
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Authorization server with OAuth support
and recommended usage patterns

Author:
Bohdan KOVALCHUK

Supervisor:
Yurii YUNIKOV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

https://www.ucu.edu.ua
https://www.linkedin.com/in/bogdan-kovalchuk-9843b8127/
https://www.linkedin.com/in/yyunikov/
https://apps.ucu.edu.ua/computer-science/
https://apps.ucu.edu.ua/

ii

Declaration of Authorship
I, Bohdan KOVALCHUK, declare that this thesis titled, “Authorization server with
OAuth support and recommended usage patterns” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Authorization server with OAuth support and recommended usage patterns

by Bohdan KOVALCHUK

Abstract

This thesis covers the history of digital authentication and authorization and consid-
ers the main changes in different versions of the OAuth protocol. It also describes
the implementation details of custom OAuth authorization servers and clients that
demonstrate usage examples of different authorization grant types.

Code can be found here: Github repository

HTTPS://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/
https://github.com/MNITD/auther

iv

Acknowledgements
I am grateful to my family, who supported me during my student life. I would
like to thank Yurii Yunikov, who suggested the theme of this thesis and helped me
understand the difficult moments of the authorization. I want to thank Yaroslav
Kovalchuk, who helped me organize the work process and Andrii Snitsaruk for the
text editing initiative. Special thanks to my girl Kate whose care helped me entirely
focus on writing this paper.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Goals . 1

2 Background information 2
2.1 The history of auth . 2
2.2 OAuth 1.0 . 5
2.3 OAuth 2.0 . 8
2.4 OAuth 2.1 . 15

3 Implementation details 18
3.1 Database schema . 18
3.2 API endpoints . 19
3.3 Access token . 21

4 Conclusion 23

Bibliography 24

vi

List of Figures

2.1 OpenID authentication flow . 4
2.2 OAuth 1.0 authorization flow . 6
2.3 Authorization Code Grant Flow . 10
2.4 Implicit Grant Flow . 11
2.5 Resource Owner Password Credentials Grant Flow 12
2.6 Client Credentials Grant Flow . 13
2.7 Refresh Grant Flow . 14
2.8 Device Authorization Grant Flow . 17

3.1 The database schema of authorization server 19

vii

List of Abbreviations

API Application Programming Interface
URL Uniform Resource Locator
HTTP Hypertext Transfer Protocol
TLS Transport Layer Security
IETF Internet Engineering Task Force
JWT JSON Web Token
PKCE Proof Key for Code Exchange
SPA Single Page Application
CSRF Cross-Site Request Forgery
JWK JSON Web Key

viii

Dedicated to people who make the digital world more secure

1

Chapter 1

Introduction

1.1 Context

We live in a world where the amount of our digital data is increasing every day.
The importance of data security increases, as well. Stealing or damaging the data

can lead to harmful consequences such as financial or moral damage or even a threat
of life.

It is especially important in the world that becomes more global and connected,
and hacking techniques become more cunning.

Developers face the problem of securely connecting different components while
leaving interaction with the end-user as simple as possible.

The problem can be effectively solved using authentication and authorization. In
this paper, these two terms will be referred to as “auth”.

1.2 Problem

At least a basic understanding of auth standards and protocols is required to use
them in computer software. Implementing auth can be challenging, especially if
there are exotic constraints or extraordinary conditions. The complexity of proper
auth implementation leads to a higher probability of getting a solution with vulner-
abilities.

Having more learning resources with clear and complete examples increases the
popularity of auth. It makes the entry threshold lower, which should lead to the
spread of modern auth and better protection of individuals data.

1.3 Goals

• Analyze the history of auth and select recommendations for use

• Create auth server on Node.js to use as a core for demo cases

• Create demo cases for different OAuth grant types setups

2

Chapter 2

Background information

2.1 The history of auth

The first modern usage of authentication was in 1961 at the Massachusetts Institute
of Technology, for use with the Compatible Time-Sharing System (CTSS). This sys-
tem made it possible to share the resources of one computer among many users.
Each user had its own set of files with a password on as a lock; in other words, it
was the first known system to implement password login. (The World’s First Com-
puter Password? It Was Useless Too)

It has to be said that this approach was hacked in 1962 after one year of exis-
tence. It was possible because all passwords were stored purely in a file that could
be printed without special permission. (Walden and Vleck, 2001) This showcase
demonstrates that auth and hacking go side by side from their beginning.

The next step was in the 1970s when Bell Labs researcher Robert Morris found
a way to store passwords securely using a cryptographic idea of a hash function.
(Morris and Laboratories, 1979) Each user password was used as an input for a par-
ticular hash function. After encryption, the output was saved to the password file.
Then on every user login, the prompted password was encrypted and compared to
the stored one. If both outputs were the same, then the login attempt was accepted.

In the 1970s, asymmetric cryptography and public/private keys were discovered
during government research from the Government Communications Headquarters
(GCHQ), but research was classified until the 90s. Fortunately, there were other
public researchers, and in 1977 Ron Rivest, Adi Shamir, and Leonard Adleman pub-
lished their RSA asymmetric key algorithm. (RSA (cryptosystem)) The idea behind
such algorithms is a pair of public and private keys. The public key might be shared
with anyone, while the private key is protected and used only by the owner. Such
algorithms give two powerful abilities at once:

• Public key encryption when anyone who has a public key encrypts data and
sends a result of encryption to the owner. The only owner of the private key,
might decrypt the message and read data.

