURE 3.1: The visualization of the Neural Engineering Framework
principles. (Bekolay et al., 2014)

These principles allow us to use the nengo and NEF as the white-box technique,
an opposite to the black-box (Manukian, Bahdasariants, and Yakovenko, 2023) in
terms of model definition approach (DeWolf, Jaworski, and Eliasmith, 2020). We
can set connections between nengo objects to approximate the functions described
in the section 3.1, to implement the inverse-forward relationship for arm and hand
dynamics simulation.

We propose to use leaky integrate-and-fire (LIF) neurons (Bekolay et al., 2014) to
build the SNN. In LIF neurons, the synaptic weight modulates pre-spikes which are
then integrated as a current influx into the membrane potential, decaying exponen-
tially. If the membrane potential exceeds the firing threshold, the post-neuron emits
a post-spike and the membrane potential is reset (Lee et al., 2020). This model is
biologically plausible and computationally efficient and implemented in the most of
the SNN frameworks, including nengo.

The sub-threshold dynamics of a LIF spiking neuron can be expressed as:

deem
" dt

= —Vinem + I(t) (3.9)

where V., represents the membrane potential of the post-neuron, and t,, is the
time constant for the decay of the membrane potential. The input current I(t) is the

3.3. Experiment Setup 9

weighted sum of pre-synaptic spikes at each time step, and defined as:

nl

I(t) = Y (w; Y 6i(t— i) (3.10)
k

i=0

where 1! denotes the number of pre-synaptic weights, w; is the synaptic weight con-
nection the i-th pre-neuron to the post-neuron, and 6(t — t;) represents a spike event
from the i-th pre-neuron at time t; and formulated as:

1, ift=1#
0(t—t;) = 3.11
() { 0, otherwise ()

where t; is the time of the k-th pre-synaptic spike. Figure 3.2 illustrates the dynamics
of an LIF neuron. The influence of each pre-synaptic spike 6;(t — t;) is modulated by
the corresponding synaptic weight w;, generating a current that flows into the post-
neuron. These units do not have a bias term. The input current is integrated into the
post-neuronal membrane potential V., which decays exponentially over time with
the time constant t,,. When the membrane potential exceeds the firing threshold V},,
the neuron fires a spike and resets its membrane potential to the initial value.

Pre-spikes Synapses
LIF Neuron

Threshold
Ven) Post-spikes, 0,

- L1 [
t ot t3 ty

t, t; t3 ty time

FIGURE 3.2: The illustration of LIF neuron dynamics. (Lee et al., 2020)

3.3 Experiment Setup

The arm and hand dynamics simulation can be mostly implemented using the nengo
framework, as it allows to visualize the connections between objects and store and
process data during the simulation in the form of graphs and custom data files.

For such a simulation, it is necessary to implement both parts of the model -
forward and inverse dynamics, which will interact with each other. The input to
the system will be the target end-effector position coordinates. The hand state data
that represented as joint angles, joint velocities, and joint accelerations, as well as the
corresponding joint torques, will be calculated directly by the corresponding parts
of the model. To visualize the current arm state, a custom nengo component which
allows drawing html canvas elements was used. Also, we added plot components
to display graphs and neuron states during the simulation to conduct experiments.
All these components allow visualizing and analyzing data during the simulation
to conduct experiments. The example of the nengo environment setup is shown in
Figure 3.3.

To calculate the metrics described in the section 3.4 and prepare the graphs for
the results analysis, the simulation mode without creating a graphical interface was

10 Chapter 3. Methodology and Research Approach

Lo+ 1
5.358 5.858

Error WX

Qutputs.

0%1015 (o Nlnlzo

o} g
b+
H FDM
Outputs
- - Slgnal

An
10
5380 5.880

Error
10
Q§c Inputs

o 07||u 1300.12) DM

(020)

Target -0

FIGURE 3.3: The example of the nengo experiment setup.

used, which allowed obtaining the results without overheads for visualization and
properly compute model simulation time.

The proposed experiment setup allows conducting experiments with different
arm and hand model complexity (number of degrees of freedom), and easily eval-
uate its performance. We suggest to start with a simple arm and hand model and
then gradually increase the complexity of the model to evaluate the performance of
the proposed approach and capabilities of the SNN. The further details and results
of the experiments are described in the next chapter.

3.4 Metrics and Evaluation

The performance of the proposed approach can be expressed in terms of the accu-
racy of the predicted joint positions, velocities, and accelerations, as well as the joint
torques, and the simulation time.

