
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Deep reinforcement learning for Flappy
Bird using TensorFlowJS

Author:
Matvii KOVTUN

Supervisor:
Mykhailo IVANKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Matvii KOVTUN, declare that this thesis titled, “Deep reinforcement learning for
Flappy Bird using TensorFlowJS” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Deep reinforcement learning for Flappy Bird using TensorFlowJS

by Matvii KOVTUN

Abstract

In this paper, I will cover a specific topic of Deep Reinforcement Learning which
will be performed in the browser. I will provide an architectural overview of a sys-
tem, describe a process of learning, show a deployment process. There are two key
parts in this work - environment of an execution which is a browser and a learning
approach which is Deep Reinforcement Learning. Motivation for this was a rapid
development in both of these technologies deep learning and web.

Demonstration of my work can be found here:
AI playing Flappy Bird

Code can be found here:
Github repository

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://mattkovtun.github.io/flappy-bird-tfjs/index.html
https://github.com/MattKovtun/flappy-bird-tfjs

iv

Contents

Declaration of Authorship ii

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Frontend computations . 1
1.3 Reinforcement Learning . 2
1.4 Goal . 2

2 Background Information 3
2.1 Artificial Neural Network . 3
2.2 Reinforcement Learning . 3
2.3 Frameworks . 5
2.4 Flappy bird . 5

3 Related Works 8
3.1 TensorflowJS . 8
3.2 Deep Reinforcement Learning . 9
3.3 DeepLearningFlappyBird by yenchenlin 9
3.4 FlappyBirdRL by SarvagyaVaish . 10

4 Solution overview 11
4.1 Environment . 11
4.2 Model architecture . 13
4.3 Inputs . 14
4.4 Training . 15

5 Experiments 16
5.1 Convergence . 16

6 Conclusion 19

Bibliography 20

v

List of Figures

2.1 Typical scenario of classical reinforcement learning approach. 4
2.2 Original Flappy Bird game design. 6
2.3 Simplified example of the Flappy Bird game. 7

3.1 On the left code for TensorflowJS, on the right for Keras. 8

4.1 Environment architecture overview. 13
4.2 Final model architecture view, 2 input values, layer with 4 neurons,

layer with 4 neurons, output 2 values. 14

5.1 Losses of some runs. 17
5.2 Number of episodes before convergence. 18

vi

List of Abbreviations

RL Reinforcement-Learning
ANN Artificial-Neural Network

1

Chapter 1

Introduction

1.1 Motivation

Working as a Data Science Engineer requires a lot of skills and knowledge. Data
Scientist has a lot of tasks to solve, for example, understand nature of data, visual-
ize data, get a business understanding of a process, build a model which will suit
needs of a customer, deploying the model to production and many more task. Here I
will focus on one particular task which is deploying a model to production in order
to get output results. Historically one could only deploy model which does com-
putations on a back end and never on a front end, meaning a server is responsible
for all the hard computations. That leads to having huge clusters running models
on a back end and outputting results to the front end. Which eventually requires
more amount of money for the business to host. In the recent years, deploying
model which operates on a front end became possible so the purpose of this pa-
per is to show an overview how browser can handle very demanding computations
like working with Artificial Neural Network and therefore decrease the number of
servers and their computational power. Which will impact business in a money-
saving way. The selected area of an AI is - Deep Reinforcement Learning. It is a ma-
chine learning concept where the agent is put into a certain environment, the agent
has to take actions which are computed with Artificial Neural Network in order to
maximize some cumulative reward. This approach doesn’t have much of business
value since this type of machine learning requires a lot of trials and errors until an
agent becomes an expert in the given environment. However, in recent years, Ope-
nAI has been working on the bot which used a similar approach to learning, for one
of the most complex games ever to exist - Dota 2. Description of OpenAI mission Their
motivation was to create a bot for the game, and transfer knowledge gained from
this game to more useful applications.

