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by Ostap Hembara
Abstract

In recent years, the field of 3D scene reconstruction has witnessed significant ad-
vancements, fueled by growing interest in applications ranging from augmented
reality to autonomous navigation. A key component of this progress has been the
development of Neural Radiance Fields (NeRF), which have revolutionized the way
we render and interact with 3D environments. Despite these advancements, the
process of camera pose estimation remains a bottleneck, often requiring extensive
computational resources and time. This thesis introduces an innovative approach
that leverages 3D Gaussian Splatting, a technique that provides a more explicit rep-
resentation during both the rendering and training phases, enhancing the efficiency
and clarity of 3D reconstructions. Specifically, we focus on a method that utilizes es-
timated monocular depth maps to recover camera poses, which are then used to re-
construct the 3D scene. This methodology not only simplifies the traditional pipeline
by obviating the need for direct pose estimation but also improves the speed of the
reconstruction process. We evaluate our approach using both synthetic and real-
world datasets, in order to see it performance in different scenarios.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the development of technologies [Gaurav Chaurasia and Drettakis,
2013; Georgios Kopanas and Drettakis, 2021] capable of reconstructing 3D scenes
in real-time has gathered increasing attention due to its vast array of applications.
These applications span various fields such as augmented and virtual reality, where
users interact with seamless integrations of digital and real-world elements[Zhiwen
Fan, 2023], autonomous vehicle navigation which relies on accurate environmental
modeling for safe operation, and cultural heritage preservation where delicate arti-
facts and sites can be digitally preserved in great detail. The ability to render these
reconstructions in real-time significantly enhances user experience and operational
efficiency, making the pursuit of more advanced 3D reconstruction methods a prior-
ity in Computer Vision research field.

The subject of 3D reconstruction is divided into several categories, each with its
advantages and disadvantages:

Traditional Methods: These methods typically rely on feature extraction and
matching across multiple images to estimate depth and reconstruct scenes. Tech-
niques such as stereo vision and structure from motion (5fM) fall into this cate-
gory. While effective, they often suffer from high computational costs and can
struggle with textureless surfaces or repetitive patterns.

Neural Radiance Fields (NeRF): NeRF has emerged as a powerful tool for high-
fidelity 3D rendering by utilizing deep learning to model the volumetric scene
function[Alex Yu, 2021]. This technique excels in handling complex lighting
and fine details but requires substantial computational resources and processing
time, making it less feasible for real-time applications[Truong et al., 2023].

3D Gaussian Splattings: As an evolution in rendering technology, 3D Gaus-
sian Splattings offer a novel approach by using Gaussian kernels to project 3D
points onto 2D planes, effectively allowing for efficient and dynamic scene ren-
dering[Charatan et al., 2023]. This method has shown promising results in terms
of both speed and quality of the reconstructions, making it particularly suitable
for real-time applications[Paliwal et al., 2024].

Among the mentioned methods, 3D Gaussian Splattings (3DGS) stand out due
to their demonstrated ability to efficiently balance rendering quality with compu-
tational speed[Chung, Oh, and Lee, 2023]. The explicit representation provided by
3DGS aids in clearer and more accurate scene reconstructions. However, a signif-
icant challenge in fully leveraging the potential of 3D Gaussian Splattings lies in
the prerequisite of known camera poses. Traditional methods for determining these
poses, such as using COLMAP[Schonberger and Frahm, 2016], are computationally
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intensive and can be impractical in real-time scenarios. This creates a bottleneck that
hinders the broader application of 3DGS in real-time 3D reconstruction.

Since accurate camera poses are essential for reconstructing scenes using 3D
Gaussian Splatting, this work aims to develop new method to recover camera poses
more efficiently and with less computation. By leveraging estimated monocular
depth maps, we propose a novel approach to deduce camera poses without the need
for traditional, resource-heavy algorithms. By significantly reducing computational
load and rendering time, this advancement opens up new possibilities for real-time
3D scene reconstruction

1.2 Research Objective

In this master thesis, we outline ideas to boost the efficiency and accuracy of 3D
scene reconstruction using 3D Gaussian Splatting. Our study concentrates on sim-
plifying the reconstruction process, by eliminating the typically required step of
camera pose recovery using conventional methods. We focus on the following goals:

¢ employing 3D Gaussian Splatting for effective 3D scene reconstruction, capi-
talizing on its ability to deliver high-quality outputs with reduced computa-
tional demands and training time;

* seeking to avoid traditional camera pose estimation methods due to their com-
putational intensity and time consumption;

¢ leveraging depth maps which are generated from monocular images by a depth
estimation model;

¢ use synthetic data with known ground truth depth and real-world data to eval-
uate performance in different scenarios.

1.3 Thesis Structure

In Chapter 2 we review relevant methods for 3D scene reconstruction and pose re-
covery. Suggested method and theory that describes it outlined in Chapter 3. De-
scription of custom generated data and real-world data can be found in Chapter 4.
Chapter 5 provides detail overview about experiment settings, data preprocessing
and result metrics. Last but not list, conclusions and future work ideas is given in
Chapter 6.



Chapter 2

Related Work

2.1 Traditional 3D Reconstruction Methods

Traditional 3D reconstruction methods have established a robust framework for gen-
erating three-dimensional models from two-dimensional data. These techniques,
which have evolved significantly over the years, are characterized by their robust
handling of semantic information and intricate multi-staged processes that add lay-
ers of complexity to their implementation.

The advent of Structure-from-Motion (SfM) technology, notably advanced by
[Snavely, Seitz, and Szeliski, 2006], marked a significant development in the field.
SfM facilitates the creation of a sparse point cloud by analyzing a collection of pho-
tographs to estimate camera positions and orientations in 3D space. This initial stage
is crucial for understanding the basic structure of the scene but is generally not suf-
ficient for full 3D reconstruction. This limitation led to the integration of multi-view
stereo (MVS) techniques, as seen in the work of [Galliani, Lasinger, and Schindler,
2015], which build upon the sparse data provided by SfM to create more detailed and
comprehensive 3D models. These models are constructed by meticulously align-
ing and merging multiple images from different viewpoints, thereby enhancing the
depth and realism of the reconstruction.

Following the construction of 3D models, the process of view synthesis begins,
where novel views of the scene are generated by re-projecting and blending input
images based on the reconstructed geometry. This stage is pivotal in applications
such as virtual reality, filmmaking, and architectural visualization, where lifelike
renderings of virtual scenes are required. Techniques developed by researchers like
[Schonberger et al., 2016b; Schonberger et al., 2016a]. Xu and Tao, 2019 have shown
impressive capabilities in synthesizing new views by effectively utilizing the under-
lying geometric data. However, despite their successes, these methods often strug-
gle with issues such as unreconstructed regions—areas where the geometry has not
been fully captured—and "over-reconstruction,” where erroneous geometry is pro-
duced.

Recent advances in neural rendering, as highlighted by [Tewari et al., 2022] have
started addressing these challenges more effectively. Neural rendering techniques
leverage deep learning to refine the synthesis process, reducing artifacts and im-
proving the quality of the reconstructed views. Additionally, these methods mitigate
the need for extensive computational resources traditionally required for storing and
processing large sets of input images, particularly on GPU-intensive tasks.

Overall, traditional 3D reconstruction methods form a complex, multistage pipeline
that starts from basic geometrical estimation to sophisticated view synthesis.
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2.2 Exploring Neural Radiance Fields

Neural Radiance Fields (NeRFs) have emerged as a groundbreaking approach in the
field of 3D scene reconstruction, particularly known for their ability to synthesize
highly realistic images from sparse views of a scene. Developed by [Mildenhall et
al., 2020], NeRFs use a fully connected deep neural network to model the volumetric
scene implicitly.

At its core, a NeRF represents a scene using a continuous 5D function that maps
spatial coordinates (x,y,z) and viewing directions (®, ®) to color (RGB) and den-
sity (0). The model takes a set of sparse 2D images of a scene, each associated with
camera parameters, and learns to predict the color and opacity of points in space as
seen from specific viewpoints. During training, the network optimizes a loss func-
tion that minimizes the difference between the observed colors in the images and
the colors predicted by the model for corresponding camera rays[Lin et al., 2021].

The process involves casting rays through each pixel in the training images and
sampling points along these rays. For each sample point, the NeRF model predicts
both color and density. The color and density values are then used to compute the
final pixel color through a differentiable rendering technique known as volume ren-
dering. This technique uses the classic "alpha compositing" approach to blend colors
along a ray, considering the accumulated opacity.