• Digital signature when a person shares the public key with others to give them
the ability to verify the identity of this person; the private key is used by the
person to sign data; then signed data might be verified by a person’s public
key to prove person’s ownership of signed data.

In the 80s, companies came to the conception of persistent password security
problems because if attackers guess or stole a password, they could make a replay
attack and compromise the user. It will be even worse if other services use a stolen
password. That is why a one-time password (OTP) technologies were actively de-
veloped at that time. (One-time password)) OTP allows using a password that is valid

2.1. The history of auth 3

only for a single session and usually for a particular period. Early OTP often re-
quires a user to have a specific device that generates a password based on different
techniques as time, previous password, etc. But later new standards were created
to pass OTP through other channels that also influences more recent auth protocols
(Digital authentication: The past, present and uncertain future of the keys to online identity)

In the 90s, public-key infrastructure (PKI) was created to solve the problem in-
troduced in the 70s with the start of using public/private keys: how to prove that
public key retrieved from the owner of a private key definitely belongs to the owner
and is not replaced by an attacker. PKI is a set of technologies for digital certificates
management, where the digital certificates are used to prove public key ownership.
PKI played an important role in the evolution of auth protocols because it allows us-
ing TLS, which reduces complexity related to secure communication establishment.

In the next years, many good ideas were invented to make auth more secure.
Still, it is essential to say that all that time, the primary purpose behind auth was
the same user should give something, usually credentials (password), from some
particular system to get access to resources provided by that system. The difference
was only in details of how this exchange was implemented.

At the beginning of the second millennium, the world was becoming more global.
The Internet spread together with new social networks, which were gaining popu-
larity. More often, there was a need for integration of one service with another. And
one of the most popular approaches of that time was asking user credentials from
one of the services by the second service to use it together with API requests to the
first service later. This approach is also known as the “password anti-pattern”, and it
has many disadvantages:

1. Compromising of one service will lead to a compromise of the user’s account
across all systems (Richer and Sanso, 2017a). If an attacker breaks one service
and gets user credentials used in many services, there is no way to protect
other services and their users from unauthorized access.

2. Service is impersonating user, and API service has no possibility of making
a difference between direct user and other services’ calls (Richer and Sanso,
2017a)

3. A user cannot revoke access for a particular service except change password
that was previously sent to the compromised service.

4. A user cannot restrict access to some part of API service, that is why another
service which got user credentials has unlimited access to any part of API ser-
vice.

To avoid this many companies used their authentication methods to work around
this problem (among them are Flickr Auth, Google AuthSub, Yahoo! BBAuth)(OAuth
2.0 Simplified: Background)

In 2005 Brad Fitzpatrick developed OpenID open standard and decentralized
authentication protocol to give one unified approach of authentication. (Fitzpatrick,
2005)

It allows a user to be authenticated to different sites using third-party service.
The only thing required from the user for this is to provide an OpenID identifier URL
registered in any OpenID identity provider (even custom provider) and authenticate
on the identity provider’s login page.

From the technical point of view (see figure 2.1), a consumer (a web service that
wants proof that the user owns the identifier URL) requests a user profile data via

4 Chapter 2. Background information

URL provided by the user. After that, the consumer validates the parameters in
the response. Validation is handled either with the help of the shared secret (re-
trieved during initial association using Diffie-Hellman algorithms) or makes ad-
ditional check_authentication requests to validate the signature provided together
with profile information. (OpenID Authentication 1.1)

FIGURE 2.1: OpenID authentication flow

In 2006 several companies, including Twitter and Ma.Gnolia, decided to give
users the ability to connect companies’ applications together. Despite the fact of us-
ing OpenID in their systems, they cannot use it for the new tasks, because OpenID
had nothing about delegating access (no password-related data was present in re-
sponse from identity provider).

Developers created a new open standard access delegating protocol that was
named OAuth 1.0 to solve this problem.

2.2. OAuth 1.0 5

2.2 OAuth 1.0

The OAuth 1.0 protocol was developed with a focus on traditional web applications;
that is why a web browser and a callback URL is required for authorization. A huge
part of the protocol specification is about digital signatures that are generated for
each request. The client might verify identity and protect data from unauthorized
modifications by creating a signature for request data using previously mentioned
hashing functions or asymmetric algorithms. Signatures may be one of the most
complicated parts of the specification, and also the most important for HTTP with-
out TLS communication.

In comparison with OpenID that is decentralized and allows a user to be au-
thenticated via OpenID identity provider without any prerequisites on the side of
OpenID client, OAuth client firstly should be registered at the preselected OAuth
identity provider for this.

In other words, if OpenID allows the end-user to choose any identity provider to
authenticate, OAuth requires the developer to choose identity providers and register
a client during app creation.

The first version of the protocol is based on the following components:

• Protected resource - An access-restricted resource that can be obtained from
the server using an OAuth-authenticated request.

• Resource owner - An entity capable of accessing and controlling protected
resources by using credentials to authenticate with the server.

• Server - An HTTP server capable of accepting OAuth-authenticated requests.

• Client - An HTTP client capable of making OAuth-authenticated requests.

• Credentials - a pair of a unique identifier and a matching shared secret. OAuth
defines three classes of credentials: client, temporary, and token, used to iden-
tify and authenticate the client making the request, the authorization request,
and the access grant, respectively.

• Token - A unique identifier issued by the server and used by the client to as-
sociate authenticated requests with the resource owner whose authorization is
requested or has been obtained by the client.

The Authorization flow (see figure 2.2) consists of three consecutive requests:
Temporary Credentials Acquisition, Resource Owner Authorization, and Token Ex-
change.

