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Abstract

Code completion is one of the essential features of any IDE and it significantly im-
proves the developer experience and productivity. Good code completion can both
speed up the development process, as well as aid the developer in API exploration.
On the other hand, having a slow or inaccurate completion can be very cumbersome.
Thus, it is important to find a way to make it as effective as possible.

The current implementation of code completion in the Pharo IDE is based on the
abstract syntax tree (AST) of source code. The AST allows us to learn the semantic
role and the kind of tokens (e.g. class name, method name, literal, et cetera) and
to suggest contextually relevant completions. However, the current implementation
has no efficient way to sort the completion candidates, which means that sometimes
the user must scroll through a long list of proposed completions to find the one that
they need.

In this work, I study how code completion can be improved by sorting comple-
tions in such a way that most frequently used tokens appear first. To that end, I
implement a sorting plugin based on the n-gram language model.

I use quantitative and qualitative evaluation techniques to compare the perfor-
mance of the n-gram (unigram and bigram) and alphabetic sorters. As a result of the
evaluation, the unigram sorter was shown to have the best performance.

The sorting strategies implemented are part of a Pharo IDE plugin. It is open
source and is available at https://github.com/myroslavarm/CompletionSorting.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/
https://github.com/myroslavarm/CompletionSorting
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Chapter 1

Introduction

1.1 Context

Code completion is one of the most used features in any IDE. Whether it is being
used for improving speed and accuracy of typing or as an API guide, helping de-
velopers find their way around libraries, code completion is one of the first things
a developer notices as soon as they start coding. The speed with which the results
are suggested, as well as their accuracy, is essential, and it is something that can cer-
tainly "make or break" the workflow of the developer. Therefore, researchers and
software engineers are always trying to find new approaches that can improve code
completion quality and make it as effective, as accurate, and as fast1 as possible.

The main distinction among the many approaches to code completion would
be whether the approach uses semantic context or not. Namely, semantic models
are models that use code structure analysis to tailor completions to type and/or
semantic role, or, in other words, to give contextually correct and relevant results.
Machine learning models can also employ semantic analysis but often treat source
code as plain text, with the context not taken into consideration.

Throughout this project, I focused on the code completion in Pharo2. Pharo is
a dynamically typed programming language inspired by Smalltalk, and the Pharo
IDE is an interactive IDE intended for developing in Pharo3.

The current code completion approach in the Pharo IDE is a semantic one: it is
based on analysing the abstract syntax tree (AST) of source code. The parser finds
the best suitable node for each part of code, and the completion engine suggests
contextually relevant completions: class names for a global node, method calls for
a method node, et cetera. The AST-based approach replaced the completion engine
that had been part of the IDE since Pharo was first released in 2008; it used a less
sophisticated parsing implementation and tried to infer the type by looking at kinds
of messages sent to variables, and so on. Recently, a separate code completion engine
that uses generators4 was ported to Pharo as well.

1By "fast" we mean that the completion is quick to give suggestions, by "accurate" that the comple-
tion proposes contextually correct results, and by "effective" we mean that the combination of both the
aforementioned qualities makes the tool successful in achieving the result, which is to make finding
the most suitable completion as easy as possible.

2http://pharo.org/
3n the rest of this thesis, I use the word "Pharo" to refer to the programming language, and "Pharo

IDE" to refer to the development environment.
4Its main idea is to propose code completion suggestions from pre-generated local contexts using

heuristics for optimisation. More details can be found at: https://github.com/guillep/complishon

http://pharo.org/
https://github.com/guillep/complishon
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1.2 Problem

As mentioned above, the current implementation of code completion in the Pharo
IDE is based on the AST, which allows us to determine the structure of the code, get
the semantic role of tokens, and infer their type where possible. As a result, only
those completions that are correct in the given context are suggested.

However, currently there is no way to effectively sort the completion candidates.
The order of suggestions is significant because with a wrong sorting strategy, desired
completions can appear at the bottom of the list. This is unproductive as it requires
the developer to scroll down or type more symbols.

In this project, the main goal is to come up with an effective sorting strategy that
would show relevant results first.

1.3 Proposed Approach in a Nutshell

In this work, I study how code completion can be improved using statistical lan-
guage models for sorting the completion candidates, on top of an existing semantic
completion. In particular, I propose to use n-gram language models, as they have
been documented to be used for such a task (Hindle et al., 2012), and I believe this
strategy has the potential to improve the relevance of sorting in the Pharo IDE.

To find the most relevant completion suggestions based on their probability of
occurring in source code, I implement two sorting strategies based on the unigram
and bigram models. These models are trained on a large corpus of source code
collected from 50 projects written in Pharo (Zaitsev, Ducasse, and Anquetil, 2020).

To see whether the proposed implementation does indeed enhance the quality
of code completion in the Pharo IDE, I evaluate the effectiveness of this approach
by comparing alphabetic, unigram, and bigram sorting (with the alphabetic sorting
acting as a random baseline).

1.3.1 Research Questions

As part of this work, I intend to answer the following research questions:

RQ1: Can we improve the accuracy of code completion in the Pharo IDE by sorting
candidate completions with n-gram language models?

RQ2: How can we effectively evaluate the results of code completion enhanced by
different sorting strategies?

1.4 Contributions

Throughout this project I made the following contributions:

• Enhanced the NgramModel5 library, which is an open-source library that im-
plements n-gram language models in Pharo (4 accepted pull requests).

• Trained several n-gram language models on the tokenised source code of the
Pharo programming language.

5https://github.com/pharo-ai/NgramModel

https://github.com/pharo-ai/NgramModel
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• Used those trained models to build a sorting tool that enhances code comple-
tion in the Pharo IDE by sorting the proposed suggestions according to their
relevance in the given context.

• Made one of the two implemented sorters both effective and fast enough to
actually be suitable for developer use. Both implementations can be used in the
Pharo IDE after being loaded from the CompletionSorting GitHub repository
(https://github.com/myroslavarm/CompletionSorting).

• Proposed a combination of two approaches for evaluating the results of code
completion: (1) a quantitative evaluation technique inspired by Robbes and
Lanza, 2008 and (2) a qualitative evaluation where I perform a case study of
several completion scenarios and analyse the results.

• Part of this work has been accepted for the Student Research Competition at
<Programming> 2020. The conference was supposed to take place in Porto,
Portugal in March and was cancelled due to COVID-19. Despite that, the ab-
stract is still up for publication in the ACM Digital Library.

• To my knowledge, this is the first implementation of a code completion engine
in Smalltalk family of IDEs that uses machine learning for sorting completion
candidates.

1.5 Structure of the Thesis

Chapter 2. Related Works
Here I give a detailed overview of the research done around code completion
in the last decade and a half. It includes both the solely software engineer-
ing approaches predating the use of machine learning for this task, as well as
exclusively machine learning experiments of the recent years.