The accuracy of the predicted values can be calculated as the Root Mean Squared
Error (RMSE) between the predicted and the ground truth values and Mean Abso-
lute Error (MAE) of the predicted positions in the task space. The RMSE metric
will allow us to compare the performance of the proposed approach with the re-
lated works (Manukian, Bahdasariants, and Yakovenko, 2023; DeWolf et al., 2016)
and evaluate the IDM part of the model. The MAE metric will allow us to evaluate
the FDM part of the model and compare it with the state-of-the-art physics engine,
MuJoCo (Todorov, 2014). The proposed metrics are calculated as follows:

RMSE, = (! — 7;)? (3.12)

1

S|

-

0

1 n
MAE = ; %) — x;] (3.13)

The real-time performance of the proposed approach can be evaluated using the
simulation latency metric. This metric is determined by calculating the average time

3.5. Requirements 11

difference between consecutive simulation steps. We will compare the simulation
latency with the results of the corresponding MuJoCo simulation to conclude about
the real-time capabilities of the proposed model.

3.5 Requirements

Defining clear requirements for the real-time Spiking Neural Network (SNN) dy-
namics model is crucial to ensure its efficacy and applicability in real-world scenar-
ios. These requirements encompass the necessary accuracy, real-time constraints,
and hardware specifications that the model must meet. Establishing these criteria
helps in guiding the development process and evaluating the performance of the
model under realistic conditions.

The model must reliably predict joint angles and torques with minimal error to
ensure realistic and accurate simulations. For the inverse dynamics problem, the
model should accurately predict the joint torques, with RMSE; < 0.1 and the for-
ward dynamics model should accurately predict the joint angles, with MAE < 0.05,
which defines overall model capability to accurately move the arm and hand to the
desired position.

The model must also operate in real-time, with a simulation latency (time of full
pass for both FDM and IDM parts of the model) of less than 1 ms with a time step
At = 0.001. This ensures that the model can update its predictions and adapt to new
inputs almost instantaneously, providing a smooth and responsive user experience.

The real-time performance evaluation were conducted on the MacBook M1 Pro
2021 with 8 CPU cores and 16 GB of RAM. We haven’t experimented with perfor-
mance of the proposed model on the low-energy FPGA* or neuromorphic Loihi®
devices, which is out of the scope of this work, and could be considered as a future
work direction.

4https://www.nengo.ai/nengo-fpga/appendix.html
Shttps://en.wikichip.org/wiki/intel/loihi

https://www.nengo.ai/nengo-fpga/appendix.html
https://en.wikichip.org/wiki/intel/loihi

12

Chapter 4

Experiments Implementation and
Results

4.1 Neural Integrator Implementation

The integrator is an essential component of the IDM part of the model, as it should
store the previous state of the system and update it accordingly to the accelerations
produced by joint torques. In the SNN formalism, the integrator can be implemented
as the recurrent connection between the ensemble of neurons. The goal of this ex-
periment to show how to implement neural integrator and compare its response to
the ideal integrator. The scheme of the integrator network is shown in Figure 4.2.
From the Figure 4.1 we can see that the neural integrator is not perfectly follows the
ideal integrator and has some noise in the response. The noisy response of neurons
can be addressed by adding the low-pass filter to the connection outputs. The drift
of the integrator values can be solved by increasing the number of neurons in the
ensemble or by changing fire rates of neurons.

1.0 A

0.5 1

0.0 A

—0.51

Value

—-1.01

—-1.54 — Input
Neural integrator
—2.0+ Ideal integrator

0 1 2 3 4 5 6
Time [s]

FIGURE 4.1: Integrator response comparison

Input

Neural integrator

FIGURE 4.2: Scheme of the neural integrator network.

4.2. Model Parameters Selection 13

4.2 Model Parameters Selection

During the SNN models implementation, it’s important to consider proper config-
uration of the neurons populations (Ensemble) and it’s connections parameters for
every component of the model.

For the Ensemble, the number of neurons, firing rates, number of dimensions,
and radius should be considered.

The number of neurons should be selected based on the complexity of the task
and number of dimensions of the input data and is selected experimentally. It’s
recommended to start with some small number of neurons and gradually increase it
to find the optimal number of neurons for the task.

The firing rates of neurons affects the number of spikes generated by the neurons
and the response time of the ensemble. The neurons population with higher firing
rates will be able to generate smoother and more accurate approximation. This is
shown in the Figure 4.3, where two populations of neurons with firing rates of 10
Hz and 100 Hz are compared.

The number of dimensions is selected based on the number of the input dimen-
sions that should be passed to the ensemble.