Temporary Credentials Acquisition is used to bind the client with a new attempt
to get a server’s access token credentials. Client exchanges consumer_key and callback
URL for a temporary token. As a result of this request, the server saved callback for
future usage, and the client got a token that might be considered as an identifier of
attempt.

Resource Owner Authorization is used to bind the resource owner with the at-
tempt of the client to get the server’s access token credentials. The client initiates the
request by redirecting the resource owner to the server. Resource owner authorized
in the server, usually by providing email and password, and allowed access for the
client by clicking the button on the trust screen (consense screen). After granting
access, the server redirects the page to the callback URL saved in the previous re-
quest. As a result, the server changed the status of the attempt to be approved by
the resource owner, and the client got a verifier code.

6 Chapter 2. Background information

Token Exchange is used by the client to exchange verifier code obtained in the
previous request for an access token. This is the last step in the authorization flow.

After that, to retrieve a protected resource client requests it via a particular API
endpoint and provides the access token, received during authorization flow.

FIGURE 2.2: OAuth 1.0 authorization flow

An important aspect of authorization flow is the usage of additional parameters:
nonce, timestamp, and signature.

2.2. OAuth 1.0 7

The nonce parameter is used to prevent replay attacks: the server saves random
value generated by the client; this value must be used in requests only once per
session. Requests with a nonce value that was already used should be considered as
a possible replay attack and must be rejected.

The server uses a timestamp parameter to avoid saving an infinite number of
nonce values. After some time, specified by the server, requests will expire, and
the server will reject them. That is why nonces related to timestamps also will expire
and might be removed from the storage.

The signature parameter is calculated by using either HMAC-SHA1 or RSA-
SHA1 hashing algorithms on HTTP request elements. These algorithms also use
shared-secret obtained during the client registration or together with the token re-
ceived during authorization flow. The protocol also allows not to use a signature for
requests sent with HTTPS. For that purpose, the client should set a value of signa-
ture_method parameter to PLAINTEXT.

There is only one authorization flow in OAuth 1.0, however for clients without
the ability to handle callback URL, there is its configuration named Out-of-Band
flow. To use such a configuration client should send the callback parameter with
value oob during the initial request. The server that got this value should show the
verifier code on the screen after the resource owner authorization. The code should
be manually provided to the client to finish the authorization flow. This configu-
ration was the first attempt to solve non-standard device authorization problems
and, in the future, was reinvented with Device Code Grant of OAuth 2.0. New flow
reduced the number of required steps from the user by replacing manual code pro-
viding into client code pulling.

OAuth 1.0 has one huge advantage - it enables usage of protocol for non-HTTPS
clients and is still used nowadays. (Why OAuth 1.0a?)

OAuth 1.0 was replaced by a new OAuth 2.0 because it has many disadvantages:

• it is monolithic and could not cover many specific cases (Richer and Sanso,
2017b)

• has no support for SPA

• has nothing about managing scopes of granted access.

The current official status of OAuth 1.0 is obsolete.

https://en.wikipedia.org/wiki/HMAC
https://www.w3.org/PICS/DSig/RSA-SHA1_1_0.html
https://www.w3.org/PICS/DSig/RSA-SHA1_1_0.html

8 Chapter 2. Background information

2.3 OAuth 2.0

The second version of the protocol is not backward compatible with the first version.
Complicated signatures system was removed in favor of using TLS, the new flows
were added, and tokens became more short-lived. In general, the protocol became
more modular, which allowed using it the same way as OAuth 1.0 was in practice,
but without twisting core aspects of the protocol. (Richer and Sanso, 2017b)

It has the same base set of components as in the first version: Server, Resource
owner, Authorization server, Client. However, some of them were re-named, and
their explanation was changed:

• Resource server - The server hosting the protected resources, capable of ac-
cepting and responding to protected resource requests using access tokens.

• Resource owner - An entity capable of granting access to a protected resource.
When a resource owner is a person, it is referred to as an end-user.

• Authorization server - The server issuing access tokens to the client after suc-
cessfully authenticating the resource owner and obtaining authorization.

• Client - An application making protected resource requests on behalf of the
resource owner and with its authorization. The term "client" does not imply
any particular implementation characteristics (e.g., whether the application ex-
ecutes on a server, a desktop, or other devices).

There are two types of clients based on the ability to provide confidentiality of
credentials: a public that is executed on devices owned by the resource owner
(SPA, native app), and confidential (executed on a secure server).

• Tokens - Credentials obtained during authorization flow that used to access a
protected resource (access token) or to get a new access token (refresh token).
Usually presented in the form of bearer JWT token or MAC token

• Scopes - Strings that are defined by the authorization server. The client uses
it to request the scope of granted access. Authorization server uses it to notify
a user about the scope of access token issued. The resource server uses it to
validate permissions of requests.

• Flows - sequences of steps to obtain an access token from a resource server that
relies on using authorization grant therefore often called authorization grant
flows (or grant types).

The Authorization flow consists of 2 steps: Obtaining Authorization Grant and
Obtaining Authorization Token. In comparison to the first version of the protocol,
the number of steps was reduced: Temporary Credentials Acquisition and Resource
Owner Authorization steps from the OAuth 1.0 were united into one Obtaining Au-
thorization Grant step from the OAuth 2.0.

Obtaining Authorization Grant is used to get a resource owner grant in the form
of credentials that might be exchanged further on access token. However, this step
might not involve the resource owner directly. It even might be omitted in case if the
client already has predefined grant credentials (resource owner login credentials or
own grant credentials).