Chapter 3. Completion in Pharo
In this chapter, I go over the implementation details behind the current com-
pletion engine in the Pharo IDE, challenges of code completion for dynamically
typed languages, as well as describe the idea behind the sorter plugin.

Chapter 4. N-gram Background
Here I provide a theoretical background needed to understand this work, which
includes the introduction to n-gram language models and challenges of their
implementation.

Chapter 5. Proposed Solution
This chapter contains a detailed description of the final solution: data prepa-
ration, approaches taken to implement the n-gram sorters, and various engi-
neering details.

Chapter 6. Evaluation
In this chapter, I go into depth about evaluation techniques and challenges, as
well as detail the evaluation of the approaches taken.

Chapter 7. Conclusion
This chapter contains a summary of the results of this work and the shape it
can take in the future.

https://github.com/myroslavarm/CompletionSorting
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Chapter 2

Related Works

2.1 Earlier Code Completion Systems

Standard code completions in IDEs used to only rely on language-specific pattern
matching, i.e. sorting completions alphabetically based on the symbols already
typed in. Robbes and Lanza, 2008, however, showed that code completion could be
improved by using program history (program modifications over time). They man-
aged to get good results by prioritising suggestions from recently modified method
bodies, and even better results by using per-session vocabulary (changes of the last
hour) and merging it with type-based completion.

According to Bruch, Monperrus, and Mezini, 2009, up until 10 years ago, code
completion systems were mainly based on type information, with no contextual
analysis. The authors countered that by implementing intelligent code completions
that learned from examples and had a significantly better performance in terms of
the relevance of suggestions than other then-common implementations. Their solu-
tions included the frequency-based code completion (frequency of use of code), an
association rule-based completion, and the Best Matching Neighbours code comple-
tion (method calls of the closest source snippet found, using a modified k-nearest
neighbours algorithm), which was the main contribution of their paper. The BMN
based implementation was integrated into Eclipse and demonstrated promising re-
sults. It was later extended by Proksch, Lerch, and Mezini, 2015 (see 2.3).

2.2 Software Naturalness

In the paper "On The Naturalness of Software", Hindle et al., 2012 compared source
code to natural languages. They claim that code is even more repetitive, predictable
and full of patterns than human languages. In the paper, they also argue that code
can be modelled by statistical language models, which can be used to support soft-
ware engineers. Their approach was based on capturing high-level statistical regu-
larity at the n-gram level by taking n-1 previous tokens that are already entered into
the text buffer, and attempting to guess the next token. Using this model, it is possi-
ble to estimate the most probable sequences of tokens and suggest the most relevant
code completions to developers.

This work served as a catalyst for the following research using natural language
processing (NLP) for source code. For instance, Tu, Su, and Devanbu, 2014 also
learnt that code "has a high degree of localness, where identifiers (e.g. variable
names) are repeated often within close distance" (Allamanis et al., 2018). Thus, they
applied a cache mechanism that assigns higher probability to tokens that have been
observed most recently, and improved the results even further.
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Nguyen et al., 2013 enhanced the state-of-the-art n-gram approach by incorpo-
rating semantic information into code tokens, rather than treating them as text –
i.e. annotating each token with its data type and semantic role if available, which
allowed them to increase predictability even further.

2.3 Deep Learning for Code Completion

In the more recent years, researchers started applying deep learning models such as
deep recurrent neural networks (RNN).

For instance, Hellendoorn et al., 2019 recorded the results of a case study of
15,000 completions (completion events) for VisualStudio. One of the conclusions
they reached is that even though RNNs often outperform n-gram models in typical
natural language settings, n-gram models are sometimes a better choice for mod-
elling source code. For example, they state that the deep learner is better at core
method invocations but loses on third-party library calls, whereas the n-gram model
naturally outperforms it on internal API calls but loses out on the other categories.

Proksch, Lerch, and Mezini, 2015 worked on an extensible inference engine for
intelligent code completion systems, called PatternBased Bayesian Network (PBN).
Eclipse Code Recommenders project adapted the PBN approach for their intelligent
call completion. They also tested (evaluating quality, speed and model size) Best
Matching Neighbour algorithm, using additional context information for more pre-
cise recommendations, and applying clustering techniques to improve model sizes.
They conclude that showing the developer hundreds of recommendations may be as
ineffective as showing none, and intelligent code completions better target the needs
of developers that are unfamiliar with an API.

Hellendoorn and Devanbu, 2017 introduced a dynamically updatable n-gram
model which outperformed both the traditional n-gram models and the deep learn-
ing RNN and long short-term memory (LSTM) models.

Li et al., 2017 developed an attention mechanism which exploits the parent-
children information of the AST of source code. As correctly predicting out-of-
vocabulary (OOV) values in code completion is mainly unsuccessful, the authors im-
plemented a pointer mixture network which either generates a new value through
an RNN component or copies an OOV value from local context through a pointer
component.

Raychev, Vechev, and Yahav, 2014 implemented a tool called SLANG, which first
extracts abstract histories from the data. Then, these histories are fed to a language
model such as an n-gram model or recurrent neural network model, which treats
the histories as sentences in a natural language and learns probabilities for each sen-
tence, without taking into consideration the AST of the code.

2.4 Existing Code Completion Systems in IDEs

The code completion system (Pythia) described by Svyatkovskiy et al., 2019 is part
of the Intellicode extension used in the Visual Studio Code IDE to complete Python
code. Pythia uses LSTM networks trained on long-range code contexts extracted
from abstract syntax trees, which allows it to capture semantics carried by distant
nodes and helps rank the method and API recommendations for developers more
successfully. Python is a dynamically typed language, so to use type information in
Pythia they infer types at runtime based on static analysis of user patterns and add
this information into the training sequence.
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Asaduzzaman et al., 2014 developed a tool called CSCC (context-sensitive code
completion), which is an example-based completion tool, which leverages contex-
tual information to better support method call completion. CSCC uses tokenisation
instead of deep parsing to collect method call usage patterns and requires type in-
formation of the receiver object. The CSCC tool is available as an Eclipse plugin
for the Java Editor. Execution time-wise the tool showed the results roughly equal
to the state-of-the-art. However, in terms of method call recommendation accuracy,
it outperformed those approaches, including BMN (the Best Matching Neighbours
implementation from Bruch, Monperrus, and Mezini, 2009).

CACHECA is a cache language model-based code completion tool for Eclipse’s
Java editor which was presented by Franks et al., 2015; the tool is based on the cache
language model described by Tu, Su, and Devanbu, 2014 that was mentioned ear-
lier in this chapter. According to Franks et al., 2015, CACHECA greatly enhances
Eclipse’s built-in engine by incorporating both the corpus and locality statistics, es-
pecially when no type information is available.

2.5 Summary

Here is a brief overview of the progress made in the area of code completion research
and development in recent years:

• Code completion tools used to only rely on language-specific pattern matching
(i.e. by prefix), but around 10 years ago, the idea of "intelligent" code comple-
tion that can learn from examples was popularised.