NeRF employs a simple but deep fully connected neural network architecture
with several layers of ReLU activations. The input to the network includes the 3D co-
ordinates and 2D direction parameters, which are first transformed using positional
encoding to allow the model to capture higher frequency details in the scene[Jeong et
al., 2021]. This encoding transforms each input coordinate into a higher-dimensional
space, enabling the network to learn fine spatial variations more effectively.

Despite the simplicity of the architecture, the key to NeRF’s effectiveness lies
in its training strategy and the use of hierarchical volume sampling techniques to
efficiently approximate the integral over the volume rendering equation. This hier-
archical approach speeds up convergence and enhances detail capture by focusing
more network capacity on areas with complex geometry or high variation in appear-
ance.

NeRFs can generate highly realistic and detailed 3D renderings from a limited
set of images, surpassing the quality of traditional methods. They excel at syn-
thesizing novel views of a scene with precise handling of occlusions and complex
lighting[Barron et al., 2021].

NeRFs require significant computational resources and time to train, often need-
ing multiple GPUs and hours to days of processing time. Due to the intensive com-
putation required during inference, NeRFs are generally not suitable for real-time
applications[Zhang et al., 2020].

In summary, NeRFs represent a significant advance in the field of 3D scene recon-
struction, offering unparalleled rendering quality at the cost of high computational
demands and long training times. As research progresses, ongoing efforts aim to
address these drawbacks, making NeRFs more practical for a broader range of ap-
plications.

2.3 Point-Based Rendering and 3D Gaussian Splattings

Point-based rendering methods[Franke et al., 2024], and particularly 3D Gaussian
Splattings, have brought significant advancements to the field of 3D reconstruction
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by focusing on efficiency and adaptability. 3DGS, a novel approach within this cate-
gory, has revolutionized the process by addressing some of the critical limitations of
traditional and other contemporary rendering techniques[Kopanas et al., 2021].

They work by projecting 3D points onto a 2D plane, using Gaussian kernels to
manage the splatting process. This technique treats each point in a point cloud as
a center of a 3DGS, blending these points smoothly in the image space to form a
continuous surface representation. The use of Gaussian kernels helps in handling
overlaps between points, smoothing out the resulting image and filling gaps effec-
tively.

This approach differs from traditional mesh-based methods by eliminating the
need to construct complex polygonal meshes. Instead, 3D Gaussian Splattings rely
directly on the raw point clouds, which are simpler to manipulate and can be dy-
namically adjusted without complex computations. This direct utilization of point
clouds not only simplifies the processing pipeline but also reduces the computa-
tional overhead associated with mesh processing[Wu et al., 2023].

Unlike methods that require dense mesh or volumetric representations, 3D Gaus-
sian Splattings maintain a relatively low memory footprint. This efficiency is partic-
ularly beneficial when dealing with large datasets or when operating within hard-
ware with limited memory resources[Zhang et al., 2024].

One of the most significant advantages of 3DGS is the minimal training required
compared to deep learning-based methods like NeRFs. This feature, coupled with its
fast rendering capabilities, makes a method suitable for applications needing quick
movement through the scene, such as interactive 3D applications[Miiller et al., 2022].

The simplicity and efficiency of 3D Gaussian Splattings allow for easier integra-
tion into real-time systems such as game engines and web browsers. This compat-
ibility opens up possibilities for real-time interactive 3D visualizations on the web
and in gaming, where users can experience high-quality 3D environments without
the need for extensive computing resources.

2.4 Camera Pose Recovery Methods

Traditional methods of 3D scene reconstruction typically rely on accurate camera
pose estimation to align and integrate multiple views into a coherent 3D model. This
often involves complex photogrammetric software like COLMAP[Schonberger and
Frahm, 2016], which utilizes feature extraction, feature matching, and bundle adjust-
ment techniques to deduce camera positions and orientations. However, there are
innovative approaches that circumvent the need for direct camera pose estimation,
leveraging alternative data sources and methodologies to simplify the reconstruc-
tion process.

Gaussian SLAM[Yugay et al., 2023] utilizes the concept of 3D Gaussian Splattings
within a SLAM framework to enhance both the mapping and localization processes.
This method smoothness the data representation and aids in the interpretation of
scene structure. The 3DGS representation helps to efficiently manage and merge
overlapping data points from different viewpoints, enhancing the robustness of the
map construction.

The primary advantage of Gaussian SLAM is its ability to handle large-scale
environments with a high degree of detail. By employing Gaussian kernels, this
method effectively reduces noise and fills gaps in the data, which are common is-
sues in traditional SLAM systems that rely solely on raw point clouds or mesh data.
Additionally, the 3DGS approach allows for continuous updates to the map with
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minimal computational overhead, making it suitable for dynamic environments and
mobile platforms such as robots and autonomous vehicles.

SplaTAM (Splat, Track and Map)[Keetha et al., 2024] is a sophisticated approach
to SLAM that utilizes 3D Gaussian Splatting techniques specifically adapted for
dense RGB-D data. This method differentiates itself from other SLAM approaches
by focusing on high-density, real-time mapping and tracking using RGB-D sensors,
which provide both color (RGB) and depth (D) data simultaneously. SplaTAM in-
tegrates these data types into a cohesive system that leverages the advantages of
3D Gaussian Splatting for enhanced environmental mapping and navigation. While
both SplaTAM and Gaussian SLAM utilize 3DGS techniques, their applications and
methodologies have distinct differences. SplaTAM emphasizes real-time tracking
and mapping capabilities, ideal for applications requiring immediate feedback and
interaction, such as augmented reality or robotic navigation in dynamically chang-
ing environments.

The NoPE-Nerf method, introduced by [Wenjing Bian, 2022], marks a substantial
development in the Neural Radiance Fields (NeRF) technology by eliminating the
need for pre-determined camera poses. This innovative approach integrates pose
estimation directly into the NeRF optimization pipeline, allowing it to learn the ge-
ometry of the scene and the viewpoints of the images simultaneously. What sets
NoPE-Nerf apart is its unique framework which employs an unsupervised learning
strategy to infer camera poses directly from image data. This method uses differ-
ential rendering as a feedback mechanism to iteratively adjust both the 3D scene
parameters and the associated camera poses. By treating pose estimation as an inte-
gral part of the NeRF optimization process, NoPE-Nerf avoids the common pitfalls
associated with incorrect or imprecise initial pose estimates that can significantly
degrade the quality of the reconstructed scene. NoPE-Nerf also introduces a regu-
larization scheme designed to prevent the convergence to degenerate or implausible
camera configurations, a common issue in unsupervised pose estimation scenarios.
This regularization is crucial for maintaining the integrity of the camera trajecto-
ries and ensuring that the pose estimates evolve in a physically plausible manner
throughout the learning process.

Lu-Nerf, developed by [Cheng et al., 2023], introduces a novel framework for
scene and pose estimation by leveraging the concept of local Neural Radiance Fields
(NeRFs) that are initially unposed. This method focuses on synchronizing multiple
local NeRFs to reconstruct a scene and estimate camera poses simultaneously. The
core idea is to divide the scene into smaller segments, each represented by a local
NeRF, and then optimize these segments together to achieve global consistency in
both geometry and appearance. This approach not only enhances the efficiency of
the NeRF-based reconstruction process but also improves its scalability and flexi-
bility in handling diverse and complex scenes. Lu-Nerf is particularly effective in
environments where traditional global NeRF applications might struggle with com-
putational overhead or require excessive fine-tuning.

NeRF-, proposed by [Wang et al., 2022], tackles the challenge of constructing
Neural Radiance Fields without pre-known camera parameters. This method inno-
vatively modifies the traditional NeRF approach by incorporating a self-calibrating
mechanism that estimates camera poses in conjunction with the scene’s 3D geome-
try. The key advancement here is the method’s capability to adaptively refine cam-
era pose estimates through a continuous feedback loop that aligns the generated 3D
model with observed image data. This capability makes NeRF- highly applicable in
situations where camera metadata is unavailable or unreliable, such as in historical
image datasets or in applications where manual calibration is impractical.
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Recent advancements in 3D reconstruction technology have led to the develop-
ment of COLMAP-free 3D Gaussian Splattings, as described by [Fu et al., 2023]. This
innovative method leverages depth information extracted directly from images, by-
passing the traditional need for explicitly calculating camera poses. By using depth
maps to inform the placement and shaping of 3D Gaussian Splattings, this approach
simplifies the reconstruction process, significantly reducing its complexity and com-
putational demands. COLMAP-free 3D Gaussian Splattings capitalize on both local
and global 3DGS models to refine the scene’s structure iteratively. Initially, local
3DGS models are constructed for individual images using the depth data to approx-
imate the scene’s geometry at a granular level. These local models are crucial for
capturing fine details and subtle nuances of the scene’s local geometry. As the re-
construction progresses, these local models are integrated into a global 3DGS frame-
work. This global model aggregates information across multiple views, enhancing
the overall consistency and coherence of the reconstructed scene. The process in-
volves a strategic densification of 3DGSs, where additional 3DGSs are gradually
added to the model to increase its resolution and detail, especially in areas where
the initial depth data may be sparse or noisy.

