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Abstract

This thesis introduces a framework in which training image autoencoders by apply-
ing losses in latent space improves the quality of decodings and can significantly
decrease training time. Furthermore, within this framework, we propose a mask
guidance mechanism that combines mask features and image features in the early
phases of image encoding, which supports the encoder in reconstructing the image
embeddings. These methods are demonstrated in the context of the ill-posed image
inpainting problem, which seeks to reconstruct regions of the image that have been
occluded by a mask. We show that latent loss application results in more naturally
inpainted textures when used in a state-of-the-art inpainting architecture. We also
show that a mask-controlled embedding gives superior results across every com-
mon inpainting metric when compared to a state-of-the-art approach, which pro-
vides mask conditioning only in the image space. The final component of our study
involves the visualization of latent space to highlight damaged areas of features that
need refinement.
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Chapter 1

Introduction

1.1 Motivation

Image inpainting [1.1] is the task of completing missing data in a designated region,
called the mask, of the input image. Although the task is simple to state, it is an open
problem in computer vision because of its difficulty, which has been developed over
the past two decades.

Inpainting techniques have faced the challenge of filling missing or damaged
parts of images. Although early methods such as PatchMatch [Barnes et al., 2009]
were effective in duplicating patterns, they frequently lacked sufficient semantic de-
tails for intricate image textures, motivating the need for learned representations
that can richly model semantics, texture, and scene structure.

FIGURE 1.1: Illustraion of the inpainting task. Mask highlighted in
violet for visualization purposes. Inpainting outcome is displayed
on the right. The first row shows challenges with repetitive textures,
while the second row demonstrates the necessity for semantic under-

standing. [Suvorov et al., 2022]

1.2 Task definition

Several significant advances have marked the evolution of image inpainting, reflect-
ing the field’s movement from early classical methods to sophisticated deep learning
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techniques and diffusion-based techniques. Notably, inpainting is an ill-posed prob-
lem, meaning that there is a distribution of plausible outputs for masked regions
and damaged regions. To contend with this inherent challenge, most methods treat
the inpainting task with a model-based approach, which we also adopt.

By model-based approach, we mean that we create a latent space such that a
masked image is embedded with inpainting that is highly likely given the unmasked
input image content and similar image content from the training data set that was
used to build the model weights. In other words, by feasible inpainting, we want
the inpainted region of the image to reflect the statistics of the input image and the
corpus of images that were used to train the model. Ideally, the unmasked region
should be invariant to the inpainting process. While the details of how to measure
plausible inpainting are method-specific, several necessary conditions for plausi-
bility can be defined: the inpainted image should look like the undamaged image
(if available); the inpainting should preserve the semantics and geometric structure
of the unmasked region; the inpainting should incorporate both local and global
image statistics from the input image; and one inpainting result must be selected
from many feasible inpainting outcomes (as opposed to blurring or averaging them).
State-of-the-art inpainting methods have losses that consider all of these factors.

In practice, we do not always have an exact ground truth image, so instead of a
strict reconstruction loss, losses such as FID [Heusel et al., 2017], LPIPS [Zhang et al.,
2018] and SSIM [Brunet, 2012] are used by state-of-the-art methods that address the
conditions for feasible inpainting. Furthermore, the use of reconstruction loss alone
is not sufficient to disambiguate a mode from the distribution of feasible inpaintings.

The introduction of deep learning, especially CNN [LeCun, Bengio, et al., 1995]
and GAN [Goodfellow et al., 2014], makes a big step in quality for image inpaint-
ing. CNNs enhanced the ability to generate contextually coherent images as a result
of the learned semantically meaningful information, while GANs with their adver-
sarial loss allow one to account for both the content and the probabilistic nature
of inpainting to restore missing information. However, these methods concentrate
on optimizing inside output’s pixel space - using distance metrics, adversarial, and
perceptual losses, making them harder to train and resource intensive.

1.3 Overview of Proposed Approach

The proposed approach focuses on restoring areas of the latent space associated with
the image’s damaged regions, eliminating the necessity to decode the entire image
from the latent space. Within this space, the refinement process receives a better
signal from damaged areas in latent space throughout the entire image, thereby en-
hancing both efficiency and accuracy. The primary element of this method is the
latent loss, which acts as a measure to evaluate the distance between the features
of the original and refined images. Furthermore, our framework proposes a mask
guidance mechanism that combines mask features and image features in the early
phases of image encoding,

1.4 Research questions and contribution

This thesis explores two main research questions. The first research question ex-
plores the architecture of the latent space to determine if the autoencoder configura-
tion can reveal details about the damaged area. This was examined by analyzing the
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difference between the features of the ground truth and those of the masked image
within the latent space.

The second question examines whether the speed of training can be increased
and the quality of inpainting models preserved by adding additional guidance within
the latent space before features are decoded into pixel space. The initial guidance
comes from mask guidance, adapting the control mechanism of ControlNet [Zhang,
Rao, and Agrawala, 2023]. This method is implemented on top of the frozen encoder
to maintain the fidelity of the unmasked areas, as the embedding is conditioned on
the mask and these areas are expected to remain invariant to the inpainting task.
The second guidance is derived from latent loss, which pushes the refined features
closer to the ground-truth features, anticipating that they will be more accurate af-
ter being decoded in the feature space, thus providing a stronger signal than using
the pixel space loss. Further experiments confirm that applying these enhancements
to a recognized baseline model results in better performance and reduced training
duration.

