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Abstract

Face reenactment is an emerging technology that attracts high interest in recent
years. It aims at generating face with the identity of one person (known as target)
and facial expression from another (source). Many existing methods are limited to
reenact a predefined personality of either source or target. In this study, we present
the approach that is agnostic to the identity of source and target and observes only
a single image of each of them. Our method is based on recently introduced Gen-
erative adversarial networks (GANs). We experimentally find a proper GAN loss
for our system. An accurate expression transfer from a source person is essential for
face reenactment. In this study, we examine different approaches to achieve it and
design a landmark loss function based on our novel landmark detector.
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Chapter 1

Introduction

FIGURE 1.1: Example of face reenactment generated with our model

Interest in digital image processing has increased exponentially in the last decades.
It finds applications in the industries, where a photograph is an essential piece, such
as entertainment, multimedia systems. Apart from these, it is used in every industry,
where a picture can bring any additional information, such as agriculture, medicine,
automotive, security systems, to name just a few. The most common subareas of dig-
ital image processing include image analysis, image compression, image restoration,
and image enhancement.

Image enhancement incorporates techniques of modifying images so that the
viewer can extract useful information out of it. An image can be seen as a func-
tion of two variables. However, in processing time, it is represented as a matrix of
integer numbers. Therefore different matrix operations come into a hand for image
manipulations, including enhancement. The matrices we apply to images in order
to get the desired result can be figured out in two ways: manual and automatic.
They do not give the same results. The manual way is rigorous. Approaches that
are used to calculate matrices manually produce the precise result. Automatic ap-
proaches exploit neural networks that give an approximate result. Depending on
the problem complexity, either manual or automatic approach is used. Usually, if it
is time-consuming to figure out the solution manually, neural networks come into
hand.

Neural networks have developed significantly in recent years. In many image
processing problems, such as image classification, segmentation, enhancement, re-
construction, face recognition, they are new state-of-the-art. They can model com-
plex distributions of data, which makes them applicable to a wide range of non-
trivial problems, such as image generation.

Image generation appeared in recent years thanks to the development of neu-
ral nets. Studies show the ability to generate faces, transfer style from one image
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to another, modify an image concerning text description, perform multimodal gen-
eration, including image generation from the text, and audio. One of the notable
fields of research in recent years appeared to be face expression transfer from one
person (source) to another (target) known in mass-culture as "Deepfakes". This term
encompasses different variations regarding motions that are transferred, individual
attributes that are preserved. All the variations have two common attributes: a per-
son, from which some motion is extracted, and a person, that receives that extracted
motion. It is not necessary should be a person, as shown in Siarohin et al., 2018.
Motion transfer can be applied to the full body or a single face. The face of a source
without any modification can be inpainted in-place of the target face, which is called
face swap (FS). On the contrary to FS, only face expression can be transferred onto a
target, preserving identity characteristics of the later.

Recently a vast amount of works provided their approaches in face reenactment
( Ha et al., 2019; Zakharov et al., 2019; Zhang et al., 2019; Nirkin, Keller, and Has-
sner, 2019; Wu et al., 2018; Pumarola et al., 2018; Tripathy, Kannala, and Rahtu,
2019; Thies et al., 2016 to cite a few). A solid overview is provided in Sec. 2.3. We
propose our solution to the aforementioned problem using GANs and examine sev-
eral sides of it as well as tackle a related problem of facial landmark detection. In
Chapter 2 we provide our overview of studies on face reenactment and its "parent"
area – Image-to-image translation (Sec. 2.2), Generative adversarial nets (Sec. (2.1).
In Chapter 3, we define the problem of face reenactment and related to it, that we
study in this work. In Chapter 4, we describe our GAN-based (Goodfellow et al.,
2014) approaches to face reenactment with landmark representation of a face and
the problem of landmark detection. We propose a landmark detector based on U-Net
(Ronneberger, Fischer, and Brox, 2015) and landmark loss for face reenactment, that
uses this detector. In Chapter 5, we describe experiments that we conduct, providing
information about metrics for quantitative comparison, datasets, and some details of
program implementation. We compare our landmark detector with a DLib detector.
In Chapter 6, we show the advantages of our landmark detector as well as exciting
findings for face reenactment using GANs. Finally, in Chapter 7 we summarize our
work and provide the next steps of this study.
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Chapter 2

Literature overview

2.1 Generative Adversarial Networks

Generative adversarial networks (Goodfellow et al., 2014) are an example of gen-
erative models. Term generative model refers to any model (generator) that takes a
training set, consisting of samples drawn from a distribution pdata, and learns to
represent an estimate of that distribution somehow. The result is a probability dis-
tribution pmodel . (Goodfellow, 2016). As an example, generative classifiers learn a
model of joint probability p(x, y) of the inputs x and labels y and following Bayes
rule calculate p(y|x). Generative models tend to model data distribution explicitly.
In comparison, discriminative classifiers learn a model of conditional probability
p(x|y). They find a boundary line between classes rather than reproduce the orig-
inal distribution of data. Higher simplicity in such estimation compared to maxi-
mum likelihood estimation in generative models alongside with backpropagation
and dropout algorithms has made discriminative models superior in many tasks.

The main difficulty of generative models is to approximate many intractable
probabilistic computations that are connected to MLE ’inside’ of the Generator net-
work. GANs tackle this problem. They introduce another network called Discrim-
inator, that is responsible for classifying real and fake samples. Generator G(z, θg)
produces fake samples from prior noise z, which is commonly sampled from Gaus-
sian or Uniform distribution. Discriminator D(x, θd) outputs a single scalar D(x) –
probability that x came from real data. D(x, θd) is trained to maximize (x), while
G(z, θg) tends to minimize log(1− D(G(z))).