The main advantage of using depth maps for pose recovery lies in its simplicity
and speed. Unlike traditional methods that require multiple stages of processing and
optimization, depth-based pose recovery can be integrated directly into the render-
ing pipeline of 3DGS. This integration not only speeds up the reconstruction process
but also reduces the potential for errors that are often introduced during multi-step
processing.



Chapter 3

Method

In this chapter, we explore the methods we’ve used for 3D scene reconstruction with
3D Gaussian Splattings, partially inspired by similar techniques from previously
published research, notably the approach described in the paper on Fu et al., 2023.
Recognizing the influence of this foundational work is essential. However, due to
a lack of detailed explanations and unavailable code at the time of our study, we
encountered significant gaps in understanding how to implement these methods
fully.

To address these gaps, we developed our own version of the methodology. This
chapter will detail our approach, highlighting where our methods align with the
established techniques and where we’ve introduced new ideas or modifications.
Our goal is to clearly differentiate our unique contributions from the baseline meth-
ods, offering a transparent view of how we’ve built on and diverged from previous
works.

3.1 3D Gaussian Spattings

In the development of our approach for a 3D scene reconstruction, we incorporate a
novel method known as 3D Gaussian Splattings (3DGS), which offers a distinct way
to model and render complex scenes efficiently. Here we detail the main aspects of
3DGS and its integration into our methodology, emphasizing its parametric nature
and the advantages it brings to 3D reconstruction tasks.

3DGS models the scene as a collection of 3D Gaussians, each defined by a set
of parameters that explicitly describe its geometric and optical characteristics. This
method contrasts with implicit forms of representation such as those used in Neu-
ral Radiance Fields (NeRFs), providing a more direct and manipulable model of the
scene. Each Gaussian in 3DGS is characterized by a center (mean) point, The Gaus-
sian function G(x) in 3DGS is defined as follows:

G(x) — ef%(x*H)Tzil(x*.“) (31)

where y is the mean (center) point, and ¥ is the covariance matrix that defines
the spatial distribution and orientation of the Gaussian in 3D space. This parametri-
sations represent anisotropic 3D elipses which are rasterized along the ray.

Each Gaussian is parameterized by several components that together describe its
contribution to the scene:

* Center Position i € R3: Specifies the central location of the Gaussian in the
3D space.
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FIGURE 3.1: Example of 3DGSs of different scale, orientation and cen-
ter that lie along the ray[Yurkova, 2023].

¢ Color Representation: Utilizes spherical harmonics (SH) coefficients c € RF to
encode the color information, where k represents the degrees of freedom in the
color model.

* Rotation Factorr € R*: Defined in quaternion terms to manage the orientation
of the Gaussian.

e Scale Factor s € R?: Determines the size of the Gaussian along each axis,
forming an ellipsoidal shape.

* Opacity « € R: Controls the transparency of the Gaussian, affecting how it
blends with other elements in the scene.

The rendering process involves projecting these 3D Gaussians onto a 2D image
plane using the camera’s view transformation W. The projection modifies the 3D
covariance matrix into a 2D form:

Yop = JWEW T (3.2)

where | represents the Jacobian of the affine transformation approximating the
projective transformation.

Each pixel’s color and opacity result from alpha-blending the contributions of all
Gaussians that influence that pixel, computed as:

N i—1
Cpix = Z Citk; H(l - ‘X]) (3.3)
=1 j=1

This formula integrates the density and color of points, derived from their spher-
ical harmonics and opacity parameters, through the Gaussian-defined ellipsoidal in-
fluence.

To perform scene reconstruction, the initialized 3DGS points are fitted to the ob-
served data by optimizing these parameters against a photometric loss, using the
differentiable rendering equation. Our approach enhances this process by integrat-
ing estimated camera poses instead of relying solely on ground-truth data, allowing
for dynamic adaptation to varying observational conditions.

In our study, we primarily utilized the implementation provided by the authors
as outlined in Bernhard Kerbl, 2023. Specifically, we adopted their approach of ini-
tializing the scene using a point cloud. We also applied heuristic values from the
implementation, which have proven to accelerate the 3D reconstruction process for
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individual frames. This methodological choice ensures a more efficient and reliable
framework for our analysis.

3.2 Relative Pose Estimation with Local 3DGS

In our methodology, we employ the concept of local 3D Gaussian Splattings (3DGS),
inspired by the techniques described in the Fu et al., 2023, to facilitate robust relative
transformations between frames. This approach leverages the initial generation of a
local 3D point cloud from depth and image data, which serves as the basis for subse-
quent 3D Gaussian modeling and optimization. The use of local 3DGS is crucial for
establishing precise extrinsic transformations that are foundational to the accurate
alignment and reconstruction of successive frames in a 3D space. By focusing on
local model fitting, we ensure that each frame is evaluated independently, reducing
the propagation of error across the sequence and enhancing the fidelity of the scene
reconstruction.

While we utilize the standard 3DGS optimization pipeline Bernhard Kerbl, 2023
as a basis for our process as done in Fu et al., 2023, we have implemented specific
modifications to better suit our reconstruction needs. Notably, we have adjusted the
pipeline to include a densification step, which is initiated earlier in the optimization
process to enhance the model’s accuracy and detail from the outset. Additionally,
unlike the default method, we have chosen to eliminate the step of resetting the
opacity during optimization of local 3DGS. This change aims to expedite the overfit-
ting process to the initial frame, allowing for faster convergence while still maintain-
ing high accuracy in the fit between the modeled Gaussians and the observed scene
data.

To establish an initial extrinsic transformation between two frames, we utilize lo-
cal 3DGS. This technique begins by using the image Ip and its corresponding depth
map Dy to unproject points into camera space, creating an initial 3D point cloud.
These points form the foundation for fitting a local 3DGS model, which is overfitted
to the scene. An essential step in this process involves employing metrical depth,
which is crucial for ensuring consistent and comparable depth measurements across
different views. Metrical depth, expressed in real-world units such as meters, allows
for precise scaling and accurate positioning of objects within the 3D space, thus pre-
serving the geometric fidelity of the scene.

For quantifying the fit between the 3 model and the scene, we apply a loss for-
mula that combines the Structural Similarity Index (SSIM) and photometric L1 loss,
effectively measuring discrepancies between the rendered 3DGS image Go and the
original image Ip:

Loss = Aq - SSIM(G(), Io) + Aj - HGO — I()||1 (3.4)

This loss function helps refine the Gaussian parameters to closely match the ob-
served data in Iy, ensuring that the representation Gy is tightly coupled with the
actual scene’s appearance and structure.

Once we have an overfitted representation of Gy, the next step involves estimat-
ing a 6-degree transformation comprising 3 degrees of rotation and 3 degrees of
translation to find the relative pose transition into the next frame I;. This transfor-
mation is optimized by minimizing the photometric loss same as in (3.4), but instead
of Iy - I, effectively aligning Go with I; based on observed image features. It is im-
portant to mention that we freeze all parameters of 3DGS during optimization of
relative transform.
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FIGURE 3.2: From initial unprotected point cloud, the optimization
process renders and generates a set of 3DGS Gp. Optimization scheme
provided by authors [Bernhard Kerbl, 2023]

Relative Pose Parameters
Similar to the strategy employed in Fu et al., 2023, we optimize camera transforma-
tions using a translation vector and a quaternion representation for rotation. Orig-
inally, Fu et al., 2023 did not specify details on how gradients were propagated to
learn these parameters. Due to the limitations of the rasterizer used in the 3D Gaus-
sian Splattings Bernhard Kerbl, 2023, we are unable to directly pass learnable ro-
tation R and translation T parameters to the rasterizer, as gradient propagation is
restricted to the parameters of the 3DGS models themselves. Consequently, rather
than moving the camera during optimization, we adjust the scene itself by trans-
forming the 3DGS parameters.