1.5 Structure of thesis

Chapter 2 of this thesis presents related work and forms the foundation of the study.
Subsequently, Chapter 3 outlines the configuration of inpainting datasets and eval-
uation metrics. Chapter 4 details our method and motivation for this. Chapter 5
discusses our experimental procedures, culminating in the conclusion of the thesis
in Chapter 6.
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Chapter 2

Related Work

This section reviews seminal inpainting methods. The methods include both dis-
criminative and generative models. Notably, both classes of methods must explicitly
model the fact that there is a distribution of plausible inpaintings, which is encoded
in a variety of losses introduced in the literature. Failure to do so results in blurred
inpaintings. We review these losses and discuss their relevance to learning an inter-
pretable latent space.

2.1 Classical Methods

2.1.1 PatchMatch

In its initial stages, PatchMatch [Barnes et al., 2009] laid the foundation and achieved
notable quality in this task. PatchMatch [2.1] uses a stochastic very large neighbor-
hood search to match patches within an image, which proved effective in texture-
rich scenarios, but less so in complex contexts. It works by initially assigning random
correspondences between patches in the missing and intact regions. Then, an iter-
ative process refines these matches to align the textures and patterns more closely.
The strength of PatchMatch lies in its ability to quickly and effectively copy and
paste these patches to fill in missing regions, making it highly effective for images
with repetitive textures.

FIGURE 2.1: Illustration of the PatchMatch algorithm. A represents a masked image in
which the masked patches are ignored and B is the resulting image. They demonstrate
the construction of random patch initialization with subsequent propagation to neigh-

boring patches in (b) and a random search for improved correspondences in (c).
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FIGURE 2.2: Example of PatchMatch limitation due to insufficient semantic understand-
ing: the algorithm was unable to complete or properly extend the bench lines, incor-

rectly taking parts from inappropriate areas.

However, the algorithm had limitations in handling more complex scenarios
[2.2]. It lacks the ability to understand and interpret the context or semantics of the
image. This shortfall was particularly evident in images with large missing areas or
those containing unique, non-repetitive elements. In such situations, simple copying
and pasting of patches often led to visually disjointed or contextually inappropriate
results. Although efficient for certain textures, the reliance on randomized matching
failed to account for the nuanced comprehension required for more sophisticated
and coherent image restoration, underscoring the need for advanced methods with
a deeper understanding of image content.

2.2 Deep Learning Based Methods

2.2.1 Context Encoders

After the introduction of CNN, the era of deep learning-based image inpainting
methods began. One of the first successful methods was the Context Encoders [2.3]
[Pathak et al., 2016], which laid the baseline and general approach to many follow-up
works: use CNN to encode the features of the image in a learnable way, then process
it in a downscaled feature space, and decode it using a learnable CNN decoder.
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FIGURE 2.3: Diagram of the Context Encoders pipeline. An encoder
embeds the image into a feature space, followed by fully connected
layers that refine these features, and a decoder that reconstructs the

image in pixel space. [Pathak et al., 2016]

Another significant advancement was in the exploration of loss functions for
training models based on inpainting [2.4]. Previously, many methods employed
distance-based losses such as L1 or L2. These, however, tended to result in blurri-
ness and color mismatches (or their averaging) in image-to-image translation tasks
[Pathak et al., 2016]. Advancements in GANs have improved the inpainting results
of Content Encoders by incorporating adversarial loss [Goodfellow et al., 2014], a
type of loss derived from the output of the discriminator, which is trained concur-
rently with the main network (generator), alongside distance loss.

(A) Input context (B) Human artist

(C) Context Encoder
(L2 loss)

(D) Context Encoder
(L2 + Adversarial loss)

FIGURE 2.4: Comparison of losses.(a) Input, (b) a human artist inpainting it. Automatic
inpainting using the context encoder trained with the loss of reconstruction L2 is shown

in (c), and using both L2 and adversarial losses in (d). [Pathak et al., 2016]
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2.2.2 Perceptual Loss

Besides distance and adversarial loss, most deep learning methods incorporate semantic-
based losses. Presented for tasks of style transfer and super resolution, perceptual
loss [Johnson, Alahi, and Fei-Fei, 2016] also improves the quality of inpainting net-
works. The core idea of this loss is to compare the correlation between the ground
truth image and the predicted image using some pre-train feature extractor [2.5],
usually VGG-16 is used, which is proven to extract meaningful semantic information
of the image. One of drawbacks of this loss is the need of some external network to
extract semantic features of predicted image, and not utilizing inpainting network’s
inner features.