• The software engineering approaches following this idea relied on the fre-
quency of use of code, contextual association, and hierarchical proximity.

• From another perspective, source code was likened to natural languages be-
cause of its repetitiveness and patterns; the idea that source code can be mod-
elled by statistical language models attracted more machine learning approaches
for the task of improving code completion.

• Following that, many code completion implementations using machine learn-
ing ignored such information as type and semantic meaning, and treated it as
regular text, trying to infer relevant predictions from source code history alone.

• These days, code completion systems that are actually being used by develop-
ers (such as plugins for IDEs) mostly combine both the software engineering
approach (taking advantage of semantic and contextual information) and the
machine learning one (taking advantage of source code patterns).

Another thing worth noting is that the majority of the research experiments men-
tioned in this chapter have been tested on or applied for only statistically typed lan-
guages, predominantly Java and C# (Hindle et al., 2012 also trained on C).

The only related works in this chapter where the experiments included dynami-
cally typed languages were: Robbes and Lanza, 2008 (Smalltalk, in addition to Java),
Tu, Su, and Devanbu, 2014 (Python, in addition to Java), Li et al., 2017 (Javascript
and Python), and Svyatkovskiy et al., 2019 (Python).
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Chapter 3

Completion in Pharo

In this chapter, I give a detailed overview of the current completion engine in the
Pharo IDE, as well as describe the challenges of code completion for a dynamically
typed language, and the idea behind the sorter plugin.

3.1 Code Completion Background

The Pharo programming language is an object-oriented dynamically typed program-
ming language which is inspired by Smalltalk. The Pharo IDE is a programming
environment meant specifically for developing in Pharo. It consists of a virtual ma-
chine (VM), on top of which an image, serving as the current IDE workspace, can be
run.

The Pharo IDE itself is written in Pharo and can be extended from within. This
means that when implementing code completion, one can test it live in the very
environment where one is developing it, which, if not done carefully, can lead to
breaking the system.

Code completion in the Pharo IDE is called at every keystroke, as soon as two
and more alphabetic characters are typed in. A completion context gets created for
the text typed in until then, regardless of the type of the code editor. And there are
several code editor tools within the Pharo IDE, such as:

• the Playground, which is a tool for generating small scripts and sketching out
some code

• the System Browser, a tool which allows one to browse classes and methods
and has a dedicated code area for writing and editing code

• the Debugger, a specialised code editor for editing code during debugging

(Figures 3.1 and 3.2 demonstrate the way the completion menu looks in the Play-
ground and the System Browser).

3.2 Typing for Completion in Dynamic Languages

As Pharo is a dynamically typed language, the precise type information is only avail-
able at runtime. Not knowing the type when writing code can make the completion
suggestions less precise and push relevant options to the bottom of the list of com-
pletions, which then requires scrolling or typing more characters.
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FIGURE 3.1: Completion in the Playground

FIGURE 3.2: Completion in the System Browser

There are a couple of approaches one could take to solve this. The first is type1

inference (or rather type reconstruction), which can be done by extracting type in-
formation by looking at the messages sent to a variable, and merging these results
with types found by heuristics applied to the right-hand side of assignment expres-
sions (Pluquet, Marot, and Wuyts, 2009). Type guessing by means of name analysis
can also be done, but it is more likely to be misleading. The third approach involves
the AST-based completion in the Pharo IDE (more details in the next section). It

1Type meaning a kind of variable, instead of an act of writing something by pressing the keys.
Throughout this text the word is often used in either one of the meanings, depending on context.



Chapter 3. Completion in Pharo 9

performs a semantic analysis of source code, which provides us with more accurate
type information for certain kinds of nodes.

3.3 AST-Based Completion

The completion context parses the text and transforms it into the AST representation,
such as a sequence of AST nodes. In the process, all the information needed for
further actions is extracted: e.g. the current position of the cursor (where we want to
get the completion) and the class which we are currently modifying (or information
that the completion happens in the Playground, for which there is no such data).
By performing the semantic analysis, we get the most suitable type of node for each
part of code, and then visit each node to get the correct completion behaviour (i.e.
contextually appropriate suggestions). For instance, this means that for a Global
node, we want to suggest all the globals, such as class names, for a Message node
we only want to get message sends to a variable, and so on.

Combining the available prefix of length at least 2, as well as relevant semantic
information, we give a list of suitable completion suggestions that are then passed
to the sorter. The list itself is displayed in a completion menu that pops up once the
completion is called and then is updated with every new keystroke, unless the devel-
oper2 cancels it by pressing Esc or clicking outside of the text area. The completion
window can also disappear once there are no valid suggestions to give anymore.

3.4 Sorter Plugin

The sorter plugin is an important part of the code completion tool in the Pharo IDE.
It is responsible for the final order in which the completions are presented. Within
the sorter, we treat the completion implementation as a black box. The only infor-
mation it receives is the list of completions to be sorted, as well as the completion
context (meaning any other completion-related information, such as the AST node,
the cursor position, the class where the completion happens, and so on). This was
done to make the sorter extendable and open for modification, so that anyone would
be able to implement and plug in a sorting strategy they would like to have.

Ultimately, this means that the way we get the completion results is the same
every time (i.e. we get contextually suitable completions as a result of analysing the
AST). However, the sorting strategy vastly influences the end result (i.e. the list of
suggestions displayed in the pop-up completion menu) the users (developers) see.
Specifically, a good sorter can prioritise the more relevant completions that would
otherwise be positioned far down the list (for example, if the type of the token being
completed is not known or there is no local context, as happens in the Playground).

3.5 Summary

• Pharo is an object-oriented dynamically typed language inspired by Smalltalk,
and the Pharo IDE is an interactive programming environment intended for
developing in the Pharo language.

2Developer in the Pharo IDE, who is a user of code completion.
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• Code completion in the Pharo IDE is used in the code editors, the list of which
includes the Playground (a scripting tool), the System Browser (a tool for brows-
ing, writing and editing class functionality), the Debugger (a tool for editing
code while in debug mode), and so on.

• The current code completion implementation in the Pharo IDE is based on
analysing the AST of source code; it is called after the developer types at
least two alphabetic characters. The completion candidates are then suggested
based on the most relevant semantic context.

• Other than the completion engine, which is responsible for the process of com-
pleting code, another important part of the code completion tool is the sorter
plugin that supports implementing various sorting strategies. It is responsible
for the order in which the results are displayed to the user.
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Chapter 4

N-gram Background

In this chapter, we go over the theoretical background for the n-gram models and
the challenges in their implementation.

4.1 N-gram Language Models

Predicting the next word in a sequence is a central problem for many areas of Natural
Language Processing (NLP), including speech recognition, spelling correction, spam
filtering, machine translation, and others.