1.2 Frontend computations

There are a few motivational factors behind using exactly browser as a computa-
tional environment. First is business value - it is very inexpensive to have a server on
the backend which just serves model and weights which are being fetched from the
front end. In contrast to having model and weights loaded on the back end and mak-
ing a prediction for every single user. A certainly smaller amount of less powerful
servers leads to a reduced amount of cost for their maintanance. The second reason
is the rapid development of technologies and hardware acceleration. In the modern
age, one of the most used applications of all time is the browser. Every user has at
least one browser on their laptop, PC, smartphone, etc. That demand for browsers
led to its fast development and upgrades. The most used programming language

2 Chapter 1. Introduction

in the browser environment is Javascript, this language has the biggest community
around the globe. Browser as a program is a very unique software product, it has a
huge breaking point, meaning it will escape crashing in every possible way in order
not to spoil user experience by crashing some page. Additional important aspects of
the browser are that it renders all the content and computes Javascript on the client
side, reducing the load on the server side. Brief history of Javascript

1.3 Reinforcement Learning

Every specific topic in Machine Learning is very unique and interesting. A lot of
those topics have a huge business impact and bring a lot of value, for instance,
time series predictions, computer vision, recommender engines. Business value of
RL However, there are some topics which are not really applicable to the modern
needs of a business, nevertheless, those topics are still interesting and relevant. One
of these less valuable topics is Reinforcement Learning. It has a pretty unique ap-
proach to solving tasks. It requires a lot of repetitions until the model converges.
Unlike supervised learning it can’t simply label each state, each state is getting some
value when the agent comes to the state thus it prevents us from gathering every
possible state of the game to the training set. Anyway, there are a few real-world
tasks which might be solved using mentioned learning approach, for instance, re-
sources management in computer clusters. This task requires delegating specific
jobs to specific computers in order to reduce slowdowns and increase the overall
performance of a system. The other example could be robotics, it can help robots
become better at movement, make robots move more precise and accurate.

1.4 Goal

The aim of this work is to create and teach an agent based on Deep Reinforcement
Learning, also create an environment which will operate in a similar way to game
Flappy Bird. This work has to show that browser is capable of Neural Network
computations and can be pretty efficient in reinforcement learning for Flappy Bird.
Further training of an agent is split into 2 phases. In the first phases, an environ-
ment will be stable, meaning that the complexity of the world is small. When agent
will show that it’s capable of passing stable world, agent and environment will im-
prove its complexity and proceed to the next phase. The second phase is gradually
increasing randomness of the world. Built agent will represent a bird, which as a
decision maker will have an Artificial Neural Network. Next step is to allow the
agent to take actions based on its computed weights. Weights will be updated over
time according to the reward factor of the world.

3

Chapter 2

Background Information

2.1 Artificial Neural Network

In this paragraph, I will cover key components and key terms which made the pos-
sible implementation of this work. The first component is Artificial Neural Network
(ANN), those are complex computing systems, their name stems from biological
neural networks of brains, but in real life there is almost no connection between
those phenomena. The neural network is not an algorithm, but rather a framework
which has certain rules and certain number of tools inside it. This framework can
be used for many different machine learning algorithms in order to find hidden pat-
terns, to develop certain behaviours and process complex data inputs. Such systems
"learn" during training process, to perform tasks by considering examples, gener-
ally without being programmed with any task-specific rules. An ANN is based on
a collection of connected units or nodes called neurons or nodes, those neurons per-
forming some mathematical operations on each step. Artificial neurons and edges
typically have a weight that adjusts as learning proceeds. The weight increases
or decreases the strength of the signal at a connection. Decrease and increase in
weights are determined by the loss function and performed by the optimizer. Typi-
cally, artificial neurons are aggregated into layers and car perform strict number of
tasks.Krizhevsky, Sutskever, and Hinton, 2012 Different layers may perform differ-
ent kinds of transformations on their inputs. Signals travel from the first layer (the
input layer) to the last layer (the output layer), possibly after traversing the layers
multiple times.Artifical Neural Networks
At the end of a day, ANNs represent a very complex mathematical formula which
would be impossible to create manually by hand.
An important part here is weight update, it is made possible due to the invention of
an algorithm called backpropagation. This algorithm allows efficient weight update
through the computation of a gradient, based on the loss function. The loss function
is a function which indicates how far or close ANN is getting to the local minimum
or in the other words to the desired result. Description of a backpropagation