The radius scales the range of input values that the ensemble can represent. By
default, this range is within a unit hypersphere. If this default value is maintained,
the neural activity will saturate for input vectors with magnitudes exceeding 1, re-
sulting in inaccurate vector representations and function approximations. While this
issue is less significant in lower-dimensional spaces, it becomes problematic as the
dimensionality of the state space increases, since input vectors with norms greater
than 1 become more frequent. Ideally, we want to represent vectors of any dimen-
sion, where each element ranges between -1 and 1. To achieve this, we calculate the
norm of a unit vector of size D, given by v/D, which is the magnitude of a vector of
size D with all elements set to one, where D is the number of dimensions.

2
— Input
14 100 neurons, 10 Hz
0 -
_1 4
_2 T T T T T T T
2
— Input
14 100 neurons, 100 Hz
0 -
_1 4
_2 T T T T T T T
0 1 2 3 4 5 6

FIGURE 4.3: Two populations of neurons that represents a sine wave
with firing rates of 10 Hz and 100 Hz

The Connection parameters that should be configured are the synapse time,
transform and function.

The synapse time defines the time constant of the low-pass filter applied to the
connection output. It should be selected experimentally to reduce the noise in the
connection output.

14 Chapter 4. Experiments Implementation and Results

The transform defines the scale the output of the connection, usually, we don’t
need to apply any transformations but for some cases we need to scale the outputs
to achieve the desired behavior for the connection. For instance, we can scale the
output of the connection to the integrator to implement the change of the state for
the integrator over time.

The function that should be approximated by the connection should be defined
for the NEF framework as it was described in the section 3.2.

4.2.1 Input preprocessing

The input vector to the neurons in the Ensemble should range from -1 to 1. To ensure
this, we added additional input and output nodes to preprocess and postprocess the
data appropriately. These nodes adjust the data by subtracting the mean and scaling
it by three times the standard deviation, ensuring that the most of the values fall
within the required range. An extra input node scales the input data and connects it
to the corresponding Ensemble, and the Ensemble connects to an output node that
scales the data back and approximates the desired function.

To compute the appropriate mean and standard deviation values, we used two
approaches. For the joint torques g in our experiment setup we have calculated
analytically the mean and the scaling factor, since the g values can be in the range
of [0, 71/2]. We selected the mean value and scaling factor equal to 71/4. For all the
other input data, we recorded the corresponding values during the simulation on
the perfect controller via replacing the Ensembles by the Nodes that calculated the
desired functions directly. For the simulation, we used randomly generated samples
of joint positions and velocities as well as the target end-effector positions as the
starting state, and we recorded the simulation until the arm and hand model reached
the target.

4.2.2 Intercepts configuration

Another important property of the neurons population is the intercepts. The inter-
cepts determine how much of state space a neuron fires for. By default, the inter-
cepts in the NEF are uniformly distributed between -1 and 1, and it works well for
1-dimensional inputs. It means that a neuron with an intercept of 0 is active for 50%
of the state space, and a neuron with an intercept of 0.5 is active for 25% of the space.
But, even for the 2-dimensions, an intercept of 0.5 will be active for less than 20% of
the state space. In the higher dimensions, the most of the neurons appears to be use-
less because they are not active for the most of the state space. To address this issue
the area distribution concept was proposed by Dr. Terrence C. Stewart®. The main
idea is to analytically find the proportion of the state space that a neuron should be
active for and then find an inverse (intercepts) that gives that proportion. As result,
we can achieve the more efficient use of the neurons in the Ensemble and reduce
the number of neurons needed to represent the input data for the high-dimensional
inputs. The Figure 4.4 shows the effectiveness of the proposed approach for the
intercepts distribution selection.

bhttps://github.com/tcstewar/testing_notebooks/blob/master/Intercept
20Distribution’20.ipynb

https://github.com/tcstewar/testing_notebooks/blob/master/Intercept%20Distribution%20.ipynb
https://github.com/tcstewar/testing_notebooks/blob/master/Intercept%20Distribution%20.ipynb

4.3. Kinematics Model Implementation 15

3.51
0.5 1
3.0 1
0.4 25
oy z
2 03 3 2.0
[[
o [a]
1.5
0.2
1.0 A
0.1
0.5 4
0.0 T T T T T 0.0 +— r T T T T T r
-1.0 -0.5 0.0 0.5 1.0 -02 00 02 04 06 08 10 1.2
Default Intercepts Proportion of points neuron is active for with default intercepts
1.21
1.0
1.01
0.8
> 0.8 1 >
2 206
[- [
3 0.6 3
0.4 041
0.2 0.2
0.0 T T T T T T T 0.0 T T T T T T
—0.50-0.25 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8 1.0
Area Distribution Intercepts Proportion of points neuron

is active for with area distribution intercepts

FIGURE 4.4: The density plots of the intercepts distribution for the 8-

dimensional input and corresponding proportion of points neuron is

active for with default approach (top) and area distribution approach
(bottom).