To address these challenges, we optimize the rotation component using a quater-
nion representation, expressed as

q=a+bi+cj+dk (3.5)

where a is the real part, and b, ¢, d are the imaginary parts. This quaternion repre-
sentation enables continuous and smooth optimization of scene rotation, capable of
representing rotations exceeding 360 degrees. Unlike rotation matrices, which can-
not be interpolated smoothly and may accumulate numerical errors, or Euler angles,
which suffer from discontinuities and loss spikes at the 0 and 360-degree boundaries,
quaternions avoid these issues. The ability to interpolate between quaternion states
makes them particularly suitable for optimizing 3D reconstructions, allowing for
more nuanced and precise control over the rotation of the scene elements

The translation component is optimized as a vector,

b= (ty ty, t2) (3.6)

simplifying the model’s learning process for spatial adjustments. This approach of
directly optimizing rotation (q) and translation (t) parameters as part of the model
ensures that the gradients can effectively propagate through these transformations,
enabling robust learning and accurate pose estimation in complex 3D reconstruction
tasks.

Applying Relative Pose to 3DGS Parameters
In our optimization process, we tackle the challenge of aligning local 3D Gaussian
Splattings (3DGS) for each timestep ¢t with the subsequent camera frame using a rel-
ative transformation. Our aim is to identify the transformation ®; that minimizes
the discrepancy between the rendered image and the following frame. This trans-
formation encompasses six degrees of freedom (6DoF), covering both rotation and
translation components. However, a significant problem arises from our inability to
directly apply these transformations to the rasterizer parameters, making it crucial
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to handle these transformations with precision across the 3DGS parameters, which
we detail further in this chapter. This careful application of transformations repre-
sents a key contribution of our work, filling a gap left by the original work Fu et
al., 2023, which did not provide detailed implementation insights. The optimization
formula can be expressed as:

Oargmin = argmin Loss (R(Gt ® ©r), I14+1) (3.7)

Here, G; represents the optimized local 3DGS at time t, ©; is the 6DoF transfor-
mation applied to G;, and R denotes the rendering function that projects G; trans-
formed by ©; onto the image plane. I;;; is the subsequent image frame against
which the rendered image is compared.

To accurately simulate the effect of rendering Gaussian parameters with specific
camera transformations, we methodically apply these transformations to specififc
parameters of our 3D Gaussians. The focus is on adjusting the centers and the ro-
tational attributes of the Gaussians to align with the new camera orientations and
positions.

FIGURE 3.3: Relative transforms (qo,to), (q1,t1), - (gn—1,tn—1) be-
tween timestemps Iy, [, ..., I,. Image adapted from [Sweeney, n.d.]

The centers of the Gaussians, denoted as y, are adapted by translating them by
the vector t and rotating them using the quaternion q. This adjustment aligns u
with the camera’s new viewpoint, ensuring that the Gaussian centers are correctly
positioned in the transformed scene. Additionally, the rotation parameters of the
Gaussians, indicated by r, are updated according to q to maintain the correct orien-
tation of the ellipsoids relative to the camera’s altered perspective.

To avoid complexities associated with spherical harmonics during rendering pro-
cess, we have limited our model to using only the first degree of spherical harmonics
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for color representation. This decision simplifies the model by reducing it to man-
aging basic RGB values, which significantly eases the learning process. Since spher-
ical harmonics are view-dependent and defined in world space, they require adjust-
ments when the camera orientation changes. By restricting our model to the first
degree, we eliminate the need to rotate higher-order spherical harmonics, thereby
enabling more efficient updates to these parameters.

These transformations ensure that our 3D Gaussians are not only precisely posi-
tioned but also maintain their visual consistency across various camera views.

3.3 Adjusted Poses with Global 3DGS

We have found the concept of utilizing a global 3D Gaussian Splattings framework,
as demonstrated in the Fu et al., 2023, to be particularly beneficial. This global ap-
proach assists in adjusting the trajectory according to the camera views that have
already been learned, enhancing the accuracy of the model over time.

In our implementation, we have developed our own version of the optimization
pipeline to enhance this global strategy. For instance, we adopt a practice of resetting
the opacity with each new frame. Additionally, we continue to densify the global
3DGS until the end of the process, a technique suggested in the original paper but
not explicitly detailed.

A key question that arises in the context of global adjustments is whether to
apply the adjustments solely to the new camera when it arrives or to all cameras ret-
rospectively whenever a new frame is added. Fu et al., 2023 does not clearly specify
this, and to address this ambiguity, we have implemented both approaches in our
system. By doing so, we can compare their effectiveness directly in our experiments,
providing concrete results that highlight the benefits and drawbacks of each method

We propose maintaining a global scene representation, denoted as I', which is
continuously updated and extended with each new frame. This global representa-
tion I' integrates information from all previous frames, providing a robust reference
that helps in correcting and stabilizing the estimated poses over time. By compar-
ing and adjusting the newly estimated relative poses against I', we can significantly
reduce the error accumulation and align the trajectory more closely with the ground
truth. This method ensures that each frame not only contributes to but also benefits
from a cumulative and coherent global understanding of the scene, leading to more
accurate and stable long-term navigation and mapping.

Optimization of global 3DGS

Upon establishing the relative poses between frames using local 3D Gaussian
Splattings (3DGS), the next critical step involves updating the global scene represen-
tation to reflect these changes. This update process begins with the integration of
the newly processed images I; and I;;; into the global 3DGS. To refine and enhance
the accuracy of the global scene model, we undertake an optimization process that
runs for N iterations, employing the densification strategy as outlined in the original
3DGS paper. This approach incrementally builds the density and detail of the global
model, ensuring a comprehensive representation of the scene as more data becomes
available.

An essential part of this updating process is resetting the opacity values for all the
3DGS in the global set after each frame is added. This reset is crucial as it allows us
to prioritize Gaussian points that consistently appear across multiple images, thus
reinforcing the contributions from elements that maintain visibility and relevance
throughout the scene’s evolution. Initially, the overfitted local 3DGS from the first
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FIGURE 3.4: Overall optimization pipeline scheme. First we fit local
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frame, Gy, serves as the seed for the initial point cloud, providing a baseline from
which the global representation can grow.

Following the update of the global 3DGS, we revisit and adjust the relative poses
between I} and I;,;. Initially, this iterative refinement may not seem significantly
beneficial since the model is still heavily dependent on the early local transforma-
tions from the local 3DGS. However, as more frames, such as I;,,, are integrated,
the global model becomes increasingly robust. This enhancement reduces reliance
on the initial local estimates and improves the stability and accuracy of the pose
estimation process over time. As new frames continue to be added, the global repre-
sentation builds a more comprehensive and reliable depiction of the scene, thereby
reinforcing the effectiveness of the global adjustments in the pose estimation.

In contrast to local 3DGS, where Gaussians may not always align accurately with
the scene’s surface details, the global 3DGS develops a more coherent and aligned
set of 3D Gaussian Splattings. This alignment is due to the iterative integration and
optimization processes that incorporate surface details more accurately over time.
As a result, the global scene representation not only captures the broad structural
features of the environment but also refines these features to align more closely with
the physical reality of the scene, thereby providing a robust foundation for accurate
global pose estimation.

Progressive Densification
In our exploration of 3D scene reconstruction using global 3D Gaussian Splattings
(83DGS), we have identified a recurring issue of underfitting when integrating new
frames into the global model. This challenge becomes apparent when the global
3DGS does not densify sufficiently to accurately represent the dynamics introduced
by newer frames. Consequently, even after optimizing the global set with a new
frame I;, the pose adjustment for the subsequent frame I;;1 may be hindered due
to a suboptimal fit to the most recent frames, which significantly influence the pose
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estimation process.

While the Fu et al., 2023 suggests using gradient accumulation to mitigate this
issue, we propose an alternative approach to enhance the integration and fitting
process. After estimating the relative transformation between I; and I;11, we initiate
the fitting of a local 3DGS for frame I;1, then apply the calculated transformation
O to these Gaussians. To refine the integration, we implement a filtering process
that retains only those 3DGSs with an opacity greater than 0.8. This threshold was
determined experimentally to effectively highlight Gaussians that sit on the edges of
objects—areas crucial for defining object boundaries and particularly susceptible to
changes as the camera moves, capturing significant perspective shifts and structural
changes.

By selectively integrating these high-opacity edge 3DGS into the global scene,
we ensure that these critical features are emphasized, thereby accelerating the inte-
gration of new frames into the global model. This method not only enhances the fit
of subsequent frames but also improves the overall temporal coherence of the scene
reconstruction, ensuring that each new frame adapts more seamlessly into the global
context.
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Chapter 4

Data

4.1 Real World Data (CO3D)
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FIGURE 4.1: Overview of the CO3D dataset featuring various objects
from multiple views showed by the authors[Reizenstein et al., 2021].