2.2 Reinforcement Learning

Reinforcement Learning (RL) is an area of Machine Learning that deals with sequen-
tial decision making. The core component of RL is an agent which is put into a
certain environment. The idea behind this approach is that the agent will learn
a good/winning behavior through the pass of trials and errors. Agent contacting
with an environment through states and actions. Difference between RL and classi-
cal algorithms which aim to find the optimal policy such as dynamic programming
is that an agent doesn’t have to have a full picture of the world. Meaning RL agent

4 Chapter 2. Background Information

can operate and discover the world in the process of training, therefore enhancing
its action taking mechanism. Reinforcement learning starts from Markov decision
process. Introduction to Reinforcement Learning

The typical scenario of learning using this approach looks somewhat similar to
this:

• pass the state from the system to an agent

• agent chooses action to take based on the state

• pass selected action to the environment

• get a reward for the taken action

• update weight matrix according to previously selected action and reward

FIGURE 2.1: Typical scenario of classical reinforcement learning ap-
proach.

There are a few working algorithms within RL. They often rely on the weight ma-
trix which is being updated over time with every new state. So the decision-making
process could be described as follows agent receives state of the world in numeric
form, where each entry corresponds to some information of the world. Those en-
tries are treated as X and being passed to the matrix in order to find resulting Y
which represents an action to be taken. After matrix multiplication over X, the ac-
tion is found and returned to the system as a decision that the agent made. Over
the next iteration, the world state is changed and the new world state is passed to
the agent and also reward for the previous action is calculated and passed to the
agent as well. Now agent has to decide whether the previous action was correct or
not according to the received reward. Next step is to adjust weights in the matrix in
order to maximize reward in the future. In the classical RL exists various techniques

2.3. Frameworks 5

which allow reducing the number of weight kept in the matrix in order to simplify
the world. One of those techniques called “binning”. It can be simply described
as breaking down multiple different variables into separate bins. For instance, we
can bin a distance to “more than 5 cm” or “less or equal to 5 cm”, this will result in
having 2 bins. Sometimes this matrix is called Q-table and it is a core feature of RL
which differs it from other learning methods. One of the most used ones and the
one I used in this papers is called SARS. This abbreviation stands for State Action
Reward State. At any point of time, this algorithm saves such variables as a state,
an action which was taken from this state, a reward which was given for the taken
action and resulting state. Often times, additional variables like the status of being
dead or alive, is this a new game or not is saved as well. A brief introduction to RL

2.3 Frameworks

Nowadays coding computations for ANNs is never been easier. There are a few
main frameworks which has been open sourced and publicly available. Most used
ones are PyTorch, TensorFlow, and Keras.Deep learning frameworks Basically, those
frameworks offer a suitable interface for programming ANNs which can be called
via python. Here we will focus on the usage of Tensorflow because this is the only
framework which can use Javascript and be run in the browser. This framework was
created and open sourced by Google. The later company released TensorFlowJS,
it allowed programming ANNs using Javascript. Javascript nowadays is the most
supported language among browsers.

2.4 Flappy bird

This is one of the most popular game of its time. However, this game didn’t last
long enough. Let’s dive into some history to discover why. ’Flappy Bird is a mobile
game developed by Vietnamese video game artist and programmer Dong Nguyen,
under his game development company dotGears. The game is a side-scroller where
the player controls a bird, attempting to fly between columns of green pipes without
hitting them. Nguyen created the game over the period of several days, using a
bird protagonist that he had designed for a canceled game in 2012. This game was
released in May 2013 but received a sudden rise in popularity in early 2014. The
game was free to play and Nguyen said in an interview with The Verge that the
game was earning around $50,000 a day in revenue through its in-game advertising.
Original version of the game contained pipes and looked something similar to this.’
History of a Flappy Bird game The game is truly addictive. It doesn’t really matter
whether a person plays or watches someone plays it. I find very fascinating to watch
how AI plays it.

6 Chapter 2. Background Information

FIGURE 2.2: Original Flappy Bird game design.

My game is a bit simplified in terms of graphic. However, in terms of speed my
created Flappy Bird is a bit faster.