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749#ref-OAuth-HTTP-MAC

2.3. OAuth 2.0 9

Obtaining Authorization Token is used to get access token from the authoriza-
tion server for further use with API requests to the resource owner. This step re-
quires the client to choose one of the available grant types and provide appropriate
authorization grant credentials.

The OAuth 2.0 standard was developed in an extendable way, so it makes it
possible to use different grant types; some of them might be mentioned in the spec-
ification, others might be non-standard. To use a non-standard grant type client
should set absolute URI value to grant_type parameter that was defined by an au-
thorization server, for example, urn:ietf:params:oauth:grant-type:device_code is used for
Device Code Flow.

The following standard grant flows were defined in the specification of OAuth
2.0 (The OAuth 2.0 Authorization Framework):

Authorization Code Grant Flow(see figure 2.3) is suitable for OAuth clients that
can keep the tokens confidential. These are the clients that are generally deployed in
a secure server.

It provides a few significant security benefits such as the ability to authenticate
the client and transmission of the access token directly to the client without pass-
ing it through the resource owner’s user-agent and potentially exposing it to others
(including the resource owner).(Authorization Code Grant)

Instead of requesting authorization directly from the resource owner, the client
directs the resource owner to an authorization server. The resource owner is then
redirected back to the client with the authorization code, which the client will cap-
ture and exchange for an access token in the background. Since this is a redirection-
based flow, the client must be able to interact with the resource owner’s user-agent
(typically a Web browser) and receive incoming requests (via redirection) from the
authorization server (can act as an HTTP server)

The authorization code flow is as follows:

1. The client directs the resource owner’s user-agent to the authorization end-
point and authorizes the client to access data on their behalf. The client in-
cludes its client identifier, requested scope, local state, and a redirection URI
to which the authorization server will send the user-agent back once access is
granted (or denied).

2. After the resource owner approves access and provides approval for the re-
quested scopes, the user-agent redirects back to the client using the redirection
URI provided earlier (in the request or during client registration). The redirec-
tion URI includes an authorization code and any local state provided by the
client in the request. The client compares the value of the state to ensure that
it’s the same value that was sent before to avoid any cross-site request forgery
attack.

3. After obtaining the authorization code, the client passes back the authoriza-
tion code to obtain an access token response. For the Access Token Request
following parameters are required: grant_type=authorization_code, code it-
self, redirect_uri and client_id.

4. After validating the authorization code and ensuring that the redirect_uri pa-
rameter is present, the authorization server passes back a token response to the
client. When making the request, the client authenticates with the authoriza-
tion server. The client includes the redirection URI used to obtain the autho-
rization code for verification.

10 Chapter 2. Background information

5. After the access token and optionally, a refresh token is granted, the client
accesses their data.

FIGURE 2.3: Authorization Code Grant Flow

Implicit Grant Flow (see figure 2.4) authentication flow is used by client appli-
cations (consumers) residing in the user’s device. This could be implemented in a
browser using a scripting language such as JavaScript, or from a mobile device or a
desktop application. These types of applications cannot keep the client secret confi-
dential (application password or private key). Anyone can easily access as these are
client-side web apps, for example, like single page web sites.

The primary benefit of implicit grant flow is that it allows the app to get tokens
without performing a backend server credential exchange. (OAuth 2.0 implicit grant
flow - Microsoft)

The implicit grant type is similar to the authorization code grant type, as it will be
redirected to an authorization server. However, unlike the authorization code grant
type, it will be redirected along with an access token instead of an authorization

2.3. OAuth 2.0 11

code. The implicit grant type does not authenticate the client and instead relies on
the presence of the resource owner and the registration of the redirection URI.

To obtain access token client should send a request to the access token endpoint
of with following required parameters: response_type, which must be "token" and
client_id, which authorization server is used to verify the client. Also, it is recom-
mended to use a state parameter to avoid cross-site request forgery (CSRF) attack.
Also, optional parameters are redirect_uri - the URL where the server will redirect
the user after the authorization process completes and scope parameters.

Once all checks and validation are done, the authorization server redirects the
user’s browser to the URL specified in redirect_uri, and this response contains the
access token with the following information if required: expires_in (recommended),
scope and state.

FIGURE 2.4: Implicit Grant Flow

In the implicit grant type flow, the access token is directly returned to the client
as a fragment part of the redirect URI. It is assumed that the token is not sent to the
redirect URI target, as HTTP user agents do not send the fragment part of URIs to
HTTP servers. Thus, an attacker cannot eavesdrop the access token on this commu-
nication path, and the token cannot leak through HTTP referer headers.

12 Chapter 2. Background information

However, the access token can be leaked in other ways (The OAuth 2.0 Authoriza-
tion Framework):

• parsing the returned URI if the communication is not secured

• from the browser’s history

• a malicious client could attempt to obtain a token by fraud.

• replacing or modifying the actual implementation of the client (script)

• CSRF Attack against redirect-uri

To minimize these risks the authorization server should authenticate the client, if
possible; require public clients and confidential clients to pre-register their redirect
URIs and validate against the registered redirect URI in the authorization request;
use short expiry time for tokens; make responses non-cacheable; use state parame-
ters in authorization requests.