In terms of Game Theory Generator and Discriminator are playing two-player
minimax game aiming at reaching Nash equilibrium. The equilibrium is the state, in
which no player will not benefit from changing his strategy, knowing strategies of
his rivals. According to Nash’s Existence Theorem, if mixed strategies are allowed,
then every game with a finite number of players and strategies has at least one Nash
equilibrium (Nash, 1951). Such equilibrium exists for GANs. GAN objective is as
follows:

minDmaxGV(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (2.1)

Generator and Discriminator are trained simultaneously. Gradients from Discrim-
inator flow to the Generator, updating its weights. Throughout the training, Gen-
erator and Discriminator should be approximately equal. Meaning none of these
players should significantly outperform the other one considering loss function.
Speaking in terms of game theory, they should be in equilibrium. Generator and
Discriminator have separate optimizers. Usually, these optimizers do their steps
simultaneously, which is more computationally prohibitive.



4 Chapter 2. Literature overview

GANs should be capable of generating some amount of modes. However, control
over these modes had not been present until Mirza and Osindero, 2014 proposed
conditional GANs, that appeared quite recently after the original paper of GANs.
Conditional setting modifies GAN objective to appear as follows:

minDmaxGV(D, G) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1− D(G(z|y)))] (2.2)

where y is some property we want to control (e.g. in MNIST dataset (LeCun and
Cortes, 2010) such property would be some number). Such conditioning allows to
generate samples of specific mode in controllable manner. Conditional GANs are
now applied to a wide range of problems and are not limited to specific tasks (e.g.
Isola et al., 2016).

2.1.1 Improved techniques for training GANs

Training GANs to completion is a non-trivial task. Salimans et al., 2016 in their
work on improving GANs show major problems typical for GANs and tackle them.
Firstly, SGD optimizers (Robbins and Monro, 1951) find a minimum of the loss func-
tion rather than equilibrium. When these algorithms are used to seek equilibrium,
they may fail to converge. Minimizing the error of Generator may usually increase
error in Discriminator and vice versa. The absence of coordination between gradi-
ents of Generator and Discriminator makes persuading both algorithms to converge
simultaneously a complex task. Secondly, mode collapse is a well-known problem
of the GAN training procedure. It means that instead of producing different modes
(e.g. different numbers in MNIST dataset LeCun and Cortes, 2010) Generator pro-
duces only a small number of them. After the collapse happened, the Discriminator
can not distinguish real examples from fake ones. Thus gradients that flow to Gen-
erator are small. The training process should be started from the beginning.

Salimans et al. propose several solutions to stabilize training and improve con-
vergence. They show that matching feature vectors of some intermediate layers of
Discriminator instead of matching probability scalars in the Generator objective pre-
vents Generator from overtraining on the current Discriminator. New Generator
objective is defined as follows:

C(G) = Ex∼pdata(x) f (x)− Ez∼pz(z) f (G(z)) (2.3)

Another improvement proposed by Salimans et al. tackles mode collapse prob-
lem. They make a Discriminator look at several examples of data in combination
rather than isolation. They provide a specific algorithm for such a combination. The
main idea is in calculating the similarity of samples produced by Generator. Mini-
batch discrimination allows to generate perceptually sharp images very quickly, and
regarding this, it is superior to feature matching (Salimans et al., 2016).

Several minor improvements include one-sided label smoothing (prevents Dis-
criminator from overconfidence), historical averaging (improves seek for equilibria),
and virtual batch normalization (to minimize dependencies in a batch of samples).
Finally, they propose a new metric for measuring image realism called Inception
score.
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2.2 Image-to-Image Translation

Face-reenactment may be interpreted as an image-to-image translation problem. The
image-to-image translation is a class of computer vision problems, where the main
goal is to learn transition between two or more domains. Proposed solutions involve
deep learning methods, specifically, generative adversarial networks.

Recent studies such as Isola et al., 2016 propose methods for translating images to
different domains in a supervised manner, which requires corresponding images from
both domains involved in translation. The method in Isola et al., 2016 is unimodal,
meaning able to learn the transition only between two predefined domains. Zhu
et al., 2017 introduce BicycleGAN, which is capable of multimodal translation.

However, samples of paired images are not usually available. Therefore cycle
consistency loss is introduced in CycleGAN (Zhu et al., 2017), DiscoGAN (Kim et
al., 2017) and UNIT (Liu, Breuel, and Kautz, 2017). These approaches are limited by
unimodality. Unlike them, StarGAN (Choi et al., 2018), MUNIT (Huang et al., 2018)
and DRIT (Lee et al., 2018) can handle more than two domains.

Wang et al., 2017 in pix2pixHD and Karras et al., 2017 in ProGAN have intro-
duced a possibility to generate high-resolution images. Their approaches are coarse-
to-fine, meaning that high-quality images are synthesized out of low-resolution ones
following several stages of improvements. Corresponding generators and discrimi-
nators on each stage are responsible for increasing image resolution.

These approaches have caught the eye by translating semantic maps into city
views Isola et al., 2016, clothes( Lassner, Pons-Moll, and Gehler, 2017), nature( Park
et al., 2019), dance (Wang et al., 2019), synthesizing between paintings and pho-
tographs, chairs and cars (Kim et al., 2017) and transferring objects from one material
to another (Yi et al., 2017).

While these methods can generate plausible images, they are limited in the pos-
sibility of providing stable face reenactment.

2.3 Face Reenactment

This field of study has emerged in the recent years and is not yet well studied. Face
reenactment aims at transferring of facial expression from source person to target
one, preserving target identity. The facial expression, captured from the source,
works as a driver for the target person. The initial expression of the target person is
modified to be similar to the captured expression. Such transfer should not modify
the facial geometry and colors of the target person. Moreover, the image background
should not be changed. Concluding, face-reenactment has the following main objec-
tives: 1) facial expression transfer; 2) identity preservation; 3) background and illu-
mination retention. Apart from these, others may be considered, such as head pose
or eye gaze transfer Kim et al., 2018; Thies et al., 2016; Thies et al., 2015.