4.3 Kinematics Model Implementation

We decided to start with the simpler kinematics problem to validate the proposed
approach and develop the methodology for the further development of the dynam-
ics model.

For the FDM, we have used the following equation instead of equation 3.3 to

calculate the joint accelerations:
q=T1, (4.1)

and the following equation for the inverse dynamics part, instead of equation 3.7

to calculate the joint torques:
u=17_ Tu,. 4.2)

4.3.1 1 DoF kinematics model

The simplest arm and hand model possible is the 1 DoF model. The implementation
of such a model will allow us to build the proper setup for the further experiments,
since the structure of SNN model (neurons populations and its connections) will be
the same or pretty similar.

The FDM part of the model contains the input node, that takes joint torques and
passes it to the "FDM" ensemble, that supposed to predict the joint accelerations.
The joint accelerations are then passed to the extra node that applies low pass filter

16 Chapter 4. Experiments Implementation and Results

to the accelerations and them to the two separate integrators called "dq" for the joint
velocities and "q" for the joint positions. The "dq" integrator is connected to the "q"
integrator to calculate the joint positions and velocities. Finally, the joint positions
and velocities are passed to the output node to generate the output of the FDM
model.

The IDM part of the model contains the input node that takes joint angles, ve-
locities and task space error and passes it to the "IDM" ensemble, which supposed
to predict the joint torques, which then passed to the output node to generate the
output of the IDM model.

The structure of the described SNN model as well as the visualization of the arm

and hand model is shown in corresponding blocks in the Figure 4.5.

\ !

09

L)
Outputs IDM Inputs

IDM

FIGURE 4.5: Visualization of the structure of the arm and hand
kinematics model for 1 DoF.

During the development, we manually selected the best performing number of
neurons for all the Ensembles to be 200 and the low pass filter to be 0.3. Finally, to
evaluate the model performance, we executed the 10 simulations of 25 seconds with
pre-defined target trajectory that follows the following rules:

d:sin(t-s+o-n)g+g (4.3)
x =1-cos(d) (4.4)
y=1-sin(d) (4.5)

where ¢ is the simulation timestep, s is the speed of the target, o is the offset of the
target trajectory, and [is the total length of arm and hand model. The parameters of
the target functions were set to s = 0.2 and 0 = 1.5. Such a trajectory allows us to
evaluate the model performance and model stability for the different models. After
running the simulations, we got average measures of MAE, = 0.011, RMSE; =
0.0057 and the simulation latency of 0.18 ms, which is much faster than the real-
time. The corresponding simulation plots are available in Appendix A.1.

4.3.2 3 DoF kinematics model

The 3 DoF arm and hand model contains 3 joints which are shoulder, elbow and
wrist and 3 links which are upper arm, forearm and hand respectively. The visual-
ization of the 3 DoF arm and hand model is shown in the Figure 4.6.

4.4. Dynamics Model Implementation 17

y)

\ /)
A 4

FIGURE 4.6: Visualization of the 3 DoF arm and hand model.

The parameters of the neural network were selected to be the same as for the 1
DoF model. The only difference is that we used Area distribution approach for the
intercepts selection for the Ensembles as it was described in the section 4.2.2.

The average simulation measures for the 3 DoF model are MAE, = 0.0565,
RMSE; = 0.0454 and the simulation latency of 0.23 msec. The corresponding simu-
lation plots are available in Appendix A.2.

4.4 Dynamics Model Implementation

4.4.1 3 DoF dynamics model

The dynamics model is much more complicated that the kinematics model. To im-
plement the dynamics model we used the MuJoCo physics engine to compute the
forward dynamics and the ABR Control” library as the perfect controller to compute
the inverse dynamics. The choice of the target dynamics IDM and FDM functions
based on MuJoCo and ABR Control will allow to directly compare the SNN model
performance with the perfect controller.

To follow the experiment setup, discussed in the section 3.3, we designed and im-
plemented a 3-DoF arm and hand model from scratch for the MuJoCo engine. This
involved defining the physical properties, joint limits, and kinematic chain to ensure
accurate dynamic behavior. The development process included extensive parameter
tuning to match real-world dynamics, guided by the MuJoCo documentation® and
our experimental requirements. The model has the same structure as the 3 DoF kine-
matics model, but configured to account the dynamics properties. The visualization
of the implemented model is shown in the Figure 4.7.

FIGURE 4.7: Visualization of the 3 DoF arm and hand model imple-
mented in MuJoCo.

7https://github.com/abr/abr_control
8https://mujoco.readthedocs.io/en/stable/modeling.html

https://github.com/abr/abr_control
https://mujoco.readthedocs.io/en/stable/modeling.html

18 Chapter 4. Experiments Implementation and Results

Next, we integrated both the MuJoCo and ABR Control with the implementation
of the SNN model that should approach corresponding IDM and FDM functions.