Also, the implicit grant flow does not issue refresh tokens, mostly for security
reasons. A refresh token isn’t as narrowly scoped as access tokens, granting far more
power hence inflicting far more damage in case if it is leaked out. In the implicit flow,
tokens are delivered in the URL. Therefore the risk of interception is higher than in
the authorization code grant. (OAuth 2.0 implicit grant flow - Microsoft)

FIGURE 2.5: Resource Owner Password Credentials Grant Flow

Resource Owner Password Credentials Grant Flow (see figure 2.5) is suitable
in cases where the resource owner has a trust relationship with the client (e.g., a ser-
vice’s mobile client, the device operating system or a highly privileged application)
and in situations where the client can obtain the resource owner credentials.

It is also used to migrate existing clients using direct authentication schemes such
as HTTP Basic or Digest authentication to OAuth by converting the stored creden-
tials to an access token.

2.3. OAuth 2.0 13

This grant type must not be used when the service is going to be used by a third-
party app. There should be no mistrust between the client app, the authorization
server, and the resource owner.

Instead of redirecting the user to the authorization server, the client itself will
ask the user for the resource owner’s username and password. (Resource Owner
Password Credentials Grant) The client will then send these credentials to the au-
thorization server along with the client’s credentials. To request, it should add
grant_type=password and resource owner credentials. Once the authorization server
authenticates the client and validates the resource owner password credentials, it
sends back an access token. Optionally the resource owner password credentials
grant might return a refresh token.

Since this access token request utilizes the resource owner’s password, the au-
thorization server MUST protect the endpoint against brute force attacks (e.g., using
rate-limitation or generating alerts).

FIGURE 2.6: Client Credentials Grant Flow

Client Credentials Grant Flow (see figure 2.6), sometimes called two-legged
OAuth, is suitable for machine-to-machine authentication or for a client making
requests to an API that does not require the user’s permission. (Client Credentials
Grant)

This type of grant is commonly used for server-to-server interactions that must
run in the background, without immediate interaction with a user. These types of

14 Chapter 2. Background information

applications are often referred to as daemons or service accounts. There is no end-
user entity participating in the grant type. This grant should be allowed for use only
by trusted clients. (OAuth 2.0 client credentials flow - Microsoft)

The client can request an access token using only its client credentials (or other
supported means of authentication), instead of impersonating a user, when the client
is requesting access to the protected resources under its control.

FIGURE 2.7: Refresh Grant Flow

2.4. OAuth 2.1 15

It is similar to the resource owner password credentials grant type except, in this
case, only the client’s credentials are used to authenticate a request for an access to-
ken. Since the client authentication is used as the authorization grant, no additional
authorization request is needed. This grant does not support refresh tokens.

Refresh Grant Flow (see figure 2.7) is not a typical grant flow because it requires
a refresh token and only uses when the usual access token becomes invalid or ex-
pires. The refresh token can also be used to obtain additional access tokens with an
identical or narrower scope.

In case the access token expired client can initiate token refresh flow by itself.
Otherwise, it makes another protected resource request, and the resource server re-
turns an invalid token error. Then the client invokes the token endpoint with the
grant_type value refresh_token and the refresh token itself.

A refresh token is a string representing the authorization granted to the client
by the resource owner. This string usually should not be transparent to the client.
It should be sufficiently complicated for other unauthorized parties to be able to
generate, modify, or guess it. Unlike access tokens, refresh tokens should never be
sent to resource servers.

Because refresh tokens are typically long-living credentials used to request addi-
tional access tokens, the refresh token is bound to the client to which it was issued.
That’s why the authorization server must verify the binding between the refresh
token and client identity whenever the client identity can be authenticated.

2.4 OAuth 2.1

OAuth2.1 is an in-progress version of the protocol, the primary purpose of which
is to simplify OAuth 2.0 and unite ideas of several relevant papers under the one
document. (The OAuth 2.1 Authorization Framework)

It deprecates the Implicit Grant Flow and Resource Owner Password Credentials
Grant Flow introduced in OAuth 2.0 because of the lack of security. (OAuth 2.0 Se-
curity Best Current Practice) For Implicit Grant Flow, the reason is returning access
tokens in the authorization response that is vulnerable for access token leakage (via
open redirect, referer header, or browser history) and access token replay attack. Re-
source Owner Password Credentials Grant Flow exposes resource owner credentials
that increase the attack surface, and also it complicates the support of two-factor au-
thentications.

Instead, it adds two new flows:
Authorization Code Grant Flow with PKCE is based on proposed standard RFC

7636 for public clients.(Proof Key for Code Exchange by OAuth Public Clients) The flow
is identical to Authorization Code Grant Flow except for additional protection from
the authorization code interception attack by using randomly generated codes and
their verification on the authorization server.

This extension was introduced because, in the OAuth 2.0 specification, public
clients cannot prove that requests that they make belong to them. Authorization
servers also have no way to verify that the request was made by a particular client.

Confidential clients have an additional client_secret parameter for that purpose.
But the public client should not use it because the attacker might inspect the source
code of SPA as well as Native application and find client_secret value even if the
code of applications is obfuscated and compiled.

16 Chapter 2. Background information

That is why if an attacker intercepts a response from an authorization server that
contains authorization code, the attacker might exchange it on access token without
any restrictions.

When using PKCE extension client generates code_verifier value and retrieves
code_challenge derived fromcode_verifier. The idea is the same as using a hash al-
gorithm for password hashing, where code_verifier is randomly generated password,
and code_challenge is hash of the password.