Face reenactment may be conducted in different scenarios. The most simple is a
one-to-one scenario when we map one person into himself with a different expres-
sion. Formally speaking, source and target identities are the same in this case. The
one-to-many scenario is mostly well-studied in recent worksThies et al., 2016; Wu
et al., 2018; Zakharov et al., 2019; Tripathy, Kannala, and Rahtu, 2019; Pumarola et
al., 2018. In this scenario, either target person (Thies et al., 2016; Wu et al., 2018; Za-
kharov et al., 2019; Wang et al., 2017) or source person (Tripathy, Kannala, and Rahtu,
2019; Pumarola et al., 2018) is predefined, while another one may be arbitrary. Such
an approach is not quite challenging and has plenty of real-world applications, such
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as cinematography, media, video games, to name just a few. Nevertheless, the most
challenging one is a many-to-many scenario, when the source and target persons
are entirely arbitrary and previously unseen by the model. Most recent works show
optimistic results (Kosarevych et al., 2020; Nirkin, Keller, and Hassner, 2019; Zhang
et al., 2019) in images as well as in video sequences.

Similar to reenactment is face-swapping. In the face-swapping identity of a tar-
get person is not preserved, meaning the face of the target is completely or partially
replaced with the source person’s face. The most common is a partial replacement.
Usually, the skin color of the target person is not changed. However, eyes, eye-
brows, nose, and mouth are those of source person. The focus of this study is a
face-reenactment problem.

History of face swapping and reenactment goes back for as long as two decades.
Such approaches were needed mostly to resolve privacy issues (Blanz et al., 2004). In
the next sections, we discuss different approaches to face modeling and correspond-
ing face modification methods.

2.3.1 3D based approaches

Initially, the way to perform face manipulation given an image was fitting 3D mor-
phable face model (3DMM)in a supervised manner and then adjusting estimated
parameters (shown in Blanz and Vetter, 2002). That was a starting point for later
approaches. They used more information than a single image were able to learn
high-level details or inferred 3DMM parameters directly from RGB data without a
need in labels.

Some early approaches implied manual involvement (Blanz et al., 2004; Vlasic
et al., 2005) Not a long time after automated methods were proposed in Bitouk et al.,
2008. However, they all were face-swapping methods, and just recently reenactment
approach was introduced by Thies et al., 2016. They fit the 3DMM face model to both
source and target and apply expression parts from source person to target one. They
can run reenactment in real-time on the source-target video sequence. However,
their approach suffers from strong visual artifacts in generating teeth. They select an
output frame from the target video sequence, which limits scalability and may lead
to inaccurate expressions.

2.3.2 Landmark-based approaches

Landmark-based approaches for FR come with deep learning methods. Deep learn-
ing techniques, more specifically – GANs by Goodfellow et al., 2014, improved reen-
actment results significantly, tackled limitations of hand-crafted techniques (Wu et
al., 2018; Zakharov et al., 2019).

Studies on FR exploit recent advances in GANs architecture. For example, Wu
et al., 2018 applied cycle consistency loss from CycleGAN (Zhu et al., 2017) to ensure
correct expression transfer. They first proposed to use landmarks latent space as a
medium between source and target, which is their main contribution. Their system
works as follows. Firstly, the source is mapped into the latent space. Then these
landmarks are adapted for target, and the synthesized image is reconstructed out
of them. Such an approach allows accurately obtain face boundaries under severe
poses, diverse expressions, and extreme lighting conditions. Some other shining
works include Zakharov et al., 2019; Zhang et al., 2019; Siarohin et al., 2018; Ha et
al., 2019; Siarohin et al., 2019.
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Chapter 3

Problem formulation

FIGURE 3.1: Example of face reenactment generated with our model

Image editing is a broad field of problems that continually develops. It includes
classic problems, such as cropping, noise reduction, colorization, image sharpen-
ing, brightening, warping. Most of these problems are solved by applying to an
image some filter (i.e. convolution) with specific kernel relevant to the problem.
Recent problems that include image deblurring, dehazing, image style transfer, face-
swapping are more complex. Rule-based approaches often fail here because of a high
number of parameters that should be derived manually. On the contrary, neural net-
works contain a large number of parameters, that model learns to find a solution to
the problem approximately.

The emergence of Deep Learning frameworks, such as CNNs and GANs, pro-
vided tools for solving practical problems and increased quality. It has become pos-
sible to solve problems, which involve non-trivial manipulations with an image.
Converting night to day on the image, face generation, face reenactment, image-to-
image translation are among them. These problems are getting more attention in the
last years. It is caused by the intensive development of generative models, mainly -
Generative adversarial networks. GANs are the most powerful among all the gener-
ative models. They provide the most visually pleasing results when combined with
recent advances in CNNs and rule-based approaches in Computer Vision.

In the scope of this study, we rely on GANs as a primary approach. There exist
numerous variations of GAN objective. We study their influence on the quality of
face reenactment that we describe below.

Assume we have two images Image 1 and Image 2 with one person on each Per-
son 1 and Person 2. These persons can have a different identity or the same. More
important is that they have different facial expressions (e.g smile, amazement) Ex-
pression 1 and Expression 2. Now we apply some function to these images, which
modifies Person 1 to contain Expression 2 instead of Expression 1. Meanwhile, other
properties, such as the identity of Person 1, image background, illumination in Im-
age 1 retain. Concluding, face reenactment aims to enhance Image 1 to make Person
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1 contain Expression 2. In other words, we transfer Expression 2 onto Person 1, with
identity preservation of Person 1 and image properties of Image 1.