For the sake of speed of rendering and training therefore graphic intentionally
was simplified. The game sense and rules remained the same.

2.4. Flappy bird 7

FIGURE 2.3: Simplified example of the Flappy Bird game.

8

Chapter 3

Related Works

3.1 TensorflowJS

It is a relatively new framework created by Google. It is using Javascript as pro-
gramming the main programming language. This has certain up and downsides.
One of the bad things about it is that it is less efficient in computations which results
in slower training/testing processes. Not to mention C++, it loses to Python when
training small networks in 1.5 times of speed. And training a large network might be
slower in 10 times. However, this framework has its advantages, the first one is that
it runs in the browser on the client side, and the browser is the most used program so
far. This advantage covers cross-platform execution in some way since the browser
is installed on the major number of devices across the globe. The second advantage
is that it can be run using Node so it can perform computations on the backend as
well.Abadi et al., 2015 I also prefer tensorflowjs compared to the original tensorflow,
since it has syntax more like a Keras, which is more suitable and easier. Even though

FIGURE 3.1: On the left code for TensorflowJS, on the right for Keras.

this framework is new, but already has some applications and interesting examples.
One of the most recent achievements in the direction of the Web and TensorflowJS is
ml5.js. Creators of this framework say that they are heavily inspired by Processing
and p5js. This library allows doing machine learning classification in a few lines of
code, and for sure it operates on the client side, and demands no computations on
the back end. In order to have it working user just have add script reference to the
library in the head of the document. Then add upload field for the image. Next step
is just write a few line of code in order to classify image. Authors also claim they
have plenty of classifiers and other machine learning algorithms in the library, and
their usage is fairly simple. Overview on how ml5js works
One more useful and interesting example of using TensorflowJS is face-api.js . This
library allows doing face detection using both Node and browser. It also gives user
an ability to detect face landmarks and facial expressions. And the last feature is
age and gender detection. This application is very notable since it uses browser and
can be run from mobile device. That means developing demos or even some solu-
tions using android / ios applications might become irrelevant and overcomplicated

3.2. Deep Reinforcement Learning 9

compared to simple solution using browser and external library. Authors claim they
have ssdMobilenet inside of their system. This model is well known for its speed
and size. Description of how face-api.js works

3.2 Deep Reinforcement Learning

It is a subcategory of RL. This approach is relatively new, it stems from classical rein-
forcement learning and ANNs approach. It became more and more popular in tasks
which involve RL because it does not necessarily require bins in order to reduce di-
mension space of an input data. Often times raw state data from the world is directly
passed to the model. In this work I particularly use Deep Q-learning (DQN),Deep re-
inforcement learning, DQN the idea behind this approach is to combine Q-learning
with a neural network. ANN is a key factor in this type of learning since it serves
as a place where weights are stored, instead of a matrix, as in traditional Q-learning.
An Introduction to Deep Reinforcement Learning This method of learning definitely has
its advantages and disadvantages. To advantages, we can add that it doesn’t require
binning, the decision-making process can be more complex than 2d matrix opera-
tions. However, there are some disadvantages as well, for example, it requires more
data samples to learn from since weights are stored in ANN and being optimized
through gradient descent based on loss. This process has rather small tweaks in
weights and needs more samples in order to converge. One more disadvantage is
that this method requires more computational power than a standard Q-learning al-
gorithm. But in nowadays increase in computational power can be easily achieved
so the last disadvantage is arguable.