FIGURE 2.5: Illustration of Perceptual loss pipeline. Features are
extracted from various depth levels using VGG-16 from both the
ground truth and predicted images, and the loss is computed as the

correlation among these features. [Rodríguez Pardo et al., 2019]

2.2.3 LaMa

Most previous approaches used the standard convolution block, with some modifi-
cations of the dilation in the convolution block. But in LaMa [Suvorov et al., 2022]
the authors argue that a receptive field is essential for inpainting task. In LaMa
model [2.6] incorporated Fast Fourier Convolution [Chi, Jiang, and Mu, 2020] blocks
to more effectively handle large missing areas in images by capturing a broad spec-
trum of image frequencies. These FFC blocks, which utilize Fourier transformations,
excel in processing large missing areas, enabling detailed and accurate reconstruc-
tion to maintain textural integrity and visual coherence, especially where traditional
convolutional methods fail. LaMa’s proficiency in managing high-frequency details
makes it particularly adept for high-resolution images, preserving finer details up to
1024-pixel resolution.
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Large Mask Inpainting (LaMa)

    _

3x9x3x

Mask 
Generator

FF
C

FF
C

Spectral Transform

Conv-BN-ReLU

Conv 1x1

Inv Real FFT2d

Conv-BN-ReLU

Real FFT2d

Fast Fourier Convolution 

Conv 3x3

Local Global

Conv 3x3 Conv 3x3 Spectral
Transform

Global

BN-ReLU BN-ReLU

Local

U
pscale

Inpainting Network

D
ow

nscale

Fast Fourier Conv
Residual Block

FIGURE 2.6: Structure of LaMa: A mask is concat with the masked image, then passed
through downscaling (or encoding) layers, followed by a sequence of FFC blocks. These
blocks include a local branch that performs convolution in the feature space and a global
branch that applies convolution on features converted to Fourier space, making convo-

lution’s receptive field global related to features. [Suvorov et al., 2022]

However, it encounters limitations beyond this, needing help maintaining sharp-
ness and clarity at higher resolutions, often resulting in a perceptible loss of fine
details and blurriness. This challenge highlights a significant hurdle in current in-
painting methods: effectively scaling the inpainting process to very high resolutions
while retaining the quality and fidelity of intricate image details. An effort to achieve
high-resolution inpainting was explored in the Guided PatchMatch [Zhang et al.,
2022] paper, where the authors suggest directing the patch selection process from
PatchMach with a novel guidance approach: utilizing LaMa results at 512 scale for
pixel information and employing depth, structure, and segmentation for patch se-
lection [2.7]. Although this approach improves quality at high resolutions, it still
inherits the limitations of both methods and faces significant challenges in choos-
ing appropriate guidance and requires manual selection method of best guidance
(Curration Module).
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FIGURE 2.7: Pipeline of Guided PatchMatch of different guidance with selection of best
result trough Curration Network. [Zhang et al., 2022]



2.2. Deep Learning Based Methods 9

2.2.4 LaMa refiner

FIGURE 2.8: Architecture of LaMa refiner [Kulshreshtha, Pugh, and Jiddi, 2022]

Building on the foundation of the LaMa model, the LaMa Refiner [Kulshreshtha,
Pugh, and Jiddi, 2022] introduces a specialized approach to enhance high-resolution
image inpainting. This advancement capitalizes on the observation that inpaint-
ing at lower resolutions typically yields sharper results with less blurriness. The
LaMa Refiner [2.8] employs a dual-resolution strategy to leverage this insight while
simultaneously considering a lower-resolution image and the corresponding high-
resolution features. The core of this method lies in aligning these two aspects: the
high-resolution image’s latent features are optimized online, meaning during each
inference, to minimize the L1 loss between the reconstructed lower-resolution im-
age and its high-resolution counterpart. This process aims to transfer the accuracy
achieved at lower resolutions to the higher-resolution image [2.9], effectively reduc-
ing the blurriness that often plagues high-resolution inpainting. The LaMa Refiner
thus represents a novel step in image inpainting, focusing on the intricate balance
and optimization of latent features across different resolutions to enhance the overall
quality of inpainted images in high-resolution settings.
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FIGURE 2.9: From left to right, first row: (i) input image, (ii) inpainting at size 512,
(iii) inpainting at size 1024 (iv) inpainting at 1024 with LaMa Refinement. Second row:

zoomed-in corresponding inpainted areas. [Kulshreshtha, Pugh, and Jiddi, 2022]

2.2.5 FcF

A key feature of inpainting output is its diversity of results. Typically, there is no
straightforward ground truth available; instead, there exists a range of potential out-
comes, making it challenging to determine the optimal one. A common approach,
as utilized in LaMa, involves employing discriminator networks to ensure visual ac-
curacy of the output, a distance metric to reconstruct known regions, and perceptual
loss to maintain the semantic integrity of the entire image. In the FcF [Jain et al., 2023]
paper, the authors suggest the use of standard Gaussian noise, mapped through the
Mapping Network (StyleGan2 [Karras et al., 2020] is used) as mean and variance, for
Instance Normalization [Ulyanov, Vedaldi, and Lempitsky, 2016] (instead of Batch
Normalization) within the model.

FIGURE 2.10: Architecture of FcF [Jain et al., 2023]
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However, introducing noise might lead to overly unpredictable model output,
potentially resulting in too novel and unexpected results [2.11] (or to hallucinate).

FIGURE 2.11: Illustration of hallucination for noise guided network [Cipolina-Kun, Cae-
nazzo, and Mazzei, 2022]

2.3 Diffusion-based

Recent progress in text-to-image synthesis using conditional diffusion-based meth-
ods has surpassed [Dhariwal and Nichol, 2021] GAN-based approaches, redirecting
research focus towards them. The primary distinction between these approaches lies
in their handling of noise [2.12]. Whereas GANs attempt to create images directly
from pure noise in a single forward pass, diffusion models employ a stochastic pro-
cess to iteratively remove noise from an image. Initially, these models operate with
high-variance noise, enabling the generation of coarse image details. As the process
progresses, the noise variance is reduced, allowing for the refinement of finer image
details.