Denote Image 1 as Target image, Image 2 as Source image. Observe that target
and source persons can have either different or the same identities. Consider a se-
quence of n pairs of source and target images. For every pair of source and target
expressions are different (in practice, they are always slightly different as it is dif-
ficult to replicate the same expression every time). Denote source identity as Ids,
target identity as Idt. In this sequence exists several possible scenarios regarding
face identity.

1. “Many-to-many” - source and target identities are different, arbitrary. More
formally, ∀k : Idsk 6= Idtk and Ids1 6= Ids2 6= ... 6= Idsn and Idt1 6= Idt2 6= ... 6=
Idtn ;

2. “Many-to-one” - target identities are arbitrary, but source identities are the same.
Formally, ∀k : Idsk 6= Idtk and Ids1 = Ids2 = ... = Idsn and Idt1 6= Idt2 6= ... 6=
Idtn ;

3. “One-to-many” - in opposite to previous, source identities are arbitrary, but
target identities are the same. Formally, ∀k : Idsk 6= Idtk and Ids1 6= Ids2 6= ... 6=
Idsn and Idt1 = Idt2 = ... = Idtn ;

4. “One-to-one” - source and target identities are the same. Formally, ∀k : Idsk =
Idtk

Scenario 1 is the most practical, yet the most challenging. The ability to reenact
arbitrary person into arbitrary person saves time and resources needed to define M
for every identity, which is required in Scenarios 2-4. To find M, that can be applied
to arbitrary identities, is highly non-trivial problem. In scope of this study we want
to define such M that is able to perform many-to-many face reenactment.

From this definition of FR, we see that FR raises several other intriguing prob-
lems. The first of them is expression representation. There are several ways to model
facial expression. They are described in more detail in Sec. 2.3. In the scope of this
work, we study the landmark-based representation of the face. They allow con-
centrating on specific parts of the face. They are memory-friendly and require a rela-
tively small amount of computational power. Overall, they are a simple yet powerful
way to model facial expression.

In order to achieve accurate expression transfer, we have to penalize our neural
network with some error between generated and ground truth faces in terms of facial
landmarks. It could be the exact landmarks or some embedding, which incorporates
information about them in some form. We examine both ways.

Naturally, there arises a problem of keypoint detection that is comprehensively
studied in this work. Accurate keypoint locations are essential for facial reenact-
ment. A good keypoint detector should be steady to occlusions (e.g. beards, masks,
makeup), large poses, intense illumination, blur. Moreover, such a detector should
be lightweight in terms of memory consumption and number of operations, and
fast, because FR is highly potential to be used on edge devices, such as cellphones.
In this study, we compare different approaches to keypoint detection in terms of ac-
curacy, robustness, speed, and productivity. More importantly, we investigate their
influence on the quality of face reenactment.

Reenactment can be applied to various parts of the human body as well as to the
whole body. Expression, head pose, and eye gaze transfer are preferable for reenact-
ment in the head region. Expression transfer is the primary step in the comprehen-
sive study of FR. For the sake of simplicity, we decided to study the reenactment of
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frontal faces only. Meaning, in the scope of this work, we research FR for expression
transfer. Pose transfer or even full-body transfer we leave for the future work.

Summarizing, in this work, we focus on the following directions:

1. Impact of GAN loss on face reenactment

2. Stimulation of accurate expression transfer

3. Face reenactment sensitivity to landmark detection technique
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Chapter 4

Method

The crucial aspects of our approach include Generator architecture, Discriminator’s
behavior, expression generation, face normalization, and identity mismatch calcu-
lation, which are described in more detail in the corresponding sections below. We
more seriously focus on the approaches that influence the correct expression synthe-
sis of a fake person. We study two methods, namely landmark loss and adversarial
loss (i.e. provided by Discriminator). For landmark estimation, we show the need
for a custom landmark detector and propose the possible solution described in Sec.
4.2.2.

In order to provide stable working of the proposed solution for face reenactment,
face normalization is needed , i.e. source and target faces should be similarly aligned
on the image. The normalization process requires a source and a target to have
similar head poses. Therefore we consider only frontal faces.

4.1 Expression penalization

We aim to generate a synthetic person with an expression that is the same as in the
source person. Person expression is modeled with landmarks. Therefore we want
to minimize the distance between generated landmarks Kg and source landmarks
Ks. To this end, we study two approaches, namely, landmark loss and landmark
discriminator. The first one directly penalizes distance between Kg and Ks. The idea
of landmark discriminator is inspired by Siarohin et al., 2018. It may bring more
freedom to Generator in terms of landmark locations without a high loss in accu-
racy of generated expression. However, this approach is more difficult in training
compared to landmark loss.

4.1.1 Landmark loss

Landmark loss is the explicit measure of how landmarks of the generated face differ
from landmarks of the source. It is a distance between Kg and Ks in the latent space
of landmarks. In order to compute Kg and Ks, we need a differentiable function,
because we should be able to compute gradients of this function. With these gradi-
ents we penalize Generator. Consecutively, it should become a part of our network
graph. Therefore, we design our custom landmark detector described in Section
4.2.2, which is a neural network. The detector predicts 56 heatmaps that correspond
to 56 facial landmarks. So Kgu is a set of these maps predicted for generated face and
Ksu – for source face. To measure distance between them we apply the function used
for training our detector, namely IOU loss. Overall, our landmark loss is as follows:

Llandmark =
Kgu ∩ Ksu + ε

|Kgu|+ |Ssu| − Kgu ∪ Ksu + ε
(4.1)
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4.1.2 Landmark Discriminator

We employ the concept of Discriminator introduced by Goodfellow et al., 2014 to
penalize Generator for producing faces with inaccurate facial expression. More pre-
cisely, Discriminator is a Critic, proposed by Arjovsky, Chintala, and Bottou, 2017,
as it outputs a vector, rather than probability value.