3.3 DeepLearningFlappyBird by yenchenlin

This work consists of GitHub code and references to a few related articles. Direct
reference to an article on which this code is based doesn’t exist, probably there is no
such an article. The main programming language of this work is python 3. Stack of
technologies is - Tensorflow 0.7, pygame, OpenCV. For training the neural network
and weight updates, for creation of a gaming environment, for passing images of the
world to the neural network respectively. Computer Vision for Flappy Bird
The author uses pygame to create an environment of the game. As a learning al-
gorithm author selected RL. However, a significant feature of this work that it has a
deep neural network which as an input accepts an image of the game field. So it grey
scales image, reshapes it and then feed into ANN. The core component (ANN) au-
thor selected Convolution Neural Network since it is the best performing approach
for working with images. The created model consists of a few layers, important
mention is that every convolutional layer is passed to relu activation directly. The
network starts from convolution + bias layer, selected parameters for the convolu-
tional layer are: kernel size - 8x8; striding - 4; the number of kernels - 32. Next layer
is a standard max pooling with striding of 2. Next two layers are convolutional with
no max pooling involved, its parameters are (4, 4, 64, 2) and (3, 3, 64, 1). Finally
flattening resulting images passing to fully connected layer in order to map to re-
sulting array of 2 numbers. (might add weakness of the model) As an output model
predicts a reward which could be achieved in case of taking jump action or not.
Training of this model includes the state as an input image, reward, action and next
state as another image. Implementation of the game is rather heavy and written in a
script like the style. As a reward, the author gives “1” if the bird is alive and “-1” if

10 Chapter 3. Related Works

the bird is dead. For the best performance author proposes a number of constant to
take into account for instance number of previous episodes which are then used for
training is equal to 50000. Also, the author proposes an observation stage from the
beginning of the game. This stage is played with high exploration rate meaning, the
bird is doing random moves with no predictions involved. This stage is important
for initial training because it possibly fastens convergence time. So constants for this
part are number of observational episodes before first training - 100000, number of
episodes where the bird is able to explore states at random is set to 200000.

3.4 FlappyBirdRL by SarvagyaVaish

This flappy bird made to work in the browser, the game is calculated and played
only using front end. An author as he claims didn’t develop the game, he developed
only an algorithm for playing. In his blog author describes that he used classical
RL approach - Q learning. State space, which is basically a matrix where weights
are stored, is split into 3 variables - vertical distance to the lower pipe, horizontal
distance to the next pair of pipes, status dead or alive bird. Action space in this
game is standard - do nothing or jump. Rewards author selected differently from
the previous creator bird gets “+1” if taken action didn’t kill the bird and “-1000” if a
bird has died. I believe that this difference in rewards is supported by the difference
in a number of observations of each state. Since the bird is primarily alive, meaning
in the game there are way more states where a bird is alive compared to the number
of states where the bird is dead. Thus the author decides to punish every move
leading to death way more than every move that keeps a bird alive. The author
mentions that it took around 6-7 hours for a bird to become pretty good in the game
and score 150 points.Article about classical RL for Flappy Bird

11

Chapter 4

Solution overview

4.1 Environment

I believe it is worth explaining why I didn’t pick any of existing environments but
developed my own. There are a few main reasons to make such a decision. The first
one is because almost every created RL agent for Flappy Bird operated using python.
So far there is no chance to run python simulator in the browser on the client side.
The second reason is that existing simulators which are written in Javascript a long
time ago. They primarily use JQuery library, I am not a fun of this library, and in
times of having ECMA6 as standart - JQuery is one of the dead approaches. Usage of
JQuery for the Flappy Bird

The created world consists of a few pieces: blocks, bird, game field, agent, world.
Blocks are represented by the class which has its x and y coordinates, height and
width of the block. Also, this class, as well as any graphical element, has to render
method which renders essence to the gaming field using canvas. The bird is a simple
struct-like class which contains core information about the bird. Its x and y coordi-
nates as well as render method. The game field is represented by class Game which
does all function of the game, for example, starting a new game, rendering block
and bird, check if the game is over, moving bird and blocks to the next position, per-
forms a jump action if needed. Next is Agent class, this is basically RL agent which
decides on an action to take based on the given input. There is also class - World,
which creates a new game and new agent and also renders useful information to the
screen.
Components
Agent.js - class represents Deep RL network. This class represents core algorithm
of the system which does decision making and outputs actions. This component is
crucial as it contains core ANN which does action taking. It also decides which re-
ward is provided to the ANN for each action. Inside this component it has 2 main
methods which are being called from outside. Method act accepts as an argument
world state provided by another component. To be precise world state is and object,
which has is packed and passed as an argument by the world. State object contains
a lot of useful information which describes world. It has such properties: "bird",
"blocks", "ticks", "gameIsOver", etc. Mentioned properties are essential in order to
take an action. Next step is to predict rewards and according to the highest reward
possible determine the next action to be taken. Next step is to save the current state
to the history array after that, it updates the previous state and assigns a current
state to the variable of nextState of the previous state from the history. The last thing
is that this method returns an action which the agent decided to take. The second
important method is retrainModel, it accepts no inputs. This method gathers a batch
of states from the history, puts it to the arrays of Xs and Ys and passes to the model
in order to retrain it.