Models that assign probabilities to sentences or sequences of words, and can be
used to find the most likely continuation of a sequence, are called language models
(Jurafsky and Martin, 2009). Among them, is the n-gram language model, which
assigns probabilities to sequences out of n words, called the n-grams. A one-word
sequence is a unigram, pairs of words are referred to as 2-grams or bigrams, 3-grams
or trigrams are sequences of three words, and so on. Examples of bigrams might be
"he ate", "ate the", "the whole" and "whole pizza", whereas trigrams would look like
"he ate the", "ate the whole", and "the whole pizza".

To describe the conditional probability of a word w based on history h, we use
the following notation:

P(w|h) (4.1)

Here is a more concrete example: if we have a sentence "he ate the whole pizza",
and want to compute the probability of the word "pizza" given that the previous
words are "he ate the whole", we can express it as a conditional probability:

P(pizza|he ate the whole) (4.2)

To estimate this probability, we can use relative frequency: we need to compute
the number of occurrences of "he ate the whole", as well the number of occurrences
of the sentence "he ate the whole pizza", and divide the latter by the former:

P(pizza|he ate the whole) =
C(he ate the whole pizza)

C(he ate the whole)
(4.3)

To compute the probability of a whole sequence, not just one word, we can use
the chain rule of probability:

P(w1w2...wn) = P(w1)P(w2|w1)P(w3|w1w2)...P(wn|w1w2w3...wn−1) (4.4)

which means that the probability of the first word occurring is just its own probabil-
ity, then the probability of the second word is its probability of occurring given that
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the first word occurred, et cetera; then the joint probability of the whole sequence is
the product of each words’ probability.

It is worth noting that n can be quite large, and so in a sizeable data corpora it
can be a challenge to estimate the probabilities of large sequences. However, there
is an assumption that to compute the probability of a word inside the sequence, the
whole history is not needed, and we can approximate the probability only relying
on the few history words (n-1) that are the closest to the word whose probability we
are estimating. This is called a Markov assumption, and it is believed to hold true
for n-grams. In other words, if we consider a bigram model, this means that we can
reduce our conditional probabilities as follows:

P(pizza|he ate the whole) ∼ P(pizza|whole) (4.5)

where, in the case of a bigram model, we only consider one previous word, in the
case of a trigram, two previous words, and so on.

From this, the joint probability of a sequence (see Equation 4.4) can be approxi-
mated the following way:

P(wn
1 ) ≈

n

∏
x=1

P(wx|wx−1) (4.6)

4.2 Unknown Words and Smoothing

A notable problem for using n-gram models is data sparsity. It can happen that
the words that we encounter in the test data were not present in the training data,
and so are unknown to our model. Thus, the probability of them occurring would
be zero. In that case, the joint probability of the whole sequence containing such a
word would also be zero, which can lead to the model discarding perfectly valid and
commonly encountered sequences, and might hurt the model performance.

One way of dealing with this is to replace, for example, the bottom n% of the
training data with the unknown word token <UNK>, and then replace every un-
known word in the test data with <UNK> as well, turning it into a known word
with a probability above zero.

An alternative solution to the problem of unknown words is smoothing, which
involves redistributing the general probabilities of all the words in the dataset, i.e.
giving a bit of probability of more frequently encountered words to the unknown
ones.

There are several smoothing algorithms, the simplest of which is Laplace smooth-
ing. In this algorithm, we add one to all the counts (so all the counts are increased
by one, and there are no zero counts), and then add |V| (the size of vocabulary, i.e.
number of unique words in it) to the denominator, to take into account the extra
observations. So the smoothed unigram probability of a word w looks the following:

P(w) =
c + 1

N + V
(4.7)

where c is the count of the word w and N is the total number of words.
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4.3 Summary

• Language models assign probabilities to sentences and sequences of words,
and can be used to predict the next word in a sequence.

• N-gram language models calculate conditional probabilities of words in a cor-
pus given a limited history of n-1 previous words.

• The joint probability of a sequence is a product of each words’ probability.

• N-gram models belong to the family of Markov models – they make a restric-
tive assumption that every word in a sequence depends only on n-1 previous
words, and any words beyond that window have little effect on the probability
and can be ignored.

• Occasionally, there are words that are not in the vocabulary, which means their
probability of occurrence will be zero, and will bring the joint probability of a
sequence to zero also, ultimately hurting the performance of the model that
can end up discarding perfectly valid sequences.

• To solve this problem, the process of smoothing is used. That way probability
is redistributed among all the words, with a little bit taken off more frequent
words and given to the unknown ones.
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Chapter 5

Proposed Solution

This chapter contains a detailed description of the final solution: data preparation,
approaches taken to implement the n-gram sorters, and various engineering details.

5.1 Solution Overview

The objective of this implementation is the following: suggest the most likely tokens
at every step of the completion process. The main idea is to leave the existing, AST-
based code completion engine in place, and enhance the sorting strategy. For this, I
implemented two separate sorters based on n-gram models. That means that after
the list of completion candidates is proposed, it gets sorted based on each n-gram’s
probability so that the most relevant completions are shown first.

The n-gram models implemented were the unigram and the bigram. N-gram
models of a higher order, such as 3- and 4-gram models, were not considered due
to their computational complexity: the frequency table increases exponentially with
every new order of n, which makes the calculation of probabilities too slow for the
kind of task where results must be updated at every keystroke (i.e. code completion).

5.1.1 Unigram Sorting

The first implementation, unigram-based sorting, is based on the 1-gram analysis,
which means that we only take into consideration the actual token being completed.
The implementation of the unigram model itself comes down to calculating individ-
ual token frequencies, i.e. the number of occurrences of each token in the source
code. Then the completion candidates are sorted according to each one’s frequency.
In Listings 5.1, 5.2 and 5.3 you can see the frequencies data being passed to the sorter,
and then the completions being sorted based on that information:

LISTING 5.1: The unigram sorter implementation: passing the fre-
quencies to the sorter

FrequencyCompletionSorter >> initialize
sorter := FrequencySorter new.
sorter frequencies: Unigram uniqueInstance frequencies

LISTING 5.2: The sorter implementation: sorting the candidates ac-
cording to their frequencies

FrequencySorter >> sort: anOrderedCollection
↑ anOrderedCollection sort: [ :a :b |

(frequencies at: a contents ifAbsent: 0) >
(frequencies at: b contents ifAbsent: 0) ]
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LISTING 5.3: The unigram sorter implementation: returning the re-
sults sorted in the code above

FrequencyCompletionSorter >> sortCompletionList: anOrderedCollection
↑ sorter sort: anOrderedCollection

5.1.2 Bigram Sorting

The second, more advanced implementation, is the bigram sorting strategy. As an
n-gram model where n=2, it relies on both the token currently being completed and
the history – in this case, one token before the current one. To get the history word,
I take the source code that is currently being edited (which is known to the context)
and find the token preceding the one we are currently completing. After that, once
the history word and each completion candidate are assembled into respective pairs
of tokens, I calculate the probability of each of the n-gram sequences. Then the joint
sequence probabilities are used for sorting each completion candidate (second word
of the sequence). Below you can see how the sorting method looks in the end:

LISTING 5.4: The bigram sorter implementation: receives the list of
completions, gets the word before from context, trains the model, and

sorts the completions based on sequence probabilities

BigramCompletionSorter >> sortCompletionList: anOrderedCollection
| probabilities |
probabilities := bigram probabilitiesFromModel: model

history: self getWordBefore
andCollection: anOrderedCollection.

sorter probabilities: probabilities.
↑ sorter sort: anOrderedCollection

5.2 Implementation Details

5.2.1 Data Preparation

Before implementing the sorting strategies, I needed to train the n-gram models. The
first step was to get the dataset. For this, I retrieved the Pharo source code, which
was collected1 by Zaitsev, Ducasse, and Anquetil, 2020 for their research on charac-
terising Pharo code. The data came from 50 projects, which consisted of 824 pack-
ages, 13,935 classes, and 151,717 methods. In particular, I used the dataset where
the source code was already split into tokens and respective token types for each
method. Among the regular alphabetic tokens, the delimiters and non-alphabetic
tokens were included as well. For example, a comment such as ’"Here is a comment
for this method"’ or a delimiter ’.’ would be considered separate tokens, and their
respective token types would be ’COM’ and ’DOT’.

Due to a large number of tokens in the dataset, I needed to be mindful of po-
tential time constraints, as the lookup of n-gram probabilities used for sorting had
to be fast enough to not make the developer pause and wait for it. Throughout the
experiment, I came up with various ways to additionally reduce the dataset. Each of
those attempts is described in Section 5.3.

1https://gitlab.inria.fr/rmod-public/2019-sourcecodedata

https://gitlab.inria.fr/rmod-public/2019-sourcecodedata
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5.2.2 N-gram Library Extension

The bigram model trained on source code data was implemented with the help of
the NgramModel library2 available in Pharo. To calculate the probabilities, I created
a bigram model, trained it on the source code tokens, cut off all the sequences with
counts less than 50, and returned the result (see Listing 5.5). Afterwards, the model
was written to file (and then retrieved from file when I used it for sorting the results)
– this was done for speed purposes, described in detail in section 5.3).

LISTING 5.5: Here is how the bigram model for sorting is created and
trained

BigramTableCreator >> model
| model |
model := NgramModel order: 2.
model trainOn: self processedTokens.
model removeNgramsWithCountsLessThan: 50.
↑ model

When I first started using the NgramModel library, the functionality to reduce
the number of n-gram sequences based on frequencies, or the functionality to read
and write the model to file was not present. In the process of using this library for
creating the bigram sorter, I extended it with the methods needed, as it might be
useful for others to have this in place, too. Thus, through 4 pull requests I:

• added the functionality to filter the table of n-grams (i.e. to cut off n-gram
sequences with counts below a certain threshold)

• added writing to and reading n-gram models from file

• improved test coverage by writing tests for some additional examples

5.3 Engineering Details

Before training the models, I additionally cleaned the data by deleting some rows
with token and token type mismatch, eliminating double tabs and replacing them
with placeholders, and splitting token and token types into separate columns.

After that, when recording token frequencies for the unigram model, I recorded
the results to file, for faster lookup for the sorting. However, even with that ap-
proach, there was a problem: as the initial number of tokens was around 150k, the
lookup was slow enough to be noticeable and break the developer’s flow when typ-
ing (see Figure 5.1: results would be read from file when the completion is called,
and it takes 3 and a half minutes to call the readFile a hundred times).

FIGURE 5.1: It takes more than 3 minutes to read the results from file
on repeat 100 times

2https://github.com/pharo-ai/NgramModel

https://github.com/pharo-ai/NgramModel
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The approach to improve the time efficiency was to set a certain threshold for the
number of occurrences and to cut off all the tokens with frequencies below it. I put
the threshold equal to 10, meaning if the token occurred less than 10 times through-
out the whole history, it was irrelevant enough to be discarded. This way, I was
able to cut off most of the miscellaneous, rarely encountered tokens, and shortened
the dataset from 150k to just 16k entries. This made the frequencies lookup during
completion sorting very fast and, as a result, it was now possible to type and use
completion information without any delays (see the improvement in Figure 5.2).

FIGURE 5.2: After the cut off, it takes only 5 seconds to run it 100
times

The one-time tokens, such as custom strings and comments, did not make a big
difference during the implementation of the unigram sorting strategy. However,
when I moved on to implementing the bigram sorter, the model became "too heavy"
due to many combinations of such tokens, and needed to be additionally reduced.

The solution was to go back to the data processing step and replace those "one-
time" tokens with placeholders. In particular, I added placeholders for strings, com-
ments, symbols, characters, arrays and numbers (such as all strings being written as
<str> and all numbers as <num>). This significantly reduced both the number of to-
tal tokens and the subsequent n-gram sequences, which helped both the bigram and
the unigram model, as well as the lookup speed (for example, for the unigram model
even without the threshold cut-off, with the placeholder replacement the number of
tokens was reduced from 150k to just 85k, and for the bigram model the vocabulary
size also got reduced in half).

5.4 Using the N-gram Sorters

It is worth noting that both the n-gram sorters can actually be used in the Pharo
IDE by loading the CompletionSorting library3, which contains the implementation
of this experiment. The unigram-based sorter is available as the FrequencyComple-
tionSorter, and the bigram-based as the BigramCompletionSorter – they can be used
by enabling the respective sorting option in the Settings (Figure 5.3, below).

The unigram sorter is quite fast and accurate (we go over the quality of the per-
formance in Chapter 6). However, the bigram sorter is too slow for comfortable
usage, and re-engineering the implementation to be faster is left for future work.

3https://github.com/myroslavarm/CompletionSorting

https://github.com/myroslavarm/CompletionSorting
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FIGURE 5.3: The Settings window in the Pharo IDE

5.5 Summary

• The data used to train the models came from 50 projects implemented in Pharo;
in the dataset, the source code was already split into tokens and token types.
In the data, delimiters and non-alphabetic tokens, as well as comments, were
all considered to be separate tokens.

• For unigram sorting, individual token frequencies were extracted, and the sort-
ing of completions was based on those frequencies.

• For bigram sorting, completion candidates were added to the previous to-
ken to form sequences of bigrams, whose probability was later calculated and
recorded to file. The sorting was based on the sequence probability, but it was
only applied to individually displayed completion candidates.

• Different approaches were taken to reduce the sizes of models and to speed up
lookup and sorting time; among them: cleaning up tokens with occurrences
below a certain threshold, and replacing "one-time" tokens (such as specific
strings, numbers, et cetera) with general placeholders (such as <str>, <num>).

• In the process of working on the bigram sorting strategy, the NgramModel
Pharo library that was used for this approach was additionally extended with
new functionality, such as reading/writing to file and reducing the number of
sequences with counts below a certain threshold.