FIGURE 2.12: Comparison of GAN and diffusion models. In the GAN framework, noise
z is sampled once and converted into image x’, followed by the discriminator’s assess-
ment of whether the image originates from the actual distribution or a synthetic one.
Conversely, in the diffusion model, noise of varying variances is sampled at each step,

and the model attempts to reverse this noise. [Jain et al., 2023]

2.3.1 GLIDE

The initial approach to conditional inpainting was introduced in the GLIDE paper.
This model uses the execution of a standard diffusion process within pixel space.
It does not require any architectural modifications to the model to facilitate the in-
painting task; however, it needed a modification to the diffusion process. In the
denoising approach, the predicted noise is subtracted from the noisy image to gen-
erate the full image. In contrast, for inpainting, we need to generate only some part
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of image, thus, the predicted noise is applied solely to the masked areas, whereas
the remaining areas use generated known noise, for saving known parts of image.

2.3.2 Stable Diffsion

Earlier pixel-based diffusion models were capable of achieving acceptable outcomes,
but operating directly with pixels required substantial resources and extended infer-
ence times. This requirement increased with the number of diffusion steps, leading
to resource-intensive training and inference that make these models impractical.

In the Stable Diffusion(SD) [2.13] paper [Rombach et al., 2021], the authors in-
troduce the concept of latent diffusion. The core concept involves transitioning the
diffusion process from a pixel space to a latent space, which is facilitated by VQ-VAE
[Van Den Oord, Vinyals, et al., 2017]. Using encoded features that reduce spatial di-
mensions by a factor of eight, the network can handle images with a resolution of
512 without extensive resource demands. Crucially, within this latent space, the
image information is semantically compressed, enabling the diffusion process to fo-
cus primarily on generating high-quality semantic content of the image, with sub-
sequent reliance on the VQ-decoder for information reconstruction, enabling even
faster model and better image generation.

Standard SD is primarily used for generating images from text, but it can also
be adapted for inpainting. Initially, the GLIDE method is used; however, it tends
to produce suboptimal outcomes because its denoising process prioritizes semantic
content over pixel accuracy. A superior approach involves integrating the image
features from VQ-VAE with a downscaled mask and refining the model.

Semantic 
 Map

crossattention

Latent Space Conditioning 

Text

Diffusion Process

denoising step switch skip connection

Repres 
entations

Pixel Space

Images

Denoising U-Net

concat

FIGURE 2.13: Illustration of the Latent diffusion model (or SD). On the left, there is an
encoder-decoder setup for projecting to and from pixel space. In the center, a diffusion
denoising network is shown, featuring various types of conditioning on the left. [Rom-

bach et al., 2021]

Notably, Stable Diffusion tends to underperform [2.1] relative to the Big LaMa
version (an enhanced LaMa with more FFC blocks), primarily due to its approach
to noise guidance similar to that of FcF. This large deviation from the average noise
can cause the model to hallucinate, resulting in outputs that are less semantically
meaningful.
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40-50% masked All samples

Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
SD 9.39 0.246± 0.042 1.50 0.137± 0.080

LaMa 12.31 0.243± 0.038 2.23 0.134± 0.080

TABLE 2.1: Comparison of inpainting results between Stable Diffusion and LaMa. LaMa
outperforms in LPIPS, indicating superior semantic integrity. Stable Diffusion excels in
FID, as FID assesses the statistical variance in image features, influenced by the varied

noise instances in the SD model. [Rombach et al., 2021]

2.3.3 ControlNet

Another significant technique in the realm of SD is ControlNet [Zhang, Rao, and
Agrawala, 2023]. This method enables the incorporation of extra guidance elements
such as text or masks into the diffusion denoising network, thus eliminating the re-
quirement to retrain the large model for different guidance types. The primary strat-
egy employed is the ’zero-convolution’ method, which involves convolutions that
start with weights set to zero [2.14]. It is crucial to avoid random weight initializa-
tion as it can significantly affect the main frozen layers, potentially complicating the
initial stages of training. The zero convolution method allows for the gradual inte-
gration of information into the main branch, thereby subtly modifying the network
output in response to the guidance provided.

trainable copy

zero convolution

zero convolution
+

c

ControlNet
(a) Before (b) Aer

neural network 
block

x

y

x

yc

+

neural network 
block (locked) 

FIGURE 2.14: Illustration of ControlNet modification [Zhang, Rao, and Agrawala, 2023]

2.4 Conclusion of related work

In this chapter, we explore key developments in the field of inpainting techniques,
beginning with the traditional copy-paste method of PatchMatch. Subsequently, this
approach was supplanted by contextual encoders, which were enhanced through the
incorporation of several critical losses: reconstruction, adversarial, and perceptual.
These, combined with the significant inductive biases presented in the LaMa paper,
currently establish the state-of-the-art. Additionally, we examine a concurrent ap-
proach involving diffusion-based inpainting that proposes to operate in latent space,
a core element of this thesis. For our solution, LaMa model was used as strong in-
painting baseline. Latent loss was motivated by LaMa Refiner work, but differs in
autoencoder setup and in one-time inference. Mask Control inspired by ControlNet
and changes the default alpha channel configuration.
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Chapter 3

Problem setting

In this section, we outline the dataset configuration for the upcoming experiment
and detail the evaluation metrics.