During the implementation of the dynamics SNN model, we figured out that
the model requires more neurons and more complex structure to approximate the
dynamics functions. To optimize the model performance and number of the dimen-
sions of the Ensembles of IDM, we divided terms of the IDM equation 3.7 into two
separate parts. The Ensemble with name "JTMxu" approximated the J* My, term,
and accepted joint angles and error in task space as the input. The "Mdq-g" Ensem-
ble approximated k,I§ — g, term and accepted joint angles and joint velocities as the
input. Also, we reduced the number of dimensions for the "FDM" Ensemble, that
allowed to approximate the joint accelerations without the integrator feedback. The
resulting structure of the SNN model is shown in the Figure 4.8.

/
@)
e® .
@ q
FDC;\H ddq utput: /
Induts /
[¢)
a —
FDM Arm
A 4
@
[©)
J o3
Outputs ® Mdgo
2 0 Inputs Error
)
JTMxu

IDM

Target

FIGURE 4.8: Visualization of the structure of the arm and hand
dynamics model for 3 DoF.

To achieve better performance of the SNN model, we increased the number of
neurons of both IDM and FDM ensembles to 1000, the "q" and "dq" integrator En-
sembles was set to 500 neurons. After the evaluation, we got the average measures
of MAE, = 0.0751, RMSE; = 0.1060 and the simulation latency of 0.45 msec. The
corresponding simulation plots are available in Appendix A.3.

To compare the simulation latency of our approach and MuJoCo, we executed
the same 25 seconds simulations but used only corresponding functions that calls
MuJoCo forward dynamics interface and ABR Control inverse dynamics computa-
tion. As the result, the simulation latency of MuJoCo equals to 0.077 msec, which
not that far from ours results in terms of real-time execution on desktop computers.

4.4.2 3 DoF dynamics model optimization

Previously, we have used the Neural Engineering Framework to optimize the con-
nections of the SNN model, as it described in the equation 3.8 to approximate the
target functions. The NengoDL’ framework introduces the possibility to use regular
deep learning techniques to optimize the SNN model further. The main idea is to
use differentiable approximation of spiking neurons during training, and employ-
ing actual spiking neurons during inference. NengoDL automates these transforma-
tions if the user attempts to optimize a model that includes a spiking neuron model

9https://www.nengo.ai/nengo-dl/introduction.html

https://www.nengo.ai/nengo-dl/introduction.html

4.4. Dynamics Model Implementation 19

with an equivalent, differentiable rate-based implementation. Moreover, deep learn-
ing methods can optimize all network parameters (encoders, decoders, and biases),
whereas NEF methods only optimize decoders.

We have selected hybrid approach when the Connections weights were opti-
mized according to the NEF framework, but the Ensembles biases, gains and en-
coders were optimized using the deep-learning approach.

The optimization process was performed only on the IDM part of the model to
validate the possibility of the optimization in the scope of our problem.

To perform the optimization, we have generated separate dataset of the joint
angles, velocities, targets and the expected joint torques. The training dataset was
generated by running the simulations of the 3 DoF arm and hand model using pre-
viously implemented perfect controller and forward dynamics interface. We have
generated 10000 samples of the random joint angles, velocities and targets positions
across the task space and recorded the corresponding joint torques through the 1000
steps of the simulation. The dataset was split into the training and validation sets
with the 90/10 ratio. We used MSE as the evaluation function to compare the output
joint torques with the ground truth values and optimize the model.

We used the Adam optimizer with the learning rate of 0.1 to optimize the model.
Such a high value of the learning rate was selected empirically, as it provided better
convergence of the optimization process. We also reduced the learning rate by a
factor of 0.1 if the validation loss did not improve for 10 epochs during the training.
Finally, we stopped the optimization process if the validation loss did not improve
for 20 epochs.

We have used the NVIDIA RTX 2070 GPU to run the optimization process with
the batch size of 256 samples. The optimization process early stopped after 130
epochs, and the final model achieved the validation loss of 0.0002.

We loaded the optimized parameters for the same evaluation process for the 3
DoF dynamics model. As result, we achieved the average measures of MAE, =
0.0545, RMSE; = 0.0668 and the simulation latency of 0.44 msec. The corresponding
simulation plots are available in Appendix A.3.