• Finally, both sorting strategies can be used in the Pharo IDE. However, the
bigram sorter remains too slow for comfortable day-to-day usage.



19

Chapter 6

Evaluation

"It doesn’t matter how beautiful your
theory is, it doesn’t matter how smart
you are. If it doesn’t agree with
experiment, it’s wrong."

— Richard Feynman

In this chapter, we go over different approaches and challenges for evaluating
code completion, as well as analyse the results from the evaluation experiments for
this project.

6.1 Evaluation Overview

Evaluation is an essential part of any research process. In the Richard Feynman
quote above, the evaluation is the experiment he is referring to. To paraphrase and
make it more relevant to software engineering, it does not matter what kind of tool
you implemented and how well do you think it works, there need to be clear metrics
the implementation is measured on and a clear definition of what is considered to
be a successful evaluation.

When it comes to scientific research, there are two main types of evaluation one
can perform: quantitative and qualitative.

Quantitative, as can be guessed from its name, refers to the type of an evaluation
experiment that is based on quantifiable data and uses objective metrics. This is
the predominant evaluation approach in the natural sciences and computer science,
i.e. measuring physical parameters in the case of the former, or testing performance
scores and accuracy in the latter.

Qualitative methods, more native to fields such as sociology or psychology, are
now being increasingly used in the evaluation of computer systems and software
tooling1. The main objective is to get the "feel" for the system and deeper explore the
human interaction experience, with the data gathered primarily from observations
and interviews and subsequently analysed.

Conventionally, a proper qualitative evaluation2 requires an extensive set-up,
involving multiple people, recording their coding process, conducting feedback in-
terviews, and so on. However, due to lack of time, the qualitative evaluation I con-
ducted for this project is more minimal. Mainly, it involves manually selecting a
number of common use cases and interacting with them as a user normally would,
while recording the results and their meaning.

1Hazzan et al., 2006 in their paper discuss the qualitative approach and its relationship to the quan-
titative one.

2Kaplan and Maxwell, 2005 describe an extensive qualitative evaluation example and talk about
the key benefits and considerations of this approach.
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6.2 Challenges in Evaluating Completion

Coming up with a way to most accurately evaluate code completion is not trivial.
One needs to have an idea of how to best reproduce the process and what the metrics
should be, as well as have access to the resources needed. Mainly, here are the main
challenges that need to be considered when conducting an evaluation:

1. Resources limitation. For benchmarking, there needs to be a large enough
dataset to be able to evaluate the performance of the completion tool prop-
erly. It requires time to gather the data if it is not already available. If it already
is and it is too big, then monetary and physical resources come into play: one
might then need better and faster hardware, more machines, et cetera. Finally,
one needs time and people to develop a suitable evaluation tool and set ev-
erything up well. For a qualitative evaluation, involving multiple people and
managing time and money right is a concern, too.

2. Finding appropriate metrics. Ultimately, the goal of the evaluation is to be
able to say whether the completion performs well or badly, and just how well
or how badly. Choosing metrics which will adequately represent the quality of
the performance takes a lot of careful analysis and research. Getting this part
right considerably influences the validity of the end result of the evaluation.

3. Reproducibility. Less a problem for a qualitative approach, where the idea
is to let people use the tool as is and report the results, for the quantitative
evaluation it is important to come up with a way to make code completion
testable, or reproducible. This brings us back to the resources, as a suitable
dataset is needed.

Finally, this is all a matter of correctly managing the pros and cons of the eval-
uation. There are multiple ways to perform it, and multiple reasons to do some-
thing one way or another. The knowledge, interests, perceptions and skills of the
researches undoubtedly play a role in the evaluation, and the subjective nature of
the process is an undeniable part of the experiment and needs to be carefully ad-
dressed. In the end, the goal is to represent the process as closely as possible to how
it really happens and report the results that are suitably meaningful, while exercising
a healthy amount of unbiased professional detachment.

For this project both the quantitative and the qualitative approaches were used,
as the first provides concise numeric results of the completion sorting performance,
and the second allows to analyse common cases and demonstrates the actual human-
computer interaction as it would happen with regular users (developers using the
Pharo IDE). The next two sections detail the experiments and their results.

6.3 Quantitative Evaluation

6.3.1 Experiment

The quantitative evaluation approach performed for this project is based on the pa-
per by Robbes and Lanza, 2008, wherein they used the change history data to eval-
uate the performance of their completion.

The idea with this approach is to recreate the coding process as it would hap-
pen naturally, i.e. a gradual appearance of new code as if it is being entered at the
moment, and test the completion during that. Just as if a developer is typing and
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invoking a code completion engine at every step, with this approach the completion
gets triggered for every token with the cursor between the 2nd and the 8th position
(the range is taken from the Robbes and Lanza, 2008 paper). We can then compare
whether the result suggested at that step matches the one that followed in real his-
tory.

For evaluation, several Pharo classes were chosen at random, each containing
multiple methods. For each of them, I repeat this process of calling the completion
at each step and perform the following:

• check whether the correct completion is present in the list of suggestions

• if it is, the results are only considered successful if the correct completion is
also present in the top-10 suggestions

• for those cases I record the current sequence (i.e. what has been "typed in" up
to that point), prefix length, the actual correct match, and its position in the list
of suggestions

• I also calculate the accuracy (average success rate) for all the methods evalu-
ated (i.e. out of all the attempts to complete the history, how many of them
had the expected match in the first 10 results)

6.3.2 Results

The three models I am comparing are the unigram and bigram sorters that were
implemented as part of this work, and the alphabetic sorter, which is the existing
default sorter of the Pharo IDE completion. The alphabetic sorter, as can be guessed
from its name, simply sorts the completion suggestions alphabetically. Here we use
it as a comparison baseline, as the idea is to find out whether indeed the n-gram
based sorting performs better and improves the relevancy of code completion sug-
gestions, in comparison to the alphabetic sorter (and the unigram and the bigram
strategies tested against each other).

Table 6.1 presents the accuracy (average success rate) for each of the classes and
sorting strategies tested.

Class # of Methods Alphabetic Unigram Bigram
OrderedCollection 64 0.32 0.38 0.30
CompletionEvaluation 9 0.24 0.25 0.22
FrequencyCompletionSorter 2 0.48 0.58 0.47
NgramModel 21 0.32 0.36 0.29

TABLE 6.1: Quantitative evaluation: the average success ratio (accu-
racy) for each class and sorting strategy

From the results, we can see that the unigram sorter performs better than the
alphabetic sorter, as expected. However, surprisingly, the bigram sorter performs
both worse than the unigram sorter and even slightly worse than the alphabetic one.
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6.4 Qualitative Evaluation

6.4.1 Experiment

For this evaluation approach, 10 examples were manually preselected. The main
idea for each of the examples was to test a completion case which would be com-
monly encountered by a developer while coding in the Pharo IDE. These examples
include completion of message sends, method names, variable names, expressions
inside a block, expressions in parentheses, multiple message sends, and so on. To
emphasise: each of those examples is of interest because they are indicative of a
common coding process in Pharo, and that is the sole reason they were chosen: none
of the examples were chosen with any bias towards the sorting strategies.