3.1 Data setup

The Places2 [Zhou et al., 2016] dataset is a comprehensive scene-centric database
that contains more than 10 million images that span more than 400 unique scene cat-
egories [3.1]. It is designed for training and evaluating scene understanding models
and is widely used in various computer vision tasks, including scene recognition,
image synthesis, and inpainting. This dataset has become a standard for training, as
it enables the generation of a significantly higher number of mask samples, which
are independent of image distribution, thus facilitating the training of robust mod-
els.

FIGURE 3.1: Samples from Places2 dataset [Zhou et al., 2016]

In the LaMa paper, the mask creation process [3.2] is crucial for the model’s im-
age inpainting capabilities. This approach consistently applies samples from polyg-
onal chains expanded with a randomly large width (wide masks) and rectangles
with various aspect ratios (box masks).
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FIGURE 3.2: Mask generation strategy [Suvorov et al., 2022]

Crucially, in the inpainting task, there isn’t just one definitive ground truth im-
age; instead, there exists a variety of possible outcomes. Therefore, the model can-
not depend entirely on a single result. Typically, generating a wide array of random
masks and using the original image for verification is adequate to train the model,
and this approach is considered standard in many networks.

3.2 Evaluation

To quantitatively assess the experiments, we will utilize standard metrics commonly
employed in inpainting research, namely FID and LPIPS. Additionally, due to the
implementation of experiments focusing solely on pure distance loss training, we
will also incorporate SSIM.

The Fréchet Inception Distance (FID) is a metric used to evaluate the quality of
images generated by models, particularly in the field of GANs. It measures the
similarity between two sets of images, typically generated images and real images,
by comparing the statistics of their features extracted by the Inception v3 model.
The FID is calculated by computing the Fréchet distance between two multivariate
Gaussians, defined by the mean and covariance of the feature sets from the real and
generated images. The formula for FID is given by:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (3.1)

Where µr and µg denote the mean values of the features for real and generated
images along each dimension, and Σr and Σg are the variances of these features

LPIPS (Learned Perceptual Image Patch Similarity) is a metric used to assess
the perceptual similarity between images. It is designed to better align with hu-
man judgment compared to traditional metrics such as MSE or PSNR. LPIPS com-
putes the distance between deep features extracted from a pre-trained neural net-
work(usually VGG-19), reflecting the perceptual differences perceived by humans.
The formula for LPIPS is given by the following:
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LPIPS(xr, xg) = ∑
l

1
HlWl

∑
h,w

|| f xr
l (h, w)− f xg

l (h, w)||22 (3.2)

Where f denotes the feature extractor.

FIGURE 3.3: LPIPS metric pipeline. F represents a network designed to extract features
from images x and x0, which then normalizes and subtracts these features, followed by

a process of multiplication and averaging. [Zhang et al., 2018]

The Structural Similarity Index (SSIM) is a method to measure the statistical sim-
ilarity between two images. SSIM is designed to improve traditional methods such
as peak signal-to-noise ratio (PSNR) and mean squared error (MSE), which have
proven to be inconsistent with human eye perception.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.3)
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Chapter 4

Proposed Solution

4.1 Framework description

In this section, we introduce a proposed framework [4.1] in the context of the origi-
nal LaMa model. However, it is not restricted to this model alone and could poten-
tially be adapted to any model featuring an encoder-decoder architecture with an
intermediary refinement block.

FIGURE 4.1: Proposed framework. Initial pre-training phase of an autoencoder employs
MSE loss at the top. Below the dashed line lies the core pipeline of the LaMa model inte-
grated with our framework. The encoder-decoder shares weights with the autoencoder
and is frozen. A Mask Encoder is incorporated to derive features from the mask image
to condition the image encoder. Subsequently, a Refiner processes these features and
performs inpainting within the latent space, succeeded by a latent loss computation (L1

distance between the refined features and the actual ground truth features).

4.1.1 Mask Control

An important component of the image encoder is its usage of mask data. In the orig-
inal LaMa model, pixels where a mask value is one are zeroed out, with the mask
being concatenated as the fourth alpha channel in the encoder input. A different
masking technique in SD is proposed that utilizes an autoencoder that uses a three-
channel input (RGB image). The authors opted to concatenate the encoded features
at the latent space level rather than at the pixel level. A significant advantage of SD’s
compared to previous diffusion-based methods, such as GLIDE, is that they are pre-
train and freeze autoencoder during the costly denoising training, thus significantly
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accelerating the process, although they do not utilize the mask most effectively. In
our approach, we aim to retain the advantage of the pre-trained autoencoder while
enhancing its mask handling capabilities. Inspired by ControlNet, which was the
primary design to keep denoising part of the model frozen, we implemented a con-
trol mechanism to direct the image encoder with mask data, eliminating the need to
unfreeze the encoder.

FIGURE 4.2: Diagram of the Mask Control. ’Conv’ refers to convolution blocks, and
’zero’ refers to convolutions where the weights are initially zero. Each convolution block

does not need to be identical, but should yield an output of the same shape.