CO3DJ[Reizenstein et al., 2021] is an object-centered dataset that features a di-
verse array of objects captured from various trajectories, providing a wide range of
viewing angles and perspectives. Each object in the dataset is typically represented
in a sequence of about 200 frames per video. This extensive collection allows for
robust testing and evaluation of 3D reconstruction algorithms across different object
types and motion dynamics.

The dataset not only includes RGB images but also provides masks for each
frame, which are crucial for focusing the reconstruction process on the object of in-
terest by filtering out background noise and irrelevant details. These masks enhance
the precision of the reconstruction by ensuring that the algorithms are primarily pro-
cessing the relevant object data.

In our research, we utilize the CO3D dataset as a key component of our testing
framework. The real-world data provided by CO3D allows us to evaluate our ap-
proach under practical conditions. Additionally, to conduct a reliable evaluation,
we use COLMAP-estimated camera poses as a proxy for ground truth. These poses
offer a benchmark against which we can measure the accuracy of the camera poses
recovered by our method. This is essential for validating the effectiveness of our
pose estimation technique, especially in scenarios where exact ground truth data
may not be available.

The CO3D dataset also includes metrics about quality of the videos, which pro-
vide insights into the visibility and clarity of the objects across different frames.
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FIGURE 4.2: Example of C0O3D dataset images, mask and labeled
camera poses using SFM methods given by the authors of the
dataset[Reizenstein et al., 2021].

These metrics are valuable for selecting suitable video sequences for testing, en-
suring that the data used in our experiments are of high quality and represent the
challenges typical in real-world scenarios.

We have picked 4 video sequences from CO3D dataset and created aliases to refer
to them in our work:

* 106_12650_23736 - outdoor camera sequence around car, we use alias car;

* 106_12648 - outdoor camera sequence around fire hydrant, we use alias hy-
drant;

* 188_20295_35748 - indoor camera sequence around plant, we use alias plant;

* 34_1404_4419 - indoor camera sequence around teddy bear, we use alias ted-
dybear;

4.2 Synthetic Data

For the purposes of testing pipeline and to closely simulate conditions similar to
those encountered in real datasets like CO3D, we have created a custom video se-
quence specifically adopted for our experimental needs. This dataset consists of
sequence comprising 200 frames, which has a close structure to those sequence rep-
resented in CO3D[Reizenstein et al., 2021] dataset.

To ensure comprehensive testing, every eighth frame in sequence is designated
as a testing frame. This systematic approach allows us to evaluate the performance
of our reconstruction method at regular intervals, providing consistent checkpoints
at which we can assess progress and fidelity. The selection of every eighth frame as
a testing point helps maintain a realistic testing regimen that mirrors the periodic
evaluation often required in practical applications.

In our experiments, we employ two separate configurations to handle depth es-
timation, which is crucial for the effectiveness of the 3D reconstruction process:

* in the first configuration, we use depth information that is directly rendered
from a rasterizer. This ground truth data serves as a benchmark for maximum
possible accuracy in depth estimation, providing a control setup against which
we can measure the performance of other depth estimation methods;

¢ the second configuration utilizes predicted depth obtained from a depth esti-
mation model, referred to as a Depth-Anything metric estimator[Yang et al.,
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FIGURE 4.3: Example of custom synthetic dataset with moving tra-
jectorie around the cow object. RGB axices represent camera’s orien-
tation, red is right vector, blue is forward and green is up.

2024]. This model is designed to predict depth maps from input images, simu-
lating a more challenging and realistic scenario where exact depth information
is not known a priori.

The dual configuration approach allows us to comprehensively evaluate our 3D
reconstruction method under both ideal and realistic conditions. By comparing the
outcomes from both ground truth and predicted depth data, we can better under-
stand the strengths and limitations of our approach.
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Chapter 5

Experiments

5.1 Implementation Details

Our solution is built using PyTorch[Paszke et al., 2017], a widely adopted frame-
work for deep learning applications, which facilitates robust handling of tensor op-
erations and gradient propagation essential for our optimization algorithms. To
handle synthetic dataset generation, camera management, and the calculation of
transformations between predicted and ground truth trajectories, we integrate the
PyTorch3D[Ravi et al., 2020] library. This library provides specialized 3D function-
alities that enhance our ability to manipulate and render complex 3D geometries
efficiently.

For the implementation of 3D Gaussian Splattings, we utilize [Bernhard Kerbl,
2023], a Python repository designed for training and rendering 3D Gaussian Splat-
tings, which has been extended to include differentiable Gaussian rasterizer[Bernhard
Kerbl, 2023] written in CUDA[NVIDIA, Vingelmann, and Fitzek, 2020]. This raster-
izer is crucial for achieving the high-performance computations required for real-
time 3D rendering and adjustment of Gaussian parameters.

The pipeline for processing video data into 3D reconstructions involves several
key steps:

1. frame preparation: videos are first split into individual frames, which are then
resized to a uniform resolution using utilities from the OpenCV[Itseez, 2015]
library.

2. depth estimation: each frame undergoes a process to estimate metrical depth[Yang
et al., 2024], providing the data needed for generating point clouds and initial-
izing the local 3D Gaussian models.

3. local 3DGS initialization: using the color and depth information from each
frame, we construct a point cloud and initialize local 3D Gaussian Splattings.
This step forms the basis for the detailed scene reconstructions that follow.

4. pose adjustment and optimization: modifications to our algorithm are ap-
plied to determine and refine the relative pose of each frame. To facilitate con-
versions between rotation matrices and quaternions—and ensure these trans-
formations are differentiable—we employ the ROMA[Brégier, 2021] library,
which is built on PyTorch and supports gradient-friendly operations.

Our algorithms are executed on an L4 Google Cloud machine, which provides
the necessary computational power to handle of 3D scene reconstruction. Depend-
ing on the complexity of the scene and the resolution of the images, the GPU memory
usage ranges from 1 to 3 GB per scene. Due to the computational limitations of our
custom differentiable Gaussian rasterizer, the batch size during rendering is set to 1.
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5.1.1 Data Preprocessing

CO3D

For our experimental validation, we utilize the CO3D dataset, which is known for
its challenging camera pose changes, typically featuring orbital trajectories around
objects in both indoor and outdoor settings. The dataset is ideal for testing our al-
gorithm due to the dynamic nature of the camera movements and the variety of
environments it includes. Each video sequence within the dataset comprises ap-
proximately 200-220 frames, from which every 8th frame is designated as test inter-
polation data for novel view synthesis.

To thoroughly assess different configurations of our algorithm and identify po-
tential issues, we selectively choose three video sequences from the dataset, prioritiz-
ing those with the highest quality metrics as provided by the dataset authors. These
sequences represent diverse settings and challenges, offering a comprehensive basis
for evaluation.

Each selected video sequence comes with precalculated COLMAP[Schonberger
and Frahm, 2016] trajectory cues, they are consentrated around world space origin
and are normalized. The video data is processed in a sequence of 200 consecutive
frames. For each frame, we apply a monocular depth estimator to generate depth
maps. Additionally, we calculate masks using the depth information and RGB colors
to isolate the foreground from the background, focusing our analysis on the primary
objects of interest.

The dataset is structured in a format similar to that used in Neural Radiance
Fields (NeRF)[Mildenhall et al., 2020], with each frame accompanied by its corre-
sponding extrinsic and intrinsic camera parameters. To optimize processing effi-
ciency and accommodate the lower resolution of depth maps, we resize each rect-
angular image to a resolution of 256x128 (width and height). This resizing not only
aligns with the native resolution of the depth maps but also significantly reduces the
computational load during the rendering process, making our experimental evalua-
tions more efficient and manageable.

Cow Synthetic Sequences

We utilized the GT depth component of this dataset to verify the fundamental
operations of our pipeline, including camera functionality, depth accuracy, and the
process of unprojecting points from screen space to camera space. This testing is
crucial for ensuring that our system is accurately interpreting and handling spatial
data as intended. Additionally, the comparison with predicted depth data helps us
evaluate the degradation of our method under conditions of noisy depth, providing
insights into the robustness and limitations of our approach.

The training and testing splits for this artificial dataset are maintained consistent
with those used for the CO3D dataset to facilitate a direct comparison and ensure
uniformity in our evaluation approach. All images in this dataset are rendered at a
resolution of 512x512. We chose square images because they simplify many aspects
of the pipeline testing.