20

Chapter 5

Conclusions and Future Work

In this master thesis, we approached the problem of real-time simulation of arm and
hand dynamics using Spiking Neural Networks. We conducted an extensive review
of related work to comprehend the project domain, evaluate current state-of-the-
art solutions, and assess the potential of SNNs for addressing inverse and forward
dynamics problems. To achieve the defined research goals, we developed a com-
prehensive methodology and research approach. This included designing custom
experiments, configuring simulation environments, and developing SNN models,
with it further optimization which includes dataset collection and training. For the
experiments we have carefully approached the proper model parameters selection
with possible improvements such as the use of area distribution for the intercepts
and optimizing the model parameters on GPU supported by the NengoDL, accord-
ing to the problem specifics. The gradual increase in model complexity from a simple
1 DoF kinematics model to much complex 3 DoF dynamics model demonstrated the
scalability and effectiveness of the proposed apporach. We have shown that the im-
plemented models can work in real-time speed and provide accurate predictions of
the arm and hand dynamics. The evaluation results are presented in the Table A.1.
The source code and all the related materials are available on demand in the GitHub
repository'”.

This work only discusses the perspectives of using SNN for solving the inverse
and forward dynamics problems. The next steps also could be the implementation of
the SNN model for the more complex musculoskeletal models, with higher degrees
of freedom. Also, we haven’t discussed the application and energy efficiency of the
SNN model for the low-energy hardware, which is one of the biggest advantages
of SNNs. Future work could explore the integration of SNN models with neuro-
morphic hardware to leverage their low-power consumption benefits, making them
suitable for portable and wearable devices.

In summary, this thesis has demonstrated the feasibility and effectiveness of us-
ing SNNs for real-time simulation of arm and hand dynamics. The results highlight
the potential of SNNs in providing accurate and efficient solutions for dynamic mod-
eling of human arm and hand. With further exploration and optimization, SNNs
could become a powerful tool for advanced dynamic simulations and low-energy
hardware implementations, leading to more sophisticated and practical applications
in the field of neuroprosthetics.

Ohttps://github.com/Richrdson/snn-hand-dynamics

https://github.com/R1chrdson/snn-hand-dynamics

Appendix A

Experiment simulation results

A.1 1 DoF kinematics model simulation

Arm and target position

e e e e
I~ L= =<
27 ™\
’

o o o
- N w
: :
N\

\

Position [m]
|
N

o
<)
|
[}
1
\

W

0.02 -

0.01 A

Error [m]

0.00 A

—0.01 4

0 5 10 15 20 25
Time [s]

FIGURE A.1l: The simulation for the 1 DoF kinematics model.

A.2 3 DoF kinematics model simulation

Arm and target position

Position [m]

Error

Error [m]
o
o
Ny

0 5 10 15 20 25
Time [s]

FIGURE A.2: The simulation for the 3 DoF kinematics model.

21

22 Appendix A. Experiment simulation results

A.3 3 DoF dynamics model simulation

Arm and target position

0.8 1

0.6 1

0.4 1

0.2 1

Position [m]

0.0 A1

Error

10 15 20 25
Time [s]

o 4
w

FIGURE A.3: The simulation for the 3 DoF dynamics model.

Arm and target position

Position [m]

5 10 15 20 25
Time [s]

FIGURE A.4: The simulation for the optimized
3 DoF dynamics model.

A.4. Evaluation results

A.4 Evaluation results

Model MAE, RMSE; Simulation latency
1 DoF kinematics 0.0110 0.0057 0.18
3 DoF kinematics 0.0454 0.0565 0.23
3 DoF dynamics 0.0741 0.1060 0.45
3 DoF dynamics optimized | 0.0545 0.0668 0.44

TABLE A.1: The evaluation results for the implemented kinematics
and dynamics models.

24

Bibliography

Agur, A. M. R,, Arthur F. Dalley, and 1886-1973. Grant]. C. Boileau (2008). Grant’s at-
las of anatomy. 12th ed. Philadelphia, Pa.: Lippincott Williams & Wilkins. Chap. xvi,
864 pages : illustrations ; 28 cm. ISBN: 0781770556; 9780781770552; 9780781796040;
0781796040.

Bekolay, Trevor et al. (2014). “Nengo: a Python tool for building large-scale func-
tional brain models”. In: Frontiers in Neuroinformatics 7. 1SSN: 1662-5196. DOI:
10.3389/fninf.2013.00048.

Ceolini, Enea et al. (Aug. 2020). “Hand-Gesture Recognition Based on EMG and
Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Comput-
ing”. In: Frontiers in Neuroscience 14. 1SSN: 1662-453X. DOI: 10.3389/fnins.2020.
00637.

DeWolf, Travis, Pawel Jaworski, and Chris Eliasmith (2020). Nengo and low-power Al
hardware for robust, embedded neurorobotics. DOI: 10.48550/ARXIV.2007.10227.
DeWolf, Travis et al. (Nov. 2016). “A spiking neural model of adaptive arm control”.
In: Proceedings of the Royal Society B: Biological Sciences 283.1843, p. 20162134. ISSN:

1471-2954. DOI: 10.1098/rspb.2016.2134.