In our approach, the mask encoder is designed to generate intermediate features
on various scales [4.2]. It is designed to ensure that the dimensions of these features,
both spatial and channel-wise, align with those of the image encoder at specific in-
termediate points. Following this, the features undergo convolution and are merged
with the image encoder’s intermediate features, moving forward to the next layer of
the image encoder. The adoption of ’zero-convolution’ kernels aids in the gradual
merging of data from the mask encoder features, which helps to prevent the im-
age embeddings from being immediately influenced by the initially noisy kernels.
The fundamental reason for employing this mask integration is as follows: the im-
age encoder is adept at extracting semantically rich information; however, applying
zeros to masked regions would compromise the semantic integrity within the re-
ceptive fields of these areas, thereby rendering the semantics less informative. Our
method aims to restore these areas with the help of mask embeddings. Subsequent
experiments demonstrate the benefits of this approach. Remarkably, while conduct-
ing these experiments, we identified a concurrent study of motion comprehension
[Shi et al., 2024] within the latent space that also utilizes this type of mask control,
confirming its versatility.

4.1.2 Autoencoder

Initially, the establishment of a latent space through an autoencoder configuration
is essential. This setup facilitates the creation of a latent space capable of being de-
coded into a meaningful representation. Crucially, the encoder function acts as the
inverse transformation of the decoder, implying that an image can be transformed
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into features and these features can be decoded back into the original image [4.3].
Encoding the ground truth image (expected inpainting outcome) in this space is ex-
pected to result in a refined feature that closely matches the encoded ground truth
feature. This crucial observation enhances our framework by reducing computa-
tional demands as it avoids the extensive decoding process and pixel-level manipu-
lation.

Consequently, the first step in our methodology involves setting up the encoder-
decoder model to operate as an autoencoder. This setup typically involves self-
supervised training [Balestriero et al., 2023] to allow the model to both compress
and decompress the data, effectively reproducing the original input as the output.
Training uses a set of image samples fed into the network, with the final MSE loss
calculated between the input and output images to facilitate the learning process of
image compression and decompression.

It is crucial to note that the SD autoencoder - VQ-VAE [Van Den Oord, Vinyals, et
al., 2017] is pre-trained and frozen, and it does not employ any losses before decod-
ing into pixel space. In our experiment configurations, we opt to pre-train a standard
encoder-decoder architecture from LaMa, allowing for a direct comparison with the
LaMa baseline, which remains a strong benchmark for the inpainting task; however,
it remains comparable to SD inpainting as the SD paper includes direct comparisons
and metrics with the LaMa model.

4.1.3 Latent Loss

The most critical and novel aspect of the framework is learning in latent space [4.3].
Facilitated by the autoencoder configuration, we target both the ground truth fea-
ture and the refined feature for optimization. After decoding both the ground truth
and the refined feature, we aim to generate images that closely resemble each other.
To achieve this, we have chosen the L1 distance metric, aligning with the LaMa pixel
L1 loss and inspired by LaMa Refiner’s selection of L1 for their optimization. How-
ever, the choice of measurement is not limited to this metric. Therefore, we expect
the features to be identical before decoding (since the decoder is unchanging), which
justifies the use of this particular loss. Additionally, the rationale for this is the supe-
rior signal derived from latent loss compared to pixel loss, which must pass through
the decoder layer.

FIGURE 4.3: Comparison of latent and pixel losses
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4.1.4 Latent space visualization

To justify the implementation of latent loss, we created a visualization prior to train-
ing our proposed model. For this purpose, we employ our pre-trained encoder-
decoder(E and D) models configured in an autoencoder setup, along with the Igt
ground truth image and Imasked, which is a masked image containing a zeroed region
within the mask. By inputting these images into the encoder, they are projected into
the latent space. Unlike the ground truth image, the features of the masked image
are anticipated to exhibit a damaged region, which could potentially be inferred di-
rectly from the features of the ground truth image. To validate this statement, we
visualize this difference:

out = D[E(Igt)− E(Imasked)] (4.1)

FIGURE 4.4: Visualization of latent space for inpainting. The top row displays the im-
age, while the bottom row shows the decoded difference between the ground truth

features and the masked features. [4.1]

Visualization [4.4] demonstrates that the latent features of ground truth possess
sufficient information to learn, as the differences with the masked feature are dis-
tinctly decoded in the required pixel information. Additionally, the presence of
nonzero values outside the mask suggests that the embedding suffered damage, not
just near the mask but across the receptive field. This highlights the importance of
integrating mask control into all stages of image encoding to prevent such feature
degradation.
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Chapter 5

Experiments

The primary goal of our experimental approach is to perform a quantitative assess-
ment using the original LaMa model as part of our proposed framework. All train-
ing data and evaluation described in Chapter 3.

5.1 Mask Control

The initial stage of the experiments is to assess the impact of incorporating mask
control into the standard LaMa framework. During this stage, the focus is on in-
dependently evaluating this modification against the traditional LaMa setup, using
only the L1 loss in pixel space for simplicity.

Crucially, in every experiment, the encoder-decoder is initialized with weights
from pre-training of the autoencoder. This is necessary to ensure uniform conditions
for comparison. Additionally, the architecture retains all original layers, with the
exception of modifications to the encoder’s first convolution or the inclusion of a
mask encoder, as detailed in the Mask column of table [5.1].

In baseline (1)[5.1], the original LaMa layers remain unchanged, with a 4-channel
convolution for the input image with mask in the alpha channel, All components are
unfrozen and only L1 loss is used. Conversely, our experiment (2)[5.1] maintains the
same loss, layers, and initialization conditions, but additionally freezes the encoder-
decoder and incorporates our Mask Encoder. For training time, it has increased to
7% due to the need to run an additional mask encoder, but all metrics have increased
to 3% in FID, 1.3% in LPIPS, and 2.1% in SSIM, which show the effectiveness of the
proposed mask control modification.