As we are interested in generated face expression to match the expression of
source person, we provide source landmarks to the Discriminator in the following
way. Input to the Discriminator is either a generated image or source image con-
catenated with source landmarks. Concatenation is done along the channel axis (i.e.
we add the fourth channel to RGB image). It allows using these landmarks as key
additional information for Discriminator. They force Discriminator to focus on the
moving parts of a face (i.e. eyes, mouth, eyebrows). Finally, the Discriminator pro-
vides a score of similarity between image and landmarks. This score is later used to
make Generator provide more accurate expression.

FIGURE 4.1: Schematic representation of Discriminator’s input.

4.2 Landmark detection

We model a facial expression with landmarks. Therefore there appears a need to
detect them on the image. There already exist several solutions. One of the most
common is an image processing library named DLib King, 2009 (details in the cor-
responding section). We show that DLib has several issues that are critical for suc-
cessful many-to-many face reenactment. In order to solve them, we propose a more
robust landmark detector.

4.2.1 DLib detector

Dlib King, 2009 is a well-known multipurpose library. Among all, it has a valuable
set of tools for object detection, including face and landmark detection, face recog-
nition.

Dlib algorithm computes facial landmarks in two steps. Firstly, it finds a bound-
ing box of a face. Then it localizes facial landmarks in the detected bounding box.

Face detection is performed in the following way. The first step is feature extrac-
tion from an image using a classic Histogram of Oriented Gradients (HOG). Then
based on these features, the linear Support Vector Machine (SVM) predicts whether
it is a face or not. The actual detection in the image is performed with a sliding
window approach and image pyramids.

The method described above has its benefits. HOG descriptors can be obtained
in a reasonable amount of time. Besides, SVM is compact with a sufficient number
of parameters to learn HOG features. However, it requires multiple predictions on
a single image, which is not efficient. Despite that, HOG detectors provide less rich
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features compared CNNs, which leads to less accurate localization of small objects,
such as facial landmarks.

The second step, namely landmark detection, is done with the approach pro-
posed by Kazemi and Sullivan, 2014. It is based on the cascade of regressors. Re-
gression trees are used here for regressing to the point.

4.2.2 Custom detector

Our landmark detector is a neural network with hourglass architecture. It takes an
image of a face as input and generates images that describe landmarks. Out of the
generated images, we obtain the exact locations of the landmarks.

Network output

FIGURE 4.2: Examples of a target heatmaps (gaussians).

It is well-known that Convolutional neural networks suit well for image process-
ing. CNNs are able to extract meaningful features from an image and manipulate
with them. Therefore, we train our network to predict 56 heatmaps instead of land-
mark coordinates, which are scalar values. A single heatmap is simply a square
gaussian centered in the location of a particular landmark with a standard devia-
tion S. Such a model approximates the gradient class activation map Selvaraju et al.,
2019. Grad-CAMs show where neural network thinks a particular object is located
on the image.

We empirically found that S = 6. If S > 6 our confidence gets smaller. If
S < 6 model gets less amount of information and converges slower. Therefore one
heatmap is mostly a black image with the relatively small circle-like object in the
location of a particular landmark, as shown in Figure 4.2. We can use such an ap-
proach because the landmark location that we predict is a single point. Therefore
this point naturally becomes the center of gaussian.

Network architecture

Network finds landmarks in the RGB image. It is designed to predict 56 heatmaps,
that correspond to each of 56 landmarks. Network is organized in encoder-decoder
way. It has three parts. The first part, namely encoder extracts features from the
input image and compresses them into a vector. The second piece is a bottleneck,
which is a medium between encoding and decoding. The third part, namely decoder
reconstructs 56 heatmaps out of the bottleneck vector.
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FIGURE 4.3: All 56 heatmaps merged together (left). Note, that model
did not observe this heatmap. From it we see, that heatmaps corre-

spond to the image (right).

Encoding part is usually a fully-convolutional neural network. We design it in
the way, that different CNN architectures can be used. It is known as a “backbone” of
a network. By default we use ResNet-18. ResNet is one of classic CNN architectures.
Its skip connections allow creating deeper networks with more capacity. This leads
to better feature extraction performance. There different variations of ResNet. We
observed that our baseline has sufficient accuracy and is faster than its counterparts
(e.g. ResNet-152, ResNext), as it has less parameters.

In ResNet-18 we use all five convolutional blocks for encoding. In each convo-
lution block we learn features with different semantic information. In deeper blocks
we learn more high-level features (e.g. nose, eye, mouth).

While at the encoding part we downscale our input image, on reconstruction
stage we upscale obtained feature maps in order to reconstruct initial resolution of
input image. In the encoding part we learn the mapping from image to vector. In
the decoding part we use that knowledge to more easily learn the backward map-
ping (i.e. from vector to image). Feature maps from encoder enrich reconstruction
abilities. It is provided as additional information for decoder. Decoding part has
the same number of levels as encoding part (five in our case). Resolutions of fea-
ture maps on the ith level of encoder and decoder are the same. It is needed for
concatenation of feature maps from encoder and decoder.

A basic block of decoder on ith level has upscaling operation followed by feature
extraction part. Upscaling is performed in the following way. Firstly, pixels of ev-
ery feature map expand uniformly. Then, gaps, that occur are filled with bilinear
interpolation. Such approach prevents high information loss. Upscaling operation
does not involve any learning. That is done by two consecutive convolutional lay-
ers. These convolutional layers learn the mapping from (i − 1)th level to ith one.
Features that have useful information needed for particular landmark localization
are located in specific local region. Therefore we use convolutions with kernel size
of 3x3 and padding equal to 1, which have small receptive field. Zero-padding in-
creases amount of features that correspond to object location and improves learning
of features near the border.

In the end we have five sets of feature maps from decoder. We upscale them
to the same size and concatenate altogether. Then we extract meaningful features
from each of the five sets by convolving to the smaller dimension. We obtain less
number of feature maps, but with more rich information. Finally we apply the last
convolution to produce 56 heatmaps. We also place sigmoid function on top, so the
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model converges faster.