12 Chapter 4. Solution overview

Bird.js - struct-like a class which is used to set initial variables of the bird. Variables
include x and y coordinates, jump array it is used to encode jump shift in any given
point of time. Render method outputs a graphic representation of the bird on can-
vas.
Block.js - class which represents pipes in the original game. Consists of a few meth-
ods and properties. Key properties are lowerBlock and upperBlock they represent up-
per and lower pipes in the original game. Render method works similarly to the one
in bird class. Other methods are pretty self explanatory.
config.js - the most influential file. It has all the key factors of the game such as height
and width of the world, game speed, size of the blocks and bird, etc. Through this
class, all the parameters changes are made.
Game.js - class which represents a game of flappy bird. The startNewGame method
creates a new bird and game field with only one block. Method gameIsOver is used
on every step of the game, its aim is to check whether the bird is dead or alive.
This method checks collision with game field and blocks. Next important method
is performAction, as an argument accepts action which is considered to be 0 or 1, do
nothing or jump accordingly. One of the key methods is getFrame method first of all
this method shifts bird to the next position, shifts blocks. Returns current game state
as an object. Method - renderFrame is called immediately after getFrame method in
order to render game changes to the canvas. In Game.js only three methods are be-
ing called from outside of the class which is getFrame, renderFrame, and gameIsOver.
World.js - the purpose of this class is to put together Agent.js and Game.js classes,
it represents world order for both and triggers the most important methods of both.
Besides the constructor, this class consists of 2 methods. First is async graphicMode
with no inputs required, this method does all the general flow of the game and RL
process. Key steps in the flow are:

• receive current state of the system from Game.js

• pass world state to the Agent.js

• return action from the Agent.js to the Game.js

Beside these very important steps this class does supportive functions. The first of
them is rendering current state to the canvas so the user can see it. The second is
to call the method to retrain the model under some certain conditions. These con-
ditions are purely custom and selected by me, those can be number of episodes to
retrain after, at which point of the game is to retrain model, etc. Last things are
to render useful information to the user interface and make artificial pauses so the
game won’t run too fast.
utils.js - file consists of useful functions which don’t really have a common context
of execution. Those functions are calcDistance, getRandomInt, etc. Every function of
this file is being exported.
index.js - just an entry point of an application. It creates world and plays the game.
This file is an entry point for webpack builder.

4.2. Model architecture 13

FIGURE 4.1: Environment architecture overview.

4.2 Model architecture

As mentioned earlier Deep Q learning is selected approach. So the core component
here is ANN primarily based on fully connected layers. So the final architecture
has following layers: starting from a dense layer which passes 2 input values to 4
hidden parameters, next dense layer maps 4 neurons to next 4, and the final layer
outputs 2 values which later are interpreted as actions. This architecture showed the
best performance compared to other tested architectures. However, I will describe
the previous architectures and its performance. Initial architecture consisted of these
layers: mapping input 2 values to 4 neurons, 4 neurons mapped to 2 output values
and interpreted as a predicted reward for each action. This architecture could only

14 Chapter 4. Solution overview

perform well in a static world, the meaning the distance between blocks and blocks
height is static, so the learning algorithm needed to learn only a little to be able to
pass the game. Next tested architecture was a bit more complex, it consisted of map-
ping 2 input values to 4 neurons, mapping 4 neurons to next 2 neurons, mapping
resulting 2 values to 2 output values. This architecture performed well in a static
world, however, convergence in the world with big random factor required a lot of
time. Randomness measured in height of the blocks and distance between blocks.
Every model had the same loss function since models are trying to predict reward
in case of taking action, the loss is calculated as the mean squared error between
predicted reward and actual reward.

FIGURE 4.2: Final model architecture view, 2 input values, layer with
4 neurons, layer with 4 neurons, output 2 values.