5.1.2 Training Pipeline and Parameters

Training Local 3DGS
The training process for local 3D Gaussian Splattings (3DGS) begins with initializing
the camera in camera space with zero translation and identity rotation. Using this
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initial camera setup, we unproject approximately 33,000 points from a 256x128 pixel
grid into 3D space, forming the base for our optimization of the local 3DGSs.

FIGURE 5.1: Unprojected pcd in camera space for Iy frame car se-
quence. Here axises represent camera orientation with blue being for-
ward, red is right and green is up vectors.

For each set of local Gaussians, we conduct an optimization over 1,000 iterations
using the standard 3DGS optimization pipeline. A key modification in our approach
involves the timing of the densification process; we start to densify the Gaussian
representations from the 100th iteration and perform additional densification steps
at 600th iteration. We also do not reset opacity during optimization of local 3DGSs as
it can harm next step of pose recovery with the gaussians that didn’t catch up. This
step in the pipeline is notably efficient, typically requiring only about 3-6 seconds of
processing time on an L4 GPU.

FIGURE 5.2: Before and after fitting local 3DGS for Iy frame car se-
quence.

Relative Pose Estimation with Local 3DGS
Following the optimization of local 3D Gaussian Splattings (3DGS), the subsequent
step focuses on recovering the relative pose for the next frame, I;, ;. In this phase, we
specifically target the optimization of the rotation quaternion q; and the translation
vector t; over 500 iterations, employing a learning rate of 1 x 10~3. During this step,
we completely freeze the local Gaussians to eliminate any ambiguity that might arise
in the pose prediction process, leading to more precise and reliable estimation of the
relative transformations.

Using a higher learning rate in this context is advantageous for swiftly converg-
ing towards the true pose. A lower learning rate, while potentially offering finer
adjustments, tends to result in the optimization process lingering near the initial
guess, particularly if that starting point is far from the true pose.

Training Global 3DGS
The global scene representation is initially formed using the optimized local 3D
Gaussian Splattings (3DGS) from the Iy frame. This foundational set serves as the
starting point for further refinements as more frames are processed. Upon successful
recovery of the relative pose using the first two input frames, these frames are then
incorporated into the ongoing optimization of the global representation.

The training regimen for the global scene is structured to grow in complexity and
duration as additional frames are integrated into the model. Specifically, we start
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with 1,000 iterations for the first two frames. As subsequent frames are added to the
dataset, we increment the number of iterations by 10 for each new frame. This scal-
ing approach ensures that as the global representation becomes more comprehensive
with the inclusion of more frames, it receives proportionately more computational
attention, allowing finer adjustments. By the time the 200th frame is processed, the
global representation undergoes 3,000 iterations of optimization.

To further refine the trajectory and fit towards the end of the sequence, an ad-
ditional intensive optimization phase is applied, involving 30,000 iterations using
all available camera trajectories. This extensive training phase is crucial for aligning
the global model closely with the complete set of observational data, enhancing the
overall accuracy and stability of the reconstructed scene.

Camera Pose Adjustment with Global 3DGS
Once the global scene representation is updated with the I; frame, the next crucial
step involves refining the relative pose estimates initially predicted using local Gaus-
sian Splattings. This refinement step is pivotal for enhancing the robustness of the
pose adjustments within the reconstruction process. We implement two distinct set-
tings for this pose refinement:

Single Pose Adjustment: In this setting, only the most recently predicted pose is
adjusted, and then the process moves forward. This approach focuses on incremen-
tally refining each new pose based on the latest global scene context, maintaining a
continuous and immediate adjustment strategy.

Simultaneous Pose Adjustments: Alternatively, we adjust all previously pre-
dicted poses along with the Gaussian splattings. This comprehensive adjustment
ensures consistency and coherence across all frames, aligning the entire sequence
more accurately with the global model.

For the single pose adjustment, we optimize the pose for 300 iterations with a
learning rate of 5 x 10~ for both rotation and translation parameters. The lower
learning rate is deliberately chosen to allow for finer convergence, leveraging the
stability provided by the newly updated global scene to achieve a more precise align-
ment.

In the case of simultaneous adjustments across all poses, the optimization ex-
tends over 1,000 iterations, with the number of iterations increasing by 10 for each
new frame added, mirroring the approach used for fitting the global scene. This ex-
tended and escalating iteration count allows the adjustments to become increasingly
refined as more frame data and context accumulate within the global model.

Both adjustment strategies are designed to optimize the alignment of the pre-
dicted poses with the actual camera movements recorded in the sequences, thereby
enhancing the overall accuracy and temporal consistency of the 3D reconstruction.

5.1.3 Evaluation Metrics

To accurately assess the effectiveness of our pose recovery techniques in 3D scene re-
construction, we rely on two principal metrics: Relative Pose Error and Relative Pose
Error. These metrics are crucial for evaluating the precision of the pose estimations
provided by our algorithms and are defined as follows:

RPE;otation: This metric measures the angular difference in rotation between the
estimated pose and the ground truth. It is calculated using the formula:

trace(R1 Rqt) — 1
RPE,otation = arccos ( ( eszt st) ) (5.1)
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where Rest is the estimated rotation matrix, Rg is the ground truth rotation ma-
trix, and trace is the trace of a matrix. RPE,qtation condenses the angular discrepan-
cies across all three dimensions of rotation into a single number by measuring the
angle needed to rotate one orientation to align perfectly with the other. This single
value summarizes the overall rotational error without needing to break it down by
individual axes.

RPE;anslation: This metric quantifies the Euclidean distance between the esti-
mated translation and the ground truth translation, represented by the formula:

RPE¢ranslation = Htest - tgt“ (5.2)

where test and tg; are the estimated and ground truth translation vectors, respec-
tively.

These metrics are particularly informative in the context of pose recovery as they
provide a detailed insight into the accuracy of both rotational and translational com-
ponents of the camera’s movement, which are critical for aligning and integrating
sequences in 3D scene reconstructions.

FIGURE 5.3: Procrustes analysis applied to 2 unaligned set of points.
a) scales 2 sets to same size; b) shifting to same position; c) aligning
orientation. Image provided by [Procrustes analysis n.d.]

To compute these metrics accurately, especially when predicted depth is involved,
we employ Procrustes analysis. This statistical analysis method is used to determine
the optimal alignment of two sets of points (in this case, the estimated poses versus
the ground truth) by allowing only for rotation, translation, and scaling transfor-
mations. The Procrustes analysis is essential because it removes any discrepancies
that arise due to the coordinate system differences or scaling issues between the
predicted and actual camera poses. This alignment is particularly necessary when
dealing with predicted depth data, which can introduce systematic biases or scale
mismatches in the estimated poses relative to the ground truth.

By applying Procrustes analysis, we ensure that our evaluations of RPEgtation
and RPEns1ation are not adversely affected by external factors unrelated to the ac-
tual performance of our pose estimation algorithms, thus providing a fair and con-
sistent basis for assessing the accuracy of our 3D reconstruction approach.

To evaluate the quality of images generated through novel-view synthesis, we
utilize two standard metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM). Both metrics provide insights into the fidelity of the synthesized
images compared to the original images.
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PSNR: This metric measures the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of its representation.
The formula for PSNR is:

(5.3)

2
PSNR = 10 log,, < MAXI)

MSE

Here, MAX] is the maximum possible pixel value of the image (e.g., 255 for 8-bit
images), and MSE is the mean squared error between the original and synthesized
images. PSNR is expressed in decibels (dB), with higher values indicating better
image quality.

SSIM: The Structural Similarity Index measures the perceived quality of an im-
age by comparing its structural information, luminance, and contrast with those of
a reference image. The formula for SSIM is:

(2pxpy + 1) (20%y + 2)
(M2 +p2 4c1) (02 + 02 +c2)

SSIM(x,y) = (5.4)

In this equation, x and y are the original and synthesized images respectively,
yy and py are their average pixel values, 0Z and ayz are their variances, oy is the
covariance, and ¢; and ¢ are constants used to stabilize the division with weak de-
nominators. SSIM values range from -1 to 1, with higher values indicating greater
similarity and therefore higher image quality.

Both PSNR and SSIM are crucial for assessing the visual and structural integrity
of synthesized views, helping to ensure that the generated images are both accurate
and visually pleasing when compared to their real-world counterparts.