Method Loss Encoder-Decoder Mask Train Time↓ FID ↓ LPIPS ↓ SSIM ↑

(1) Baseline L1 in pixel Training As alpha 6h 16.6 0.155 0.865
(2) Baseline with control L1 in pixel Freeze Mask Encoder 6.4h +7% 16.0 -3% 0.153 -1.3% 0.884 -2.1%

(3) Latent L1 in latent Train only first conv As alpha 4h -33% 18.3 +10% 0.163 +5% 0.878 +1%
(4) Latent with control L1 in latent Freeze Mask Encoder 4.3h -28% 12.4 -25% 0.149 -4% 0.888 +2%

TABLE 5.1: Comparison of different results. Percentage calculated compared to base-
line(first row)

5.2 Latent Loss

The next training is implemented to compare the relative enhancement obtained by
switching the loss function from pixel-based to latent-based. In row (3)[5.1], the
setup involves the same 4-channel input convolution, the absence of mask control,
and latent loss, with the encoder-decoder frozen. The results indicate a substantial
reduction in training time by 33%, accompanied by a noticeable decrease of 10% in
FID and 5% in LPIPS, while SSIM shows a minor improvement of 1%. The notable
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reduction in training duration is attributed to the elimination of the need for the
costly decoder component of the network and reduced computation in the latent
space for L1 distnace, although this only affects the training phase, the inference
time remains unchanged.

To visually illustrate the changes in these metrics, we present our sample in Fig-
ure [5.1]. Despite both outcomes being pure, due to the lack of perceptual and adver-
sarial losses, which is indicated in FID and LPIPS, the outcome from latent training
exhibits superior texture quality, as demonstrated by SSIM metrics. This highlights
the advantages of latent loss in improving texture compared to pixel loss.

FIGURE 5.1: Comparative visualization of inpainting on a test image. The left image
is trained with pixel loss, while the middle one is with latent loss and the right one is
with latent and mask control. The middle image demonstrates improved textures of the

result and right also improve visual quality.

One more final experiment is needed to evaluate the effectiveness of combined
latent loss with mask control over baseline training. For (4)[5.1] we use mask control,
frozen autoencoder, and latent loss for training. The mask encoder increases the time
to 5% compared to training with latent loss only (and no mask encoder), but this
time is still a significant improvement over baseline in 28% percent. Furthermore,
alongside the reduction in time, there is a modest improvement in FID by 25%, a
slight increase of 4% in LPIPS, and a steady improvement 2% in SSIM.

Besides the qualitative results, there is also a minor enhancement in the visual
appearance of the image, yet the outcome remains unconvincing. This prompted
our final experiment involving the integration of adversarial loss, anticipated to sig-
nificantly boost the quality.

Moreover, this experiment revealed a noteworthy outcome: training within the
latent space, employing both latent loss and mask control, enhances FID and LPIPS
scores, which rely on an external feature extraction network. This discovery could
be instrumental in future research focused on transferring perceptual or even ad-
versarial losses to the latent space, thereby eliminating the requirement to decode
features into pixel space, significantly improving training efficiency.

5.3 Full training

Prior experiments were conducted to assess the impact of proposed modifications in
a smaller baseline training only with distance loss at the pixel or latent levels, insuf-
ficient to achieve results that can be compared. Therefore, in our final experiment,
we implemented a complete training of the baseline’s LaMa model, maintaining the
same number of training steps and incorporating all losses. Building on (1)[5.1],
we incorporated all necessary blocks to align the training with that described in the
original LaMa paper, but retained the autoencoder initialization to ensure uniform
model weight initialization and, thereby, a fair comparison. For comparison, we ad-
justed (4)[5.1] similarly by incorporating all losses from the original LaMa training,
but on top of it adding the latent loss and mask control. In this configuration, we
completely replicate the original LaMa training and compare it to the LaMa training
that includes our integrated framework. Note, we reduced the number of training



5.3. Full training 23

steps as the original training required approximately one week on a GPU cluster,
which was inaccessible to us. Consequently, we adjusted the batch size and the
number of epochs to fit our available training resources while ensuring satisfactory
performance. For more information, see the latent-inpainting1 repo.

Method Loss Enc-Dec Mask Train Time↓ FID ↓ LPIPS ↓ SSIM ↑

(0) LaMa baseline* Original Training As alpha ∼1week 0.63 0.035 -

(1) LaMa baseline Original Training As alpha 40h 1.5 0.095 0.897
(2) LaMa w/ framework Orig + Latent Freeze Mask Enc 41h +2% 1.0 -33% 0.087 -9% 0.902 +0.5%

TABLE 5.2: Comparison of final training. (0) row is full steps-epochs training from
authors (no SSIM provided). (1) is our training trough original setup and code, but
with less training time. And (2) is modification of (1) using our proposed framework.

*-checkpoint taken from authors.

As observed in the table, there is a modest 2% increase in training time, while FID
maintains a 33% high improvement over reduced training with one loss. Further-
more, LPIPS shows a tendency to improve up to 9%, and SSIM decreases marginally
from 2% to 0.5%. As anticipated, visual evaluations [5.2] reveal significantly im-
proved results compared to the smaller experiments discussed in the previous sec-
tion. However, when comparing results directly, the differences are not substantial,
although training incorporating latent loss does demonstrate minor but visually dis-
cernible enhancements.