4.3 Inputs

Every RL task starts from the environment and a space state. In this task, the envi-
ronment has such parameters as the location of the blocks, width, and height of each
block, position of the bird. In order to understand selected inputs, I need to explain
the conditions of the death of the bird. The bird dies when it collides with any block
or any part of the world. So I had to find a set of variables which would definitely de-
termine the position of the bird. Therefore, in initial model setup input values were
distance to the ground and distance to the closest lower block, distances calculated
as euclidian. The bad side of this approach is that the distance to the lower block
is always floating point, meaning there are more variations of input states which
model receives. It might have been one of the most influential factors of underper-
formance of initial architectures. I was concerned with floating points calculations
and had to come up with another 2 input variables which have to determine the

4.4. Training 15

position of the bird. My next and final set of input variables consisted of values cal-
culated in a different fashion. So first is the distance between lower block Y and bird
Y, which is always an integer, since the bird is shifted by integer values. And blocks
coordinates are always integers. The second value is the distance from the birds X
to the X of end of the closest pair of blocks, which is also always an integer.

4.4 Training

The process of training is the following. It starts from the observation phase which
lasts around 100 states, the state is a measure of 1 in-game step. During this phase
agent makes random actions, this phase is created in order to have the agent gather
more different states to learn from, and not same states repeated from episode to
episode. The observation phase is followed by the actual training. Initial attempts
to the training were slightly different from the final one and they were less efficient.
First attempt was using 4000 saved states, it took more time and gave less accuracy
because the agent was heavily influenced by the data from the past, in order to re-
move the last effect I needed to come up with a discount factor or smaller batch
size. The second attempt was to train agent more often, every second game state,
and take a random batch of size 32. This attempt gave absolutely different outcomes
compared to the first one. It brought rapidly changing the behavior of an agent. It’s
is not a good quality since sometimes agent got the right understanding of the game,
however, due to often retraining fell out of that local minimum. So the last and fi-
nal changing attempt works in the following way.Further retraining of the model is
happening after each death of the bird. They are done in the following way, retrieve
1000 last states from the history, select inputs variables for the model from states
and put them into an array of Xs. Select reward from each action taken from the
previously selected step, put the reward in a new array with 2 numbers, under the
index of taken action from that step. Last 2d array is Ys which are passed directly
to the model. After that model is being retrained, the loss is calculated as the mean
squared error between predicted reward and actual reward. Accordingly, to the loss
of every weight in each dense layer is being pulled to the local minimum.

16

Chapter 5

Experiments

This chapter is dedicated to experiments I have conducted with working agent in
my own created world.

5.1 Convergence

First of all, let me describe world configuration under which this test is being held.
Here are some useful constants and their values:

• world resolution - 400x400 px

• bird size - 15x15 px

• bird spawn point - (35, 200)

• block width - 85px

• falling speed - 6px

• horizontal speed - 2px

• jump length - 25 game ticks

• jump power - 7px

• gap between blocks - 100px

Next important constants are connected to the ANN model which is a decision
maker in this approach:

• Adam optimizer with learning rate - 0.1

• exploration rate - 0.001

• architecture of the model stays immutable

• batch size - 1000

• loss function is - ’rmse’

• horizontal speed 2px

In this model, the exploration rate has the possibility of 0.001 to occur at any moment
of the game.
The world is not remaining constant, so it has randomness to it:

• block heights [115px, 165px]

5.1. Convergence 17

• distance between blocks [125px, 155px]

Convergences condition is equivalent to scoring 50+ points in the game. Model in-
puts are the same as described in the previous chapters. First 2500 states in-game are
passed without training. After that stage training performed on every death. Here
are some results of a few arbitrary selected runs.

FIGURE 5.1: Losses of some runs.

This diagram shows how losses decrease as weights getting closer to the point of
convergence. At which agent will be able to play the game without dying. One can
notice that it’s not really important how weights are initially set. However, it is im-
portant which learning rate is set, because when the loss is almost at the point of
convergence it takes extra episodes to finally got the right weights set up.

18 Chapter 5. Experiments

Here is an example of a diagram representing number of episodes before conver-
gence.

FIGURE 5.2: Number of episodes before convergence.