5.2 Comparing Pose Recovery Strategies

5.2.1 Local 3DGS

Local Gaussians play a critical role in the initial stages of 3D scene reconstruction, of-
fering distinct advantages and facing particular challenges in their implementation.

a) b) ; )
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FIGURE 5.4: Recovered trajectories for video sequences using only

local 3DGS; a) cow synthethic with ground truth depth; b) cow syn-

thethic using estimated depth; c) teddybear_co3d sequence; blue line
is ground truth trajectory and red is recovered;

One of the key advantages of using local Gaussians is their ability to provide a
robust initial estimation for each frame independently. This approach ensures that
each estimation starts with a fresh representation, which is not influenced by po-
tential errors from previous frames. This independence is particularly beneficial in
scenarios where the dataset may contain anomalies or inconsistencies, as it allows
each frame to be processed based on its own merits without carrying forward errors.
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Despite these advantages, local Gaussians are not without their drawbacks. The
primary issue they face is drift over time, which occurs because the estimations for
each frame are made independently without adjusting for the overall sequence. This
lack of sequence-wide adjustment can lead to cumulative errors, especially when a
single frame’s relative pose is estimated inaccurately due to depth map inconsisten-
cies or other issues. Such errors are not self-correcting and can propagate through
subsequent frames, negatively impacting the fidelity and accuracy of the end recon-
struction.

Furthermore, while local Gaussians are beneficial for avoiding the propagation
of errors, this same feature can be a disadvantage as it prevents the system from
learning from past errors and improving incrementally across the sequence. Each
new set of local Gaussians is determined without the propagation from previous
frames, which might otherwise help in adjusting and refining the approach based
on past outcomes.

5.2.2 Local and Global 3DGS

To address the limitations of local Gaussians and enhance the robustness of relative
pose estimation, we incorporate a concept of global Gaussians into our workflow.
This approach provides two potential estimations for each new frame: one derived
from local Gaussians and another from the global Gaussians. This dual estimation
strategy aims to leverage the strengths of both local and global approaches to im-
prove overall accuracy and stability.

Despite their potential benefits, global Gaussians also present challenges that
can affect the reconstruction process. Similar to the drift seen with local Gaussians,
global Gaussians can accumulate errors, particularly if the initial frames are not
aligned accurately. Since the global model builds upon each addition, early mis-
takes can propagate and magnify, affecting the entire sequence. In scenarios where
the scene contains high levels of detail, global Gaussians may sometimes underfit
to new frames. This underfitting occurs because the global model, while compre-
hensive, may not adjust quickly enough to accommodate highly detailed or rapidly
changing elements within the scene. This lag can result in a less accurate represen-
tation of newer frames, especially if the scene complexity increases.

5.2.3 Opacity Filtering

To enhance the efficiency of global 3D Gaussian Splattings (3DGS) fitting, we ex-
perimented with integrating new Gaussian splattings from the local 3DGS of the
forthcoming frame directly into the global scene. This method aimed to accelerate
convergence for upcoming frames by leveraging the immediate updates provided
by the local Gaussians.

Introducing local Gaussians from the next frame into the global model before
the comprehensive global fitting process provides a significant speed boost in con-
vergence. This preemptive update allows the global model to incorporate new data
points earlier in the sequence, enabling quicker adjustments to changes and new
information presented by subsequent frames. However, this approach introduces
certain challenges, primarily the potential bias from the local 3DGS. Local represen-
tation is optimized for specific frames without the broader context of the sequence,
which might not always align with the global scene’s cumulative data. In some sce-
narios, this can be beneficial, providing fresh insights or corrections to the global
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FIGURE 5.5: Filtering 3DGS with different opacity treshholds

model. In others, it may lead to discrepancies, where the local optimization priori-
ties conflict with global accuracy and consistency.

To mitigate the risk of overfitting the global model to a particular frame and po-
tentially compromising the fidelity of previous frames, we implemented a selective
filtering strategy. Instead of integrating all new Gaussians from the local 3DGS, we
selectively added gaussian splattings with opacity > 0.8 which approximately 5%
of the local 3DGS, with a preference for those positioned at the edges of objects.
Edge gaussian splattings typically contain critical boundary information that is vital
for accurate scene reconstruction and help maintain the structural integrity of the
model across transitions between frames

5.24 Simultaneous Optimization of Camera Poses and Global 3DGS

In our efforts to enhance the accuracy and cohesion of the trajectory in 3D scene
reconstruction, we experimented with a strategy that involves simultaneously op-
timizing the global 3DGSs and camera pose parameters within the same process-
ing loop. This approach aims to create a more integrated and dynamically updated
model by adjusting both the camera poses and the shape parameters of the 3DGSs
concurrently.

a) b) c)

g

FIGURE 5.6: Recovered trajectories for video sequences using local

and global 3DGS with simultaneous optimization; a) cow synthethic

with ground truth depth; b) cow synthethic using estimated depth;

¢) teddybear_co3d sequence; blue line is ground truth trajectory and
red is recovered;

The primary advantage of this method is the continuous adjustment of all ele-
ments in the model, which can lead to a more cohesive and accurate trajectory over
the entire sequence. By simultaneously refining the camera poses and the 3DGSs, the
model can better accommodate shifts and changes in the scene, potentially leading
to more reliable reconstructions. This integration ensures that updates to the cam-
era poses are immediately reflected in the Gaussian adjustments, fostering a more
synchronized evolution of the model.
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However, this approach also presents significant challenges, primarily due to the
sensitivity of the model to the optimization parameters. One of the main drawbacks
is that the continuous adjustment of camera poses can prevent the 3DGSs from set-
tling into a stable configuration that accurately reflects the scene. If the camera pa-
rameters are adjusted too aggressively, it may lead to a scenario where the 3DGSs do
not have sufficient time to accurately fit the data from the estimated frames, resulting
in a less accurate reconstruction.

Moreover, this method is highly sensitive to the learning rates applied to the
camera poses. To mitigate excessive movement and instability in the camera ad-
justments, we set the learning rates for rotations and translations to a relatively low
value of 5 x 107°. This cautious approach helps minimize rapid shifts in camera po-
sitioning, allowing for more gradual and considered integration of frame data into
the global model.

5.2.5 Results

In this section, we provide a results of the performance metrics for pose recovery and
novel-view synthesis across different strategies and datasets. This evaluation helps
in understanding the effectiveness of each approach in accurately estimating camera
poses and generating high-quality synthesized views. By comparing the results from
various strategies and datasets, we can identify the strengths and weaknesses of our
methods.

TABLE 5.1: Comparison of RPE,y metrics for different strategies
across video sequences. RPE,q units of measure are degrees.

Metric Setting cow+gt cow+pred. car hydrant plant teddybear
local only 0.074 0.637 0.677 0.217 0.218 0.341
global 0.065 0.501 0.647 0.380  0.407 0.366
RPE,qt | global+all 0.106 0.348 0.731  0.296  0.468 0.332
global+add 0.054 1.041 0.652  0.352  0.363 0.370
global+add+all ~ 0.108 0.427 0.657  0.319 0478 0.367

TABLE 5.2: Comparison of RPE.ns metrics for different strategies
across video sequences

Metric Setting cow+gt cow+pred. car hydrant plant teddybear
local only 0.020 0.169 0.561  0.443  0.526 0.426
global 0.007 0.107 0571  0.826 2252 0.666
RPEgans | global+all 0.005 0.092 0.592 0536  1.182 0.743
global+add 0.005 0.336 0.581 0.862  2.837 0.552
global+add+all  0.005 0.118 0.519 0.457 1.162 0.623

Here is some information about experiment naming and what they mean:

local: utilizes only the local 3DGS for each frame without integrating information
across the sequence. This approach starts fresh with each new frame and does not
accumulate any knowledge from previous frames.

global: begins with local 3DGS for initial estimates and then incorporates these
estimates into a global model for further adjustment.
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TABLE 5.3: Comparison of SSIM metrics for different strategies
across video sequences

Metric Setting cow+gt cow+pred. car hydrant plant teddybear
local only 0.980 0.937 0.626  0.761  0.840 0.893
global 0.991 0.966 0.606  0.755  0.796 0.889
SSIMirain T global+all 0.988 0.964 0575 0759  0.829 0.899
global+add 0.993 0.951 0.743  0.766  0.782 0.888
global+add+all ~ 0.988 0.965 0706  0.782  0.835 0.894
local only 0.955 0.909 0.226  0.239  0.415 0.517
global 0.984 0.909 0217 0204 0.327 0.590
SSIMiest T global+all 0.990 0.930 0.223 0.207 0.326 0.512
global+add 0.988 0.878 0.183 0211  0.209 0.558
global+add+all ~ 0.990 0.916 0197 0209 0.324 0.531
TABLE 5.4: Comparison of PSNR metrics for different strategies
across video sequences
Metric Setting cow+gt cow+pred. car hydrant plant teddybear
local only 28.705 21.074 20.685 23301 25.386 28.339
global 34.029 26.207 20.601  23.281 24.461 28.205
PSNRain T global+all 32.777 26.954 19.973  23.358  25.317 28.656
global+add 35.002 24.033 21914 23.452 24.046 28.277
global+add+all 32.874 26.471 21.398 23396  25.791 28.653
local only 24919 15.334 10379  15.857  15.809 14.639
global 31.278 17.876 9.869 13427 12191 16.742
PSNR¢est T global+all 33.787 21.058 10.110  14.192  12.445 14.087
global+add 32.387 13.818 10.283  13.726  14.000 16.087
global+add+all  33.919 19.115 10.663 14 12.500 15.005

global + all: extends the global strategy by adjusting not only the most recent
frame’s pose but also retrospectively refining all previously estimated poses based

on the latest global model insights.