Eliasmith, Chris and C. H. Anderson (2002). Neural Engineering: Computation, Repre-
sentation, and Dynamics in Neurobiological Systems, p. 376. ISBN: 0262050714.

Featherstone, Roy (2008). Rigid Body Dynamics Algorithms. Springer US. ISBN: 9780387743141.
DOI: 10.1007/978-1-4899-7560-7.

Garg, Nikhil et al. (July 2021). “Signals to Spikes for Neuromorphic Regulated Reser-
voir Computing and EMG Hand Gesture Recognition”. In: International Confer-
ence on Neuromorphic Systems 2021. ICONS 2021. ACM. DOI: 10.1145/3477145.
3477267.

Gautam, Arvind et al. (2020). “MyoNet: A Transfer-Learning-Based LRCN for Lower
Limb Movement Recognition and Knee Joint Angle Prediction for Remote Mon-
itoring of Rehabilitation Progress From sEMG”. In: IEEE Journal of Translational
Engineering in Health and Medicine 8, 1-10. ISSN: 2168-2372. DOI: 10.1109/jtehm.
2020.2972523.

Hwu, Tiffany et al. (2016). A Self-Driving Robot Using Deep Convolutional Neural Net-
works on Neuromorphic Hardware. DOI: 10.48550/ARXIV.1611.01235.

Jaworski, Lukasz and Robert Karpiriski (June 2017). “Biomechanics of the human
hand”. In: Journal of Technology and Exploitation in Mechanical Engineering 3.1, pp. 28—
33. DOI: 10.35784/ jteme.536.

Khatib, O. (Feb. 1987). “A unified approach for motion and force control of robot
manipulators: The operational space formulation”. In: IEEE Journal on Robotics
and Automation 3.1, 43-53. 1SSN: 0882-4967. DOI: 10.1109/jra.1987.1087068.

Kvrgic, Vladimir and Jelena Vidakovic (2020). “Efficient method for robot forward
dynamics computation”. In: Mechanism and Machine Theory 145, p. 103680. ISSN:
0094-114X. DOI: 10.1016/ j .mechmachtheory.2019.103680.

Lee, Chankyu et al. (Feb. 2020). “Enabling Spike-Based Backpropagation for Training
Deep Neural Network Architectures”. In: Frontiers in Neuroscience 14, p. 119. DOI:
10.3389/fnins.2020.00119.

https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fnins.2020.00637
https://doi.org/10.3389/fnins.2020.00637
https://doi.org/10.48550/ARXIV.2007.10227
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1145/3477145.3477267
https://doi.org/10.1145/3477145.3477267
https://doi.org/10.1109/jtehm.2020.2972523
https://doi.org/10.1109/jtehm.2020.2972523
https://doi.org/10.48550/ARXIV.1611.01235
https://doi.org/10.35784/jteme.536
https://doi.org/10.1109/jra.1987.1087068
https://doi.org/10.1016/j.mechmachtheory.2019.103680
https://doi.org/10.3389/fnins.2020.00119

Bibliography 25

Leeuwen, J. van, P. Aerts, and E. Otten (2003). “Inverse and forward dynamics: mod-
els of multi-body systems”. In: Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 358.1437, pp. 1493-1500. DOI: 10.1098/rstb.
2003.1354.

Manukian, Mykhailo, Serhii Bahdasariants, and Sergiy Yakovenko (Dec. 2023). “Ar-
tificial physics engine for real-time inverse dynamics of arm and hand move-
ment”. In: PLOS ONE 18.12, e0295750—.

Olmo, Manuel del and Rosario Domingo (Dec. 2020). “EMG Characterization and
Processing in Production Engineering”. In: Materials 13.24, p. 5815. 1SSN: 1996-
1944. DOI: 10.3390/ma13245815.

Pande, Sandeep et al. (Jan. 2013). “Modular Neural Tile Architecture for Compact
Embedded Hardware Spiking Neural Network”. In: Neural Processing Letters 38.2,
pp- 131-153. 1sSN: 1573-773X. DOI: 10.1007/s11063-012-9274-5.

Pizzolato, C. et al. (Oct. 2016). “Real-time inverse kinematics and inverse dynam-
ics for lower limb applications using OpenSim”. In: Computer Methods in Biome-
chanics and Biomedical Engineering 20.4, 436—445. 1SSN: 1476-8259. DOI: 10. 1080/
10255842.2016.1240789.

Place, C.M. (Nov. 2017). Dynamical Systems. DOI: 10.1201/9781315141541.