6.4.2 Results

Note: if the completion suggestion and position columns contain ’-’ for any sorting
strategy, it means that the completion suggestions expected for that code example
were not in any of the top 10 positions of the suggestions list.

It is worth noting that all the results are only recorded after two symbols were
typed in, and having correct (most relevant) suggestions with such a short prefix
appear among the top 10 results can be considered best-case scenario (as the correct
suggestions would be more likely to be positioned higher with a longer prefix). Ergo,
when the desired suggestion is missing from the top 10, it does not mean a complete
failure of the completion engine or a sorting strategy used but rather hints that there
is more work required to get to the correct suggestions, such as scrolling or typing
more characters. However, as making the results as effective as possible is the goal
of improving code completion in the first place, consistent placement of relevant
results in the top 10 even after two symbols is a considerable advantage and does
demonstrate which sorting strategy performs better.

Below you can see the 10 examples tested, the results, and their explanations.

Example 1:

col := OrderedCollection new.
col ad

This was typed into the Playground and the results were recorded with the
cursor directly after ad. For this context, the completion suggestions a devel-
oper would expect would be add: and addAll:. Here are the actual results:

Sorter Type Completion Suggestion Position
Alphabetic - -

Unigram
add:
addAll:

1
2

Bigram - -

TABLE 6.2: Qualitative evaluation: the results of completing a mes-
sage send in the Playground

As we can see in the Table 6.2, both the alphabetic and the bigram sorters did
not manage to provide any relevant results in the top 10 suggestions, whereas
the result from the unigram turned out exactly as expected.
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Example 2:

something := 1.
(something = 1) if

Another example coded in the Playground, with the cursor at if. The expected
results would be ifTrue:, ifTrue:ifFalse:, and ifFalse:.

Sorter Type Completion Suggestion Position
Alphabetic - -

Unigram
ifTrue:
ifTrue:ifFalse:
ifFalse:

1
2
3

Bigram ifTrue: 5

TABLE 6.3: Qualitative evaluation: completing a message send to an
expression in parentheses

In the Table 6.3 we can see that the alphabetic sorter once again did not suggest
anything of interest, the unigram demonstrated an exemplary performance,
and the bigram, while less than ideal, still suggested one of the correct options
in the top 10 position (albeit a bit lower, which would require either typing
more symbols or pressing the down arrow key to get to).

Example 3:

TokenProcessing >> returnProcessedData
| tokensDataFrame |
tokensDataFrame := self re

This was typed in the Editor, in the method returnProcessedData of class Token-
Processing. This is done to try out some more elaborate examples where the
local context can play a role.

Here, as rejectInvalidTokens, replaceWithPlaceholders and readFile are also meth-
ods on the instance side of the TokenProcessing class, we as users would expect
to get their names as suggestions after typing self.

Sorter Type Completion Suggestion Position
Alphabetic readFile 3
Unigram - -

Bigram
rejectInvalidTokens
replaceWithPlaceholders
readFile

7
8
9

TABLE 6.4: Qualitative evaluation: completing a message send after
self, with awareness of local context

Table 6.4: it seems that the unigram approach fell short, whereas the bigram
approach, trained on prioritising local method names after self, has performed
quite well. In the alphabetic approach, the other two method suggestions seem
to be buried below the first 10, whereas readFile gets a better position.

Example 4:
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TokenProcessing >> replaceWithPlaceholders
| data tokens tokenTypes arr |
data := self returnProcessedData.
to

By typing to we are expecting to get tokens and tokenTypes, as those are tem-
porary variables that we declared and now might want to initialise with some
values. Here are the results:

Sorter Type Completion Suggestion Position

Alphabetic
tokenTypes
tokens

1
2

Unigram
tokens
tokenTypes

1
2

Bigram
tokens
tokenTypes

1
2

TABLE 6.5: Qualitative evaluation: completing temporary variable
names, with awareness of local context

Here (Table 6.5) the order in the unigram and bigram cases is slightly better,
as having a shorter word suggested first is preferable, but in general all three
approaches worked quite well for this example.

Example 5:

UnigramTableCreator ne

Typing this in the Playground, we expect new and maybe even new:, depending
on the context.

Sorter Type Completion Suggestion Position

Alphabetic
new
new:

2
3

Unigram
new
new:

1
2

Bigram
new:
new

4
8

TABLE 6.6: Qualitative evaluation: completing message send to a
global variable (in this case, trying to create a new instance of a class)

In the Table 6.6 we can see that the best positions are for the unigram sorter,
but in general all the sorters suggested the desired options in the top 10.

Example 6:

in

In the Pharo IDE it is possible to get completion suggestions even when creat-
ing a new method, by typing the desired method name in the System Browser
code editor on the instance side. If it is a common method that users often
create in their classes, having a completion suggestion is useful. As this is the
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case with the method initialize, we would like to get the name suggested to us
after typing in in, as illustrated above.

Sorter Type Completion Suggestion Position
Alphabetic - -
Unigram initialize 2
Bigram - -

TABLE 6.7: Qualitative evaluation: completing method name during
its creation

Table 6.7: the unigram sorter is the only that was able to suggest initialize from
only two characters typed in, and at the 2nd position!

Example 7:

ExperimentalNgramTest >> testMostLikelyContinuations
| expected actual word |
word := 'lorem'.
actual := model mostLikelyContinuations: word asNgram top: 3.
expected := #('ipsum' 'dolor' 'lorem').
self as

In test methods having an assert:equals: call is quite common, and as there are
a lot of tests being written, we would be interested in having a completion
suggestion that is as accurate as possible after as.

Sorter Type Completion Suggestion Position
Alphabetic - -

Unigram
assert:
assert:equals:

1
2

Bigram assert:equals: 1

TABLE 6.8: Qualitative evaluation: completing a message send to self,
when self is a test class

Table 6.8: both the unigram and the bigram sorters showed good results, but
not the alphabetic one.

Example 8:

CompletionEvaluation >> averageSuccessRatio
| sumS sumA |

sumS := 0.
sumA := 0.
countSuccess do: [ :each | su ]

Here we are interested to see how the sorting performs when we are inside a
block, so the cursor is after su before the bracket ]. Since inside the block we
want to do an assignment for the temporary variables, we would be expecting
sumA and sumS as suggestions.
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Sorter Type Completion Suggestion Position

Alphabetic
sumA
sumS
super

1
2
3

Unigram
super
sumA
sumS

1
2
3

Bigram
super
sumA
sumS

1
2
3

TABLE 6.9: Qualitative evaluation: completing inside a block

The results in the Table 6.9 (above) are quite straightforward: all the sorters
seem to perform well, although since one is less likely to want to call super
directly inside a block, the alphabetic one seems to be most relevant (purely
coincidentally, as p follows m).