Network training

We employ supervised learning. For every image in the dataset, we generate 56
heatmaps, that correspond to a particular landmark. Those heatmaps are used as
ground truth for the model.

We make our model pursue a single objective. In our model, we operate with
heatmaps, which are spatial objects. Given a ground truth heatmap and the inferred
heatmap, we want them to overlap as much as possible. More precisely, a single
map contains gaussian, which can be seen as a set of (x, y) coordinates of pixels that
belong to this gaussian. Therefore in order to measure the overlap, we do the fol-
lowing. Given ground truth set Sy and synthesized set Sθ we calculate ratio between
intersection and union of those two sets in the following way:

IOU =
Sy ∩ Sθ + ε

|Sy|+ |Sθ | − Sy ∪ Sθ + ε
(4.2)

We aim to maximize this value, so our cost function, which should be minimized,
looks as follows: C = 1− IOU.

We use augmentations of training subset images to avoid overfitting and make
our model more robust. We use both pixel-level and spatial-level transforms. The
transforms include Gaussian noise, motion and median blur, optical and grid dis-
tortions, horizontal flip, shift, scale, and rotate. Every augmentation is applied with
some probability. Pixel-level augmentations are more likely to happen, as they are
less harmful. Some kind of blur, distortion, or noise is added to every sample.

Before passing the image to the network, we normalize it with normalization
used in ImageNet Deng et al., 2009. That is needed for our feature extractor to work
correctly, as it is pre-trained on ImageNet dataset.

4.3 GAN Network Architecture

The proposed pipeline (Fig. 4.4) uses a standard adversarial setup with a single Gen-
erator (Fig. 4.5) and a Discriminator (Fig. 4.6).

Discriminator

Perceptual
+

Identity
Loss

Adversarial
Loss

Generator

TargetSource Output

FIGURE 4.4: High-level architecture diagram.
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4.3.1 Generator

Our generator is designed in an end-to-end fashion. It infers how to reconstruct the
desired image x̂ straight from the source x and target x′ pictures.

It is organized in an encoder-decoder way. Generator has two identical encoders
meant for either source or target and a single decoder. Encoders are based upon
Feature Pyramid Network introduced by Lin et al., 2016

In recent studies, Feature Pyramid Network framework Lin et al., 2016 shows
impressive results, e.g. in object detection and segmentation Kirillov et al., 2019.
Rich feature extraction and reconstruction abilities of FPN allow us to blend images
of source and target effectively.

FPN has two paths with equal number of semantic levels, that correspond to
convolutional blocks. The bottom-up path is a FCNN, that is responsible for feature
extraction from input image. By default we took InceptionResNetV2 (Szegedy et al.,
2016) with weights pre-trained on ImageNet. In the top-down path reconstruction
of semantic maps is performed. Extracting such maps for both source and target
allows to reconstruct fake image efficiently. This path is enriched with skip con-
nections from the bottom-up path passed through pointwise convolutions. These
feature maps are added to maps of top-down path.

We use separate encoders, which means they do not share weights as for exam-
ple in siamese network. Both encoders extract five feature maps that correspond to
semantic level in the pyramid.

Within the decoding part, we employ a sequence of convolutions and upsam-
plings on those sets of the maps concatenated altogether along the channel dimen-
sion. It allows the model to learn information on different semantic levels from both
of encoded images simultaneously.

Convolution	block

Max	pooling	layer

Upsample	layer

Concatenation	layer

Addition	layer

1x1	Convolution

Element-wise	addition

Encoder	1
Encoder	2

Decoder Upscale	8x

4x

2x

1x

SourceOutputTarget

FIGURE 4.5: High-level FPN-based Generator architecture diagram.

4.3.2 Discriminator

The Discriminator is a five-layer fully-convolutional network similar to those in Isola
et al., 2016. The network has 4x4 convolutions in every layer except for the last,
where we apply 1x1 convolution (i.e. pointwise convolution). Pointwise convolu-
tion is a common practice to flatten feature maps in latest works, as it utilizes less
parameters compared to fully connected layer, while losing insignificant amount of
information. In every convolutional layer we use padding of size 2x2 to not decrease
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size of feature map rapidly and in the last 3 layers maintain it on the nearly the same
level. Alongside with padding we use stride of size 2 for the first three layers to have
bigger receptive field in the first layers. Meanwhile in the last 2 layers we use stride
equal to 1 to preserve local information.

Hidden layers use InstanceNorm (Ulyanov, Vedaldi, and Lempitsky, 2016), which
is preferred over BatchNorm (Ioffe and Szegedy, 2015) for GANs. Neurons in all the
layers, but output get activated with Leaky ReLU (with slope 0.2), that prevents the
appearance of “dying neurons” (Lu et al., 2019).

Discriminator outputs the matrix, that represents the correspondence of each face
part to the provided landmarks.

4

64

128

256

Expression
consistency

score

Convolution layer

InstanceNorm layer

1x1 Convolution

512

FIGURE 4.6: Discriminator architecture diagram.

4.4 Face normalization

We do normalization (alignment) to make landmarks of different images appear sim-
ilar to a predefined configuration. This operation is performed on the original im-
age, meaning we do not crop face region beforehand. The process works as follows;
first, we select five facial points, namely eyes, nose, and two mouth corners. Then,
these points are adopted to perform similarity transformation. Finally, we obtain a
cropped face, which is then resized to N × N region.

4.5 Face Identity Loss

To represent a person’s identity, we encode it in a vector of features. In order to ex-
tract such identity embedding from the image, we adopt Additive Angular Margin
Loss (ArcFace) proposed by Deng et al., 2018, which is a state-of-the-art model in
the face-recognition domain. In our experiments, we use the pre-trained ArcFace
model with Squeeze-and-Excitation ResNet-50 (Hu et al., 2017) backbone. The au-
thors of the aforementioned paper show that by adding SE-blocks to ResNet-50, one
can expect almost the same accuracy as ResNet-101 delivers. This way, we need less
computational resources to obtain higher accuracy.