As one may notice a number of episodes before convergence is varying from 18
to 271. Its mean is 94,1, its median is 29. In my opinion, there are a few important
factors which influence this value, those are learning rate, batch size, retaining fre-
quency, exploration rate. In order to find optimal combinations further test has to be
executed.

19

Chapter 6

Conclusion

I can certainly say that I accomplished the set goal of creating an environment, then
creating an agent based on Deep RL and make the agent play the best. However, I
believe the work is not done yet, since yet I didn’t find the best parameters for the
model. So far, I didn’t teach AI to pass levels which have inhuman complexity. There
is plenty of work to do even though the main goal is achieved!

20

Bibliography

A brief introduction to RL. https://medium.freecodecamp.org/a-brief-introduction-
to-reinforcement-learning-7799af5840db.

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. URL: https://www.tensorflow.
org/.

An Introduction to Deep Reinforcement Learning. https://arxiv.org/pdf/1811.
12560.pdf.

Article about classical RL for Flappy Bird. https : / / sarvagyavaish . github . io /
FlappyBirdRL/.

Artifical Neural Networks. https://arxiv.org/pdf/1901.05639.pdf.
Brief history of Javascript. https://developer.mozilla.org/ru/docs/Web/JavaScript.
Business value of RL. https://towardsdatascience.com/applications-of-reinforcement-

learning-in-real-world-1a94955bcd12.
Computer Vision for Flappy Bird. https://github.com/yenchenlin/DeepLearningFlappyBird.
Deep learning frameworks. https : / / towardsdatascience . com / deep - learning -

framework-power-scores-2018-23607ddf297a.
Deep reinforcement learning, DQN. https://arxiv.org/pdf/1312.5602.pdf.
Description of a backpropagation. http : / / neuralnetworksanddeeplearning . com /

chap2.html.
Description of how face-api.js works. https://github.com/justadudewhohacks/face-

api.js.
Description of OpenAI mission. https://openai.com/five/.
History of a Flappy Bird game. https://en.wikipedia.org/wiki/Flappy_Bird.
Introduction to Reinforcement Learning. https://web.stanford.edu/class/psych209/

Readings/SuttonBartoIPRLBook2ndEd.pdf.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet Clas-

sification with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
pp. 1097–1105. URL: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

Overview on how ml5js works. https://ml5js.org/docs/getting-started.
Usage of JQuery for the Flappy Bird. https://github.com/SarvagyaVaish/FlappyBirdRL/

blob/master/index.html.

https://medium.freecodecamp.org/a-brief-introduction-to-reinforcement-learning-7799af5840db
https://medium.freecodecamp.org/a-brief-introduction-to-reinforcement-learning-7799af5840db
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/pdf/1811.12560.pdf
https://arxiv.org/pdf/1811.12560.pdf
https://sarvagyavaish.github.io/FlappyBirdRL/
https://sarvagyavaish.github.io/FlappyBirdRL/
https://arxiv.org/pdf/1901.05639.pdf
https://developer.mozilla.org/ru/docs/Web/JavaScript
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
https://github.com/yenchenlin/DeepLearningFlappyBird
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://arxiv.org/pdf/1312.5602.pdf
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
https://github.com/justadudewhohacks/face-api.js
https://github.com/justadudewhohacks/face-api.js
https://openai.com/five/
https://en.wikipedia.org/wiki/Flappy_Bird
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://ml5js.org/docs/getting-started
https://github.com/SarvagyaVaish/FlappyBirdRL/blob/master/index.html
https://github.com/SarvagyaVaish/FlappyBirdRL/blob/master/index.html

	Declaration of Authorship
	Abstract
	Introduction
	Motivation
	Frontend computations
	Reinforcement Learning
	Goal

	Background Information
	Artificial Neural Network
	Reinforcement Learning
	Frameworks
	Flappy bird

	Related Works
	TensorflowJS
	Deep Reinforcement Learning
	DeepLearningFlappyBird by yenchenlin
	FlappyBirdRL by SarvagyaVaish

	Solution overview
	Environment
	Model architecture
	Inputs
	Training

	Experiments
	Convergence

	Conclusion
	Bibliography