After code generation, the client requests authorization code and sends code_challenge
together with request data. Authorization server saves code_challenge and binds it
to authorization code. Then the client gets the authorization code and exchanges it
on access token by sending authorization code together with code_verifier. Autho-
rization server calculates code_challenge value from code_verifier and compares it to a
code_challenge saved in storage. If they are identical and authorization code is correct,
the authorization server returns an access token to the client.

PKCE protects clients from authorization code interception attacks and is recom-
mended to use even for confidential clients.

Device Authorization Grant Flow is currently the OAuth 2.0 protocol extension,
and Aaron Parecki, the contributor of OAuth 2.1, mentioned a possibility to add this
flow to the new version of the protocol as top-level grant option.(It’s Time for OAuth
2.1)

The flow was designed for devices with limited input capabilities or lack of a
suitable browser. (OAuth 2.0 Device Authorization Grant)

In comparison with other flows where a client obtains a resource owner’s grant
via redirection (Authorization Code Grant) or implicitly (Implicit Grant, Password
Grant), this flow uses HTTP polling. This technique allows the device to repeatedly
request the status of user authorization and access token within the interval spec-
ified by the resource server. This process is asynchronous and independent of the
resource owner authentication process.

In this flow (see figure 2.8), client applications via particular devices (TV, media
consoles, printers, etc.) requests device_code, user_code, and verification_uri from the
authorization server. Then the client should provide resource owner verification_uri
and user_code, usually by displaying this information on some screen. The resource
owner authenticates via verification_uri and enters user_code.

In parallel to resource owner authorization, the client starts the polling process
and continues it until the resource owner will return access_token or error. The client
should interrupt polling if the device_code is expired; otherwise, the resource server
will reject the request.

Among other changes listed in specification (OAuth 2.1):

• Redirect URIs must be compared using exact string matching

• Bearer tokens in query parameters are no longer allowed

• Refresh tokens must either be a sender-constrained or one-time use

https://en.wikipedia.org/wiki/Polling_(computer_science)

2.4. OAuth 2.1 17

FIGURE 2.8: Device Authorization Grant Flow

18

Chapter 3

Implementation details

I decided to use Node.js for the purpose of creating my own implementation of the
authorization server. Such a decision has several reasons. It allows using JavaScript -
the most popular in 2019 language, according to GitHub and one of the top 7 popular
languages in May 2020, according to Tiobe Index.

JavaScript is dominant in Web Development, and Node.js is a good choice for
creating web servers because of its event-driven design that allows building fast,
non-blocking, and scalable applications. Also, I have a background in creating an
application using the mentioned languages and technologies. All of this helps to
demonstrate examples of using the OAuth protocol, which makes the popularization
of auth more effective.

OAuth 2.1 specification was used as a reference for implementation instructions,
including information from the reliable plan mentioned by one of the contributors
Aaron Parecki. (It’s Time for OAuth 2.1)

This implementation uses Express.js framework to create a web server because
this is the most popular solution in May 2020. (NPM trends express vs others)

3.1 Database schema

Authorization server has the following schema of the database (see figure 3.1):

• users - it contains authentication information about a user, a pair of login and
password. The password is hashed before saving to the table. To simplify
system this implementation does not require email verification from the user.

• resource_servers - is used mainly by scopes table to bind scopes to a particular
resource server. It contains name column encoded in access token as part of
scopes’ name and audience list.

• scopes - this table represents scopes bind to a particular resource server and is
used during resource owner authentication to request an exact grant for per-
missions. It contains name, descriptions (showed on consent screen), and re-
source_server_id.

• clients - this table contains information about clients. The information is added
during client registration by the authorization server admin. There are such
columns in the table: name (used on the consent screen and in JWT token),
client_id, client_secret, redirect_uri (list of absolute URI), type (used to define
whether the client is public or confidential)

• clients_to_scopes - this table is used to bind scopes of particular resource
server with client

https://nodejs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://octoverse.github.com/#top-languages
https://www.tiobe.com/tiobe-index/
https://expressjs.com/
https://www.npmtrends.com/express-vs-fastify-vs-hapi-vs-koa-vs-restify

3.2. API endpoints 19

• codes - it contains information used during Authorization Code Grant Flow.
After the resource owner authentication authorization server generates new
authorization code by saving information used in initial request: client_id,
redirect_uri, expires_at (expiration date of code, item will be removed after
that date), code_challenge (used for PKCE), and code_challenge_method (used
for PKCE). client_id and redirect_uri are used for verification during code ex-
change step.

• tokens - this table contains information for refresh tokens. It binds user, client,
and code. The parameter code_id allows authorization server revoke tokens
if someone tries to exchange authorization code for the second time. Also, it
contains expires_at value used to delete refresh token after its expiration.

FIGURE 3.1: The database schema of authorization server

3.2 API endpoints

Authorization server provides the following endpoints (see OpenAPI specification):

• GET /register - used to get a registration form.

Request (in query parameters):

requires the same set of parameters as passed to POST /authorize

Response:

page with registration form

• POST /register - used to allow users register in the system without participat-
ing of admin

Request (in query parameters):

requires the same set of parameters as passed to POST /authorize

https://github.com/MNITD/auther/blob/master/auth_server/specification/api.yaml

20 Chapter 3. Implementation details

Request (in form data):

username - resource owner username, his human-readable identifier in the sys-
tem

password - resource owner secret, that will be hashed and saved for further
identity verification

Response: there are no data except HTTP status code

• GET /authorize - used to get the login form.

Request (in query parameters):

requires the same set of parameters as passed to POST /authorize

Response:

page with login form

• POST /authorize - used by the resource owner to authenticate in the system.