Finally, to find how much identity of x̂ varies from x′ we evaluate the distance
between corresponding calculated embeddings Ex̂ and Ex′.

Lidentity = ∑ (Ex̂ − Ex′)
2 (4.3)
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4.6 Network Training

We train our GAN following the common practices. Generator and Discriminator
are trained for an equal number of steps, which is less resource hungry. Both these
players have the same speed of training (i.e. learning rate), which prevents one
player from being more powerful than another. For the baseline, we penalize our
GAN by a combination of Relativistic average GANs (Jolicoeur-Martineau, 2018)
and Least-squares GANs (Mao et al., 2016), that shows the most pleasant results.
In the experiments section, we present an empirical study of different adversarial
losses. Discriminator loss is as follows:

LRaLSGAN
D =

Exγ [(D(xγ)− E(x,x′)D(Gγ(x, x′))− 1)2]

+ E(x,x′)[(D(Gγ(x, x′))− Exγ D(xγ) + 1)2] (4.4)

where xγ - source image x concatenated with its face landmarks γ; Gγ(x, x′) - gener-
ated image concatenated with source’s face landmarks γ.

We train our Generator to pursue three objectives that enforce proper face reen-
actment.

The first objective, namely content (i.e. background, illumination, image struc-
ture) preservation of target image is achieved with perceptual loss (Johnson, Alahi,
and Fei-Fei, 2016). Consecutively it is calculated between x′ and x̂. Our Lcontent
consists of two parts. The first one is MSE between ReLU activations of the third
convolutional layer of pre-trained VGG19 model. We also add l2 regularization. The
loss with coefficients is as follows:

Lcontent = 0.06 ·MSE(lφ,relu3,3
x̂ , lφ,relu3,3

x′ ) + 0.5 ·MSE(x̂, x′) (4.5)

Identity preservation is covered with proposed identity loss described in Section
4.5. It enforces Discriminator to produce faces, whose identity embedding matches
the embedding of a target face precisely.

In this study we compare two approaches, namely landmark loss and landmark
discriminator, to expression transfer penalization described in Section 4.1. The first
one implies both adversarial and landmark loss, while the later has only adversarial.
Applying RaLSGANs,

Ladversarial = Exγ [(D(xγ)− E(x,x′)D(Gγ(x, x′)) + 1)2]

+ E(x,x′)[(D(Gγ(x, x′))− Exγ D(xγ)− 1)2] (4.6)

The full objective for Generator in the baseline (i.e. expression penalization using
discriminator) combines three losses with appropriate scales and is as follows:

LG = λcontent × Lcontent + λadv. × Ladv. + λidentity × Lidentity (4.7)

If we train with landmark loss we simply add it to the above equation with appro-
priate scale λlamdmark. Note that in these two cases adversarial loss is computed in
different way.

The input for the model is target-source pairs of images selected at random. We
feed a pair per propagation because we adopt Instance normalization in both Gen-
erator and Discriminator.
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Chapter 5

Experiments

5.1 Implementation details

In our work, we use a standard toolkit for Machine Learning. We implement our
solution alongside with the experiments on Python 3.7 (Van Rossum and Drake,
2009), which is a dynamic language for quick prototyping. For building and training
neural networks, we prefer Pytorch 1.0 framework (Paszke et al., 2019 over Tensor-
flow (Abadi et al., 2015, as it implements dynamic graph (i.e. nodes may be added
on runtime) and, in our opinion, is more intuitive. In order to visualize the learning
process, we employ TensorBoard, which has a simple API for plotting losses and
images. For image processing, matrix manipulations and some visualizations we
use OpenCV (Bradski, 2000, NumPy (Oliphant, 2006 and Matplotlib (Hunter, 2007
correspondingly.

5.2 Datasets

5.2.1 GAN

For training and evaluating our model we selected Compound facial expressions of
emotion (CFEE) dataset by Du, Tao, and Martinez, 2014. It contains images of 26
emotions (i.e. facial expressions) presented by 244 different persons (i.e. identities).
The white background of the images makes it simpler for the model to learn transi-
tions from one expression to another. Despite simple background used for training
we show in Table 6.5, that our model is able to retain background on FaceForen-
sics++ dataset (Rössler et al., 2019).

We randomly select 100 images of each emotion, which results in 2600 training
samples. The rest we leave for evaluation. Those images are then normalized con-
cerning the procedure described in Sec. 4.4, cropped around the face and resized to
256x256. All our models are trained on this image resolution.

We evaluate on 500 randomly selected from test subset image pairs.

5.2.2 Custom landmark detector

Out detector is trained on WFLW dataset Wu et al., 2018, which contains 10000 faces
with 98 fully manual annotated landmarks. Each annotation is a (X, Y) coordinate
of a landmark on the image of size (H x W). Out of these landmarks, we selected 56
landmarks that correspond to mouth, eyes, and eyebrows. Based on visual inspec-
tion, we see that these parts of a face change the most drastically from one expression
to another.
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As mentioned in Sec. 4.2.2, our network predicts heatmaps rather than scalar val-
ues. Therefore we additionally generate 56 heatmaps for every image in the dataset
right before training.

We split our dataset into train and test parts. For the training part, we select
5000 images and leave 3000 images for evaluation. We additionally split the training
subset randomly into training and validation parts with a ratio of 9:1.

5.3 Training details

Both our models were trained on NVIDIA GTX 1080 GPU using the Adam solver (Kingma
and Ba, 2014), which is recommended as a default algorithm to use. We have not
found meaningful reasons to use another algorithm. We use a typical initial learn-
ing rate equal to 0.0001 and Xavier algorithm (Glorot and Bengio, 2010) for weights
initialization.