global + add: after obtaining the initial relative pose using local 3DGS, this
method involves fitting local 3DGS for the subsequent frame and adding them to
the global model. This is done selectively with an opacity threshold of 0.8, focusing
on integrating primarily those 3DGS that likely represent critical structural details.

global + add + all: combines the strategies of adding 3DGS selectively and ad-
justing all frame poses within the global model.
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cow + gt_depth cow + pred_depth car

FIGURE 5.7: Recovered trajectories for each video sequence and

novel-view synthesis. Blue trajectories are ground truth and red ones

are estimated. On left novel-view images generated from model and
on right side are ground truth images.
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Conclusions

6.1 Experiments Summary

Our comprehensive evaluation of different 3D reconstruction strategies using both
synthetic data with known ground truth depth and real-world datasets provides
insights into the effectiveness and challenges of each approach.

On synthetic datasets, the strategies that incorporated more complex logic, such
as the integration of global 3DGS and adjustments to previous camera poses, gener-
ally showed an improvement in quality metrics like PSNR and Reletive Pose Error.
These results suggest that these more sophisticated strategies can effectively lever-
age the precise and consistent depth maps available in synthetic data to enhance the
reconstruction quality.

However, the performance on real-world data presented a contrasting scenario.
In almost all real-world examples, strategies that relied primarily on local 3DGS
demonstrated better results in both pose recovery and novel-view synthesis. This
indicates a significant challenge in maintaining a global 3DGS representation in en-
vironments where data may not be as consistent or accurate as synthetic setups.

The global 3DGS approach, while theoretically advantageous for integrating in-
formation across frames, proves to be tricky in practice. It tends to accumulate errors
rapidly, leading to misaligned trajectories from the onset of the reconstruction pro-
cess. This accumulation highlights the delicate balance required in managing global
information, where early errors can disproportionately skew later results.

Strategies that involve adding local 3DGS to the global model or simultaneously
estimating camera poses for previous frames are particularly sensitive to several fac-
tors. The learning rates for rotation, translation, and even the Gaussian parameters
themselves must be finely tuned to match the specific characteristics of the scene.
For instance, in scenes where depth information for distant objects is noisy and
tends to converge towards similar values, the appropriate learning rates can vary
significantly. This variability can make a set of parameters suitable for one scene but
entirely unsuitable for another.

These findings underscore the complexities involved in extending local recon-
struction strategies into more global contexts. The effectiveness of sophisticated
strategies that rely on the integration of historical data depends heavily on the accu-
racy and consistency of the input data, as well as on precise parameter tuning.

Despite its simplicity and the inherent noise challenges, the local 3D 3DGS ap-
proach continues to demonstrate decent accuracy in both pose recovery and novel-
view synthesis. This method’s resilience and effectiveness underscore its utility as a
straightforward yet potent solution for 3D scene reconstruction. Local 3DGS oper-
ates independently frame by frame, which not only mitigates the risk of error accu-
mulation seen in more complex, global strategies but also ensures that each frame is
processed in isolation.
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6.2 Limitations

One of the most significant challenges in reconstructing 3D scenes using 3DGS is
the recovery of accurate camera poses. The effectiveness of the strategies we have
explored is highly contingent upon the availability of precise and temporally con-
sistent depth maps. The accuracy of the depth maps plays a critical role, as all our
metrics and the subsequent quality of the reconstruction heavily depend on their
reliability.

Our strategies presume that the camera movement between consecutive frames
is minimal, allowing for substantial overlap and shared information, which is cru-
cial for effective pose estimation and novel-view synthesis. This assumption holds
well in controlled environments, such as those using synthetic data where the over-
all camera trajectory is complex yet the relative movement between frames is kept
small. However, this assumption becomes problematic in real-world datasets like
CO3D, which feature video sequences with rapid and varied camera movements
against fast-changing backgrounds. The divergence from the assumption of min-
imal movement introduces significant challenges in maintaining the accuracy and
effectiveness of these reconstruction strategies.

From a computational perspective, the simplicity of local 3DGS does offer some
advantages. For instance, the local 3DGS strategy requires about 30 seconds on an L4
GPU to recover the pose for each frame, which is relatively efficient. However, more
complex strategies, which might provide better integration and potentially more ac-
curate reconstructions, require significantly more processing time. Depending on
the complexity of the scene and the strategy employed, pose recovery can take be-
tween one to 1 and 1.5 minutes per frame. Consequently, for long video sequences,
these methods could take hours to complete, posing a substantial limitation in terms
of time efficiency and practical applicability in real-time or near-real-time scenarios.

6.3 Contribution

This thesis intoduces a potential baseline for reconstructing scenes using 3DGS with-
out reliance on pose priors. We have systematically tested various strategies across
different scenarios to evaluate their reliability and to identify possible improvements
over simpler methods. This exploration has led to a deeper understanding of the ca-
pabilities and limitations of 3DGS in different operational contexts.

By implementing different reconstruction strategies, we assessed how changes
in the complexity of the approach affect the overall accuracy and efficiency of the
reconstruction process. Each strategy was applied under varied conditions to mea-
sure how well they perform in terms of pose recovery and novel-view synthesis,
especially in scenarios where no prior information about the camera’s movement is
available. This thorough testing helps in point out the most effective techniques for
different types of data and movement patterns, providing a nuanced view of how
3DGS can be optimized for real-world applications.

From a temporal perspective, even the worst-case scenarios showed promising
results: for a video sequence of 200 frames, the scene reconstruction process took
about 2-3 hours to complete using our most complex strategies. This duration is con-
siderably favorable when compared to classical methods, which could take between
8-10 hours just for the pose recovery phase. Such efficiency not only demonstrates
the practical viability of using 3DGS for scene reconstruction but also highlights
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its potential to significantly reduce the processing time without compromising the
quality of the output.

6.4 Future Work

A promising direction for future work involves the experimentation with adaptive
and scheduled learning rates to enhance the convergence of pose estimations in 3D
scene reconstruction. The potential for improved convergence through dynamically
adjusted learning rates could significantly enhance the accuracy of pose recovery,
particularly in challenging scenarios where the camera dynamics are complex. Fur-
thermore, developing a methodology to map the quality or characteristics of depth
maps directly to an initial learning rate setting could streamline the optimization
process. This approach would adjust the learning rate based on the expected diffi-
culty or error characteristics of the input depth maps, potentially leading to faster
and more stable convergence across diverse datasets.

Another area for future exploration is the development of advanced depth map
preprocessing strategies and the integration of depth map consistency losses. These
methods would aim to enhance the reliability and accuracy of depth information,
particularly for distant objects in the scene that tend to have higher measurement
errors. By implementing preprocessing techniques that refine depth data or by in-
corporating consistency losses that enforce logical depth relationships across frames,
it may be possible to reduce the impact of erroneous depth readings on the training
process. Such improvements could lead to more accurate global models and reduced
cumulative error in long sequence reconstructions.

An important step for future research would be to conduct a comprehensive
comparison of the current methods with existing state-of-the-art (SOTA) techniques
for 3D scene reconstruction. This comparative analysis would provide valuable
insights into how the proposed strategies using 3D Gaussian Splattings stack up
against other leading approaches in terms of accuracy, efficiency, and robustness.
Understanding the strengths and weaknesses of our methods relative to the broader
field can help identify specific areas for improvement and potential integration of
other successful techniques.

Finally, improving the training pipeline for global 3DGS represents a critical
area for development. While global 3DGS theoretically offer superior estimates due
to their comprehensive scene integration, practical implementations often strug-
gle with error accumulation and model drift. Developing a more robust training
pipeline that can effectively manage and mitigate these issues would be invaluable.
This could involve new strategies for error correction, enhanced integration tech-
niques for incoming frame data, or more sophisticated models that better capture
the temporal dynamics of the scene.
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