Request (in query parameters):

response_type - defines what response is expected by the client. The only avail-
able value is code.

client_id - id of a client issued after client registrations.

redirect_uri - URL-encoded one of absolute uri predefined in the authorization
server during client registration. Required for code response_type.

state - random string generated by client to prevent CSRF attack.

code_challenge - code created via secret code transformation by the client

code_challenge_method - a method used to make a transformation of secret
code

Request (in form data):

username - resource owner username, his human-readable identifier in the sys-
tem

password - resource owner secret, that will be hashed and compared with
stored one in the system for identity verification

Response (in query parameters): Authorization server redirects to URL pro-
vided in redirect_uri

code - authorization code generated by the authorization server

state - string passed by the client in the request

• POST /token - used by client to obtain or refresh token pair (access and refresh
tokens).

Request:

grant_type - the grant type of the authorization flow. Available values are
authorization_code, device_code, and client_credentials.

code - (if grant_type equals authorization_code) authorization code

redirect_uri - (if grant_type equals authorization_code) should be the same as in
/authorization request

client_id - identifier of client

3.3. Access token 21

client_secret - secret key of client issued during client registration (for confi-
dential clients)

code_verifier - (if grant_type equals authorization_code) secret value generated by
client before requesting authorization code

Response (in JSON):

access_token - short-lived token used for accessing protected resources

expired_at - the date when access token will be expired

refresh_token - long-lived token used to retrieve new pair of access and refresh
tokens

refresh_expires_in - the date when refresh token will be expired

token_type - a type of token, this implementation uses "bearer" type

• POST /revoke - used by the client to revoke the refresh token and in such way
end resource owner session.

Request (in JSON):

token - refresh token to revoke. Session associated with a passed token will be
removed

Response:

there are no data except HTTP status code

• GET /.well-known/jwks.json - used by the resource server to get public keys
and verify access token.

Request:

does not require any parameters

Response (in JSON):

public keys used to verify access token presented in the form of JSON Web Key
Set (JWKS))

3.3 Access token

Authorization server uses JWT as a representative of access and refresh tokens.
After success resource owner authorization, the authorization server generates a

pair of access and refresh tokens.
The access token is generated by providing payload data and signed by the au-

thorization server private key.
Private and public keys of the authorization server are generated every month.

Authorization server generates a new pair of keys, and still stores the previous pub-
lic key. That is why GET request to /.well-known/jwks.json will return a set of keys
that will include actual and previous public keys.

Authorization server provides data object to JWT generation method with the
property resource_access and its value - list of default scopes available for a particular
client and granted by the resource owner.

And also uses the following JWT claims:

• jti (JWT ID) - unique identifier of token (might be omitted for refresh token)

• sub (Subject) - identifier of resource owner in the system

https://auth0.com/docs/tokens/concepts/jwks
https://auth0.com/docs/tokens/concepts/jwks

22 Chapter 3. Implementation details

• aud (Audience - list of resource servers which scopes are available for client

• exp (Expiration Time) - time after witch token will be expired

• iss (Issuer) - root URL of the authorization server

Resource server should verify token in several steps:
Verify signature with the help of public key, provided by authorization server

via /.well-known/jwks.json endpoint.
Verify claims whether exp is not expired. Verify whether claims contain resource

server name in aud claim list because an attacker might use token issued for different
client and resource owner.

Verify scopes each action (endpoint) on resource server API should be protected
with appropriate scopes.

To simplify implementation and restrict the number of possible bugs the follow-
ing third-party modules used for different steps of generation:

• generate public/private key with Crypto

• sign access token payload (also used on the client to verify token) with json-
webtoken

• convert public key to JWK with pem-jwk

• helper to request JWK using jwks-rsa

https://nodejs.org/docs/latest-v12.x/api/crypto.html#crypto_crypto_generatekeypair_type_options_callback
https://www.npmjs.com/package/jsonwebtoken
https://www.npmjs.com/package/jsonwebtoken
https://www.npmjs.com/package/pem-jwk
https://www.npmjs.com/package/jwks-rsa

23

Chapter 4

Conclusion

I can certainly say that I became familiar with the history of auth, starting from
the first modern use of a password. Also, I figured out ideas behind modern auth
protocols such as OAuth 2.0.

I created an authorization server on Node.js according to the specification of the
OAuth 2.0 protocol.

I described the most known OAuth grant type flows, including the pros and cons
of their usage, and provide demo applications that rely on the flows.

However, there are grant types not covered in my work, and existing descrip-
tions might be improved. Still, I believe that I have reached most of my goals and
prepared the ground for future contributions in auth popularization.

24

Bibliography

Authorization Code Grant. URL: https://docs.wso2.com/display/IS530/Authorization+
Code+Grant. (accessed: 11.05.2020).

Client Credentials Grant. URL: https://docs.wso2.com/display/IS530/Client+
Credentials+Grant. (accessed: 11.05.2020).

Fitzpatrick, Brad (2005). Distributed Identity: Yadis. URL: https://web.archive.org/
web/20060504054201/http://community.livejournal.com/lj_dev/683939.
html. (accessed: 11.05.2020).

Mcmillian, Robert. The World’s First Computer Password? It Was Useless Too. URL:
https://www.wired.com/2012/01/computer-password/. (accessed: 11.05.2020).

Morris, Robert and Ken Thompson Bell Laboratories (1979). Password Security: A Case
History, pp. 595–596. URL: https://spqr.eecs.umich.edu/courses/cs660sp11/
papers/10.1.1.128.1635.pdf.