Example 9:

RBScanner sc

Typing the above sequence in the Playground, we want to get method names
on the class side of RBScanner that begin with sc. There are two: scanTokens:
and scanTokenObjects:, so they are the ones we should be suggested.

Sorter Type Completion Suggestion Position

Alphabetic
scanTokenObjects:
scanTokens:

1
2

Unigram
scanTokenObjects:
scanTokens:

1
2

Bigram
scanTokens:
scanTokenObjects:

1
2

TABLE 6.10: Qualitative evaluation: completing a message send in
the Playground

As can be seen in the Table 6.10, all sorters showed essentially the same result.
However, scanTokens: is more likely to be used next to RBscanner and it is a
shorter token, so the bigram result is slightly superior.

Example 10:

UnigramTableCreator >> writeToFile
| data stream |
data := self frequencies.
stream := TokenProcessing frequenciesFile writeStream.
(NeoCSVWriter on: stream)

nextPut: #(key value);
ne

Now, for an even more creative example, in Pharo there can be multiple mes-
sages sent to a receiver, as long as they are all separated by a semicolon ;.
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So having a cursor after ne, we know we are sending a message to NeoCSVWriter
on: stream and want to get suitable suggestions, which are nextPut: and nextPutAll:.

In the Table 6.11 below we see that the unigram sorter got the best result.

Sorter Type Completion Suggestion Position
Alphabetic - -

Unigram
nextPutAll:
nextPut:

2
3

Bigram - -

TABLE 6.11: Qualitative evaluation: completing one of multiple mes-
sage sends, with awareness of local context

To briefly sum up the results of the manual qualitative evaluation, the unigram
sorter still seems to be the best one out of the three, the same as in the quantitative
evaluation. However, as seen in these examples, the bigram sorter is not very far
behind, also more often than not prioritising the desired completions, which dis-
agrees with the quantitative evaluation. So, while based on raw data the bigram
sorter is the worst of the three on average, from the manual evaluation it seems that it
gives perfectly adequate results for examples that would be commonly encountered
in Pharo. Thus, as part of the future work, it would be useful to investigate what
exactly are the cases decreasing the bigram sorter’s average accuracy, or, in other
words, to find out what is the issue and what can be done to fix it.

6.5 Summary

• Quantitative evaluation involves benchmarking the model and calculating per-
formance scores. In contrast, the qualitative approach involves conducting the
evaluation via letting people test the tool, observing the human-computer in-
teraction, recording feedback interviews, and so on.

• There are certain challenges in evaluating code completion, which can be di-
vided into three main categories: resources limitation, finding appropriate
metrics, and reproducibility.

• Based on the evaluation tool that I created and used to evaluate average suc-
cess rate (i.e. out of all the attempts to complete the history, how many of them
had the expected match in the first 10 results) for each sorting strategy, the un-
igram sorter performed better than the alphabetic sorter but, surprisingly, the
bigram one performed worse.

• For the qualitative evaluation, 10 completion cases were preselected for their
common occurrence when coding in the Pharo IDE, with no bias towards any
sorting strategy. The examples were tested in the real environment, and the po-
sitions of the desired completion suggestions were recorded for each of them.
Using this evaluation, the unigram approach was once again the best, but on
the cases tested, the bigram approach did not seem to perform so badly.

• Based on this, as part of future work, I plan to investigate the potential issues
with the bigram implementation and try to enhance its performance.



28

Chapter 7

Conclusion

In this work, I proposed a machine learning-based technique for improving the com-
pletion engine in the Pharo IDE. The exact implementation uses the n-gram language
models to sort the completion candidates that are suggested to the user as they type.
Specifically, I implemented two sorting strategies: one based on the unigram model
and another on the bigram model.

Based on the evaluations conducted and the actual usage of the implemented
sorters in the Pharo IDE, one of the implementations, the unigram sorter, has been
shown to be: (1) fast, which means that it can be comfortably used by Pharo devel-
opers when coding, and (2) effective, which means it gives significantly better, or
more relevant, results than the default Pharo IDE sorter.

Therefore, we can conclude that the main goal, improving the Pharo code com-
pletion with the help of an n-gram based sorting implementation, has been achieved.

7.1 Discoveries

Through completing this work, I am now able to answer the research questions ini-
tially stated in Section 1.3:

RQ1: Can we improve the accuracy of code completion in the Pharo IDE by sort-
ing candidate completions with n-gram language models? As a result of the
evaluation performed, the unigram based sorter has been shown to have a
significantly better result than the default sorter in the Pharo IDE. The imple-
mentation is also fast enough for comfortable developer usage and is available
by loading the CompletionSorting library available at https://github.com/
myroslavarm/CompletionSorting.

RQ2: How can we effectively evaluate the results of code completion enhanced
by different sorting strategies? For the quantitative evaluation, inspired by
Robbes and Lanza, 2008, I simulated the completion process as it would hap-
pen naturally, by generating source code sequences at various stages of typing,
and comparing the results proposed to the ones in the codebase.

The qualitative approach allowed me to experimentally test the suggestions
each sorting strategy proposes by using the tool as it would be normally used
by a developer, and compare the results first-hand.

https://github.com/myroslavarm/CompletionSorting
https://github.com/myroslavarm/CompletionSorting
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7.2 Directions of Future Work

7.2.1 Enhancing the Bigram Sorter

As can be seen in Chapter 6, the bigram sorter did not perform as well as expected.
Contrary to the intuition that the higher order of n-gram should work better, the
bigram performed much worse than the unigram. Additionally, it also seemed to
give less relevant suggestions than the alphabetic sorter.

Hence, for future work, it would be useful to see what exactly went wrong with
the implementation. It could be that there is a mismatch between how source code
is parsed and tokenised in the training and test data. Or it could be a matter of
managing the delimiters incorrectly, as punctuation in source code has a significant
influence on the contextual meaning of any part of code. It could also be an issue
with the NgramModel library, which was only used for training the bigram model,
whereas the unigram model was implemented using a different approach.

In any case, this would be a good idea for the continuation of this project: analyse
the issues of the existing bigram implementation and try to fix them and improve the
performance of the bigram-based sorter.

7.2.2 Conducting a More Extensive Evaluation

For the quantitative evaluation, it would be useful to evaluate the results more pre-
cisely. Meaning that instead of an average accuracy, perhaps a more sophisticated
formula could be used. For instance, the idea by Robbes and Lanza, 2008 involves
making a note of the exact positions and prefix lengths and ranking completions,
which give more relevant results for shorter prefixes, higher.

For the qualitative approach, a more extensive case study with multiple partic-
ipants testing the actual completion in the IDE and reporting their feedback would
be a good next step towards a more thorough evaluation of the results.
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