Polydoros, Athanasios S., Lazaros Nalpantidis, and Volker Kruger (Sept. 2015). “Real-
time deep learning of robotic manipulator inverse dynamics”. In: 2015 IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS). IEEE. DOI: 10 .
1109/iros.2015.7353857.

Porsa, Sina, Yi-Chung Lin, and Marcus G. Pandy (Dec. 2015). “Direct Methods for
Predicting Movement Biomechanics Based Upon Optimal Control Theory with
Implementation in OpenSim”. In: Annals of Biomedical Engineering 44.8, 2542-2557.
ISSN: 1573-9686. DOT: 10.1007/s10439-015-1538-6.

Ren, Jia-Liang et al. (May 2019). “Deep Learning based Motion Prediction for Ex-
oskeleton Robot Control in Upper Limb Rehabilitation”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. DOI: 10.1109/icra.2019.
8794187.

Rueckauer, Bodo et al. (Dec. 2017). “Conversion of Continuous-Valued Deep Net-
works to Efficient Event-Driven Networks for Image Classification”. In: Frontiers
in Neuroscience 11. ISSN: 1662-453X. DOI: 10.3389/fnins.2017.00682.

Sobinov, Anton et al. (Dec. 2020). “Approximating complex musculoskeletal biome-
chanics using multidimensional autogenerating polynomials”. In: PLOS Compu-
tational Biology 16.12, pp. 1-26. DOI: 10.1371/journal .pcbi.1008350.

Stone, James (June 2018). Principles of Neural Information Theory: Computational Neu-
roscience and Metabolic Efficiency. 1ISBN: 978-0993367922.

Tiwari, Neha et al. (2018). “Brain computer interface: A comprehensive survey”. In:
Biologically Inspired Cognitive Architectures 26, pp. 118-129. 1SSN: 2212-683X. DOI:
10.1016/j.bica.2018.10.005.

Todorov, Emanuel (2014). “Convex and analytically-invertible dynamics with con-
tacts and constraints: Theory and implementation in MuJoCo”. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6054-6061. DOTI:
10.1109/ICRA.2014.6907751.

Yoshimura, Natsue et al. (Sept. 2017). “Decoding finger movement in humans using
synergy of EEG cortical current signals”. In: Scientific Reports 7.1. ISSN: 2045-2322.
DOI: 10.1038/s41598-017-09770-5.

Yough, Matthew G. et al. (May 2021). “A segmented forearm model of hand pronation-
supination approximates joint moments for real time applications”. In: 2021 10th

https://doi.org/10.1098/rstb.2003.1354
https://doi.org/10.1098/rstb.2003.1354
https://doi.org/10.3390/ma13245815
https://doi.org/10.1007/s11063-012-9274-5
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.1201/9781315141541
https://doi.org/10.1109/iros.2015.7353857
https://doi.org/10.1109/iros.2015.7353857
https://doi.org/10.1007/s10439-015-1538-6
https://doi.org/10.1109/icra.2019.8794187
https://doi.org/10.1109/icra.2019.8794187
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1371/journal.pcbi.1008350
https://doi.org/10.1016/j.bica.2018.10.005
https://doi.org/10.1109/ICRA.2014.6907751
https://doi.org/10.1038/s41598-017-09770-5

26 Bibliography

International IEEE/EMBS Conference on Neural Engineering (NER). IEEE. DOI: 10.
1109/ner49283.2021.9441405.

Zanchettin, Andrea Maria et al. (Jan. 2010). “Kinematic motion analysis of the human
arm during a manipulation task”. In: vol. 2, pp. 1-6. ISBN: 978-3-8007-3273-9.

https://doi.org/10.1109/ner49283.2021.9441405
https://doi.org/10.1109/ner49283.2021.9441405

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research Goals
	Structure of Master Thesis

	Related Work
	Arm and Hand Dynamics Simulation
	Inverse Dynamics and Forward Dynamics Problems
	Spiking Neural Networks Perspective

	Methodology and Research Approach
	Problem Statement
	SNN Simulation Toolkit
	Experiment Setup
	Metrics and Evaluation
	Requirements

	Experiments Implementation and Results
	Neural Integrator Implementation
	Model Parameters Selection
	Input preprocessing
	Intercepts configuration

	Kinematics Model Implementation
	1 DoF kinematics model
	3 DoF kinematics model

	Dynamics Model Implementation
	3 DoF dynamics model
	3 DoF dynamics model optimization

	Conclusions and Future Work
	Experiment simulation results
	1 DoF kinematics model simulation
	3 DoF kinematics model simulation
	3 DoF dynamics model simulation
	Evaluation results

	Bibliography