Nachreiner, Corey. Digital authentication: The past, present and uncertain future of the
keys to online identity. URL: https://www.geekwire.com/2018/digital-authentication-
human-beings-history-trust/. (accessed: 11.05.2020).

OAuth 2.0 client credentials flow - Microsoft. URL: https://docs.microsoft.com/en-
us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow.
(accessed: 11.05.2020).

OAuth 2.0 Device Authorization Grant. URL: https://tools.ietf.org/html/rfc8628.
(accessed: 11.05.2020).

OAuth 2.0 implicit grant flow - Microsoft. URL: https://docs.microsoft.com/en-
us/azure/active- directory/develop/v2- oauth2- implicit- grant- flow.
(accessed: 11.05.2020).

OAuth 2.0 Security Best Current Practice. URL: https://tools.ietf.org/html/
draft-ietf-oauth-security-topics-15. (accessed: 11.05.2020).

OAuth 2.1. URL: https://oauth.net/2.1/. (accessed: 11.05.2020).
One-time password). URL: https://en.wikipedia.org/wiki/One-time_password.

(accessed: 11.05.2020).
OpenID Authentication 1.1. URL: https://openid.net/specs/openid-authentication-

1_1.html. (accessed: 11.05.2020).
Parecki, Aaron. It’s Time for OAuth 2.1. URL: https://aaronparecki.com/2019/12/

12/21/its-time-for-oauth-2-dot-1. (accessed: 11.05.2020).
— OAuth 2.0 Simplified: Background. URL: https://www.oauth.com/oauth2-servers/

background/. (accessed: 11.05.2020).
Proof Key for Code Exchange by OAuth Public Clients. URL: https://tools.ietf.org/

html/rfc7636. (accessed: 11.05.2020).
Resource Owner Password Credentials Grant. URL: https://docs.wso2.com/display/

IS570/Resource+Owner+Password+Credentials+Grant. (accessed: 11.05.2020).
Richer, Justin and Antonio Sanso (2017a). OAuth 2 in Action, pp. 35–36. ISBN: 9781617293276.
— (2017b). OAuth 2 in Action, pp. 17–18. ISBN: 9781617293276.
RSA (cryptosystem). URL: https://en.wikipedia.org/wiki/RSA_(cryptosystem).

(accessed: 11.05.2020).

https://docs.wso2.com/display/IS530/Authorization+Code+Grant
https://docs.wso2.com/display/IS530/Authorization+Code+Grant
https://docs.wso2.com/display/IS530/Client+Credentials+Grant
https://docs.wso2.com/display/IS530/Client+Credentials+Grant
https://web.archive.org/web/20060504054201/http://community.livejournal.com/lj_dev/683939.html
https://web.archive.org/web/20060504054201/http://community.livejournal.com/lj_dev/683939.html
https://web.archive.org/web/20060504054201/http://community.livejournal.com/lj_dev/683939.html
https://www.wired.com/2012/01/computer-password/
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://www.geekwire.com/2018/digital-authentication-human-beings-history-trust/
https://www.geekwire.com/2018/digital-authentication-human-beings-history-trust/
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://tools.ietf.org/html/rfc8628
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-implicit-grant-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-implicit-grant-flow
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://oauth.net/2.1/
https://en.wikipedia.org/wiki/One-time_password
https://openid.net/specs/openid-authentication-1_1.html
https://openid.net/specs/openid-authentication-1_1.html
https://aaronparecki.com/2019/12/12/21/its-time-for-oauth-2-dot-1
https://aaronparecki.com/2019/12/12/21/its-time-for-oauth-2-dot-1
https://www.oauth.com/oauth2-servers/background/
https://www.oauth.com/oauth2-servers/background/
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://docs.wso2.com/display/IS570/Resource+Owner+Password+Credentials+Grant
https://docs.wso2.com/display/IS570/Resource+Owner+Password+Credentials+Grant
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Bibliography 25

The OAuth 2.0 Authorization Framework. URL: https : / / tools . ietf . org / html /
rfc6749. (accessed: 11.05.2020).

The OAuth 2.0 Authorization Framework. URL: https : / / tools . ietf . org / html /
rfc6819#section-4.4.2. (accessed: 11.05.2020).

The OAuth 2.1 Authorization Framework. URL: https : / / tools . ietf . org / html /
draft-parecki-oauth-v2-1-02. (accessed: 11.05.2020).

Walden, David and Tom Van Vleck (2001). The Compatible Time Sharing System(1961–1973),
pp. 36–37. URL: https : / / www . multicians . org / thvv / compatible - time -
sharing-system.pdf.

Why OAuth 1.0a? URL: https://oauth1.wp-api.org/docs/introduction/OAuth-
1.html. (accessed: 11.05.2020).

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6819#section-4.4.2
https://tools.ietf.org/html/rfc6819#section-4.4.2
https://tools.ietf.org/html/draft-parecki-oauth-v2-1-02
https://tools.ietf.org/html/draft-parecki-oauth-v2-1-02
https://www.multicians.org/thvv/compatible-time-sharing-system.pdf
https://www.multicians.org/thvv/compatible-time-sharing-system.pdf
https://oauth1.wp-api.org/docs/introduction/OAuth-1.html
https://oauth1.wp-api.org/docs/introduction/OAuth-1.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Problem
	Goals

	Background information
	The history of auth
	OAuth 1.0
	OAuth 2.0
	OAuth 2.1

	Implementation details
	Database schema
	API endpoints
	Access token

	Conclusion
	Bibliography