FIGURE 5.2: Comparison of LaMa baseline and LaMa with proposed framework

Furthermore, our experimental results indicate that a reduced coefficient of latent
loss is essential relative to other pixel-based losses. Despite the losses having the
same magnitudes, the coefficient for latent loss must be reduced by four orders of
magnitude (to 0.001) to facilitate training convergence. This requirement may be
driven by a significantly stronger gradient signal from the latent loss, as pixel-based
losses are subjected to a decoder, which might diminish the gradient magnitudes.

1https://github.com/igor185/latent-inpainting

 https://github.com/igor185/latent-inpainting
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Chapter 6

Conclusion

We showcased the effectiveness of using latent loss and conditioning input in latent
space by applying the proposed framework to the inpainting problem. In particular,
the state-of-the-art LaMa method was modified to work in latent space by incor-
porating latent loss and conditioning mask input in intermediate encoding layers,
which resulted in improved inpainting results. Mask control is responsible for an
improved reconstruction of 1.6% and a reduction in perceptual error by 25% with
a negligible increase in training time. The results imply that conditioning the in-
termediate encoding layers of the image is critical to preventing the latent space
from being corrupted by the mask. This contrasts with the state-of-the-art, which
only conditions the image in the image space. Furthermore, changing pixel loss to
latent loss led to a substantial 33% reduction in training time and reduced the re-
construction error by 1%. This result implies that a latent loss can mitigate errors
introduced by the decoder and should always be incorporated when the decoder is
frozen, which is common when using off-the-shelf autoencoders.

Incorporating both components of our framework into LaMa resulted in a sig-
nificant improvement in FID by 33%, in LPIPS by 9%, and in SSIM by 0.5% with
a negligible increase in training time, which shows that the framework produces a
higher fidelity latent space as desired.
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Appendix A

Delta prediction

A potential enhancement for the framework could be the implementation of skip
connections that bypass FFC blocks. This approach aims to forecast delta variations
within the feature block, potentially improving the refinement of features or facilitat-
ing their reusability, such as sharing weights for FFC blocks, similar to the methods
used in optical flow [Shen, Kerofsky, and Yogamani, 2023] estimation models such
as RAFT [Teed and Deng, 2020]. The rationale behind this is to enable the model to
iteratively predict minor enhancements to the feature, thereby avoiding the need to
retain all previously known information.

FIGURE A.1: Proposed model with added skip connection (delta) modification

Upon evaluating the method with the skip connections, it was observed that
there was no improvement in the metrics, probably due to the inductive bias of the
FFC blocks aimed at reconstructing the complete frequency spectrum of the images,
but it could give some improvements under different models for refining features.

Method FID ↓ LPIPS ↓ SSIM ↑
Baseline with pixel loss (full) 16.6 0.1555 0.865
Baseline with pixel loss (delta) 17.96 0.1643 0.883

Autoencoder with control with latent loss (original) 12.4 0.149 0.888
Autoencoder with control with latent loss (delta) 19.06 0.157 0.884

TABLE A.1: Comparison of ’delta’ and ’original’ setup
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Appendix B

Code of Framework changes

The full code you can find in the GitHub repository of the latent-inpainting1 repo

B.1 Mask Control

class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule):
def __init__(...):
...

self.zero_conv2 = nn.Conv2d(8, 8, kernel_size=1, stride=1,
padding=0, bias=False)

self.zero_conv3 = nn.Conv2d(16, 16, kernel_size=1, stride=1,
padding=0, bias=False)

self.zero_conv4 = nn.Conv2d(32, 32, kernel_size=1, stride=1,
padding=0, bias=False)

self.zero_conv5 = nn.Conv2d(64, 64, kernel_size=1, stride=1,
padding=0, bias=False)

self.zero_conv2.weight.data = torch.zeros_like(self.zero_conv2.weight)
self.zero_conv3.weight.data = torch.zeros_like(self.zero_conv3.weight)
self.zero_conv4.weight.data = torch.zeros_like(self.zero_conv4.weight)
self.zero_conv5.weight.data = torch.zeros_like(self.zero_conv5.weight)

self.mask_encoder = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(8),
nn.ReLU(),
nn.Conv2d(8, 16, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),

)
...

def forward(self, batch, mode=’train’):

1https://github.com/igor185/latent-inpainting

 https://github.com/igor185/latent-inpainting
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...

ms = []
m = mask.float()
for l in self.mask_encoder:

m = l(m)
ms.append(m)

for i, l in enumerate(encoder):
masked_img = l(masked_img)
if i == 1:

masked_img = self.zero_conv2(ms[2]) + masked_img
if i == 2:

masked_img = self.zero_conv3(ms[5]) + masked_img
if i == 3:

masked_img = self.zero_conv4(ms[8]) + masked_img
if i == 4:

masked_img = self.zero_conv5(ms[11]) + masked_img
masked_feat = masked_img

...

B.2 Latent Loss

class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule):
def forward(self, batch, mode=’train’):

...
batch["refined_feat"] = refined_feat
if use_latent_l2:

batch[’gt_feat’] = encoder(img)
...

def generator_loss(self, batch):
...

if ’gt_feat’ in batch:
l1_latent = F.l1_loss(torch.cat(batch[’refined_feat’], dim=1),
torch.cat(batch[’gt_feat’], dim=1))
total_loss = total_loss + coef_latent * l1_latent

...
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