5.3.1 GAN

We train our baseline model for 250 epochs. As we observed, training it for a longer
time leads to divergence and poor results. We use a linear decay scheduler, which
decreases the learning rate down to 1e−7 starting from 40 epoch.

Before evaluation we experimented with different coefficients for our full ob-
jective (Equation ??). Experimentally we obtained the following: λcontent = 0.01,
λadv. = 0.1, λidentity = 0.001. While training with landmark loss we get slightly dif-
ferent value of λadv. = 0.001. We scale the landmark penalty Llandmark with the value
of λlamdmark = 2.

5.3.2 Custom landmark detector

Our custom detector is trained for 200 epochs. We use manual scheduling with a
decreasing learning rate during the training on the 60th and 80th epochs by 10. That
allows the optimizer to reach minima with higher certainty.

5.3.3 DLib models

We use pre-trained models for face detection and landmark estimation provided
with the library to compare GAN losses. They were trained on iBUG 300-W face
landmark dataset Sagonas et al., 2016. It has 300 indoor and 300 outdoor faces under
different poses, illumination, scale, annotated with 68 landmarks. This database
lacks in the amount as well as the diversity of pictures. It is limited in images of
faces with occlusions, makeup, blur.

We additionally train DLib detector on WFLW dataset. We use the training script
provided with DLib with standard options.

5.4 Metrics

For evaluating results of face reenactment, we use Fréchet inception distance (FID Heusel
et al., 2017), Normalized mean square error (NMSE), and Cosine similarity (CSIM)
described in the corresponding sections. Landmark detection results are evaluated
with NMSE.
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5.4.1 NMSE

MNSE shows a similarity between the two sets of landmarks. It is a an Euclidian
distance between two sets of facial landmarks, which is normalized by inter-ocular
distance and number of landmark points in one set. That is an Euclidian distance
between centroids (i.e. pupils) of two eyes.

NMSE =

L
∑

i=1

√
(xθ

i − xgt
i )2 + (yθ

i − ygt
i )2

L ·
√
(xgt − xgt

r )2 + (ygt
l − ygt

r )2
· 100 (5.1)

where L - number of landmarks, x′l - x-coordinate of left pupil of the source (ground
truth), y′l - y-coordinate of left pupil of the source, similarly x′r and y′r - coordinates
of the right pupil.

We use NMSE for two purposes. Firstly we measure expression transfer accuracy
produced by our GAN for FR. We calculate it in a pair of landmarks of generated
and source. Secondly, we evaluate the accuracy of landmark detection, which is a
standard metric, widely used in works on landmark detection (Kazemi and Sullivan,
2014; Cao et al., 2014; Sun, Wang, and Tang, 2013; Ranjan, Patel, and Chellappa,
2016).

5.4.2 FID

Fréchet inception distance is used for measuring image consistency and realism. It
runs on several images rather than single ones and calculates statistics of two sets,
which is its main advantage over well-known Inception score Salimans et al., 2016.
We apply it for measuring realism of generated faces and content-identity preserva-
tion on average.

5.4.3 CSIM

Cosine similarity is an explicit cosine of an angle between two vectors. We use it to
explicitly measure the distance between identity embedding of generated and target
persons. For a single pair of images, CSIM is given as follows:

CSIM =

S
∑

i=1
Ex̂

i ·
S
∑

i=1
Ex′

i√
S
∑

i=1
(Ex̂

i )
2 ·

√
S
∑

i=1
(Ex′

i )2

(5.2)

5.5 Empirical studies

All the models for comparison are trained for 100 epochs in setup described in the
beginning of Sec. 4.6 on the dataset described in Sec. 5.2.1. We evaluate results both
quantitatively (i.e. with FID, NMSE, CSIM) and qualitatively with User study (5.6).

5.5.1 Expression penalization

We study the abilities of landmark loss and landmark discriminator to provide ef-
fective FR. We train two models with slightly different architectures and training
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scenarios described in Sec. 4.1. We assume that landmark loss should provide more
accurate expression and stable training.

5.5.2 Landmark detectors

We evaluate our custom landmark detector against DLib landmark detector in two
scenarios. To this end, we additionally train DLib model (described in 4.2.1) on
WFLW dataset. Firstly, we compare the accuracy of predicted landmarks using
NMSE metric and performance (i.e. average prediction time). Secondly, we run
the investigation to find out how the landmark detection technique influences face
reenactment quality. To this end, we train our GAN using landmark discriminator
firstly with DLib detector trained by us, and then with our custom detector. Re-
call, that landmark discriminator is responsible for the penalization of expression
transfer. Therefore we are mostly interested to see the difference in the accuracy of
reenacted mimics. We also take into account other FR properties.

5.5.3 GAN losses

Recent studies show that adversarial loss influences the stability of the training pro-
cess, perceptual image quality, provide a more or less meaningful representation of
produced results (Lucic et al., 2018; Dong and Yang, 2019; Kurach et al., 2019). There-
fore we examine the impact of this loss function onto FR results. We selected four
losses, namely Wasserstein GAN (WGAN Arjovsky, Chintala, and Bottou, 2017), Rel-
ativistic average GAN (RaGAN Jolicoeur-Martineau, 2018), Least-Squares GAN (LS-
GAN Mao et al., 2016) and combination of RaGAN and LSGAN – RaLSGAN. These
losses are among those, which may be applied to a wide range of problems and are
not designed for a specific task.

WGANs are well-known for their training stability (they have no sign of mode
collapse) and the correlation between error value and image quality. Usually, GAN
loss is selected empirically. WGAN is a solid starting point in search of the proper
loss function. Note that we use WGAN with a gradient penalty for weight clipping,
which is an improvement of the original Wasserstein GAN.

We assume that a single LSGAN may perform the most poorly in terms of content
and identity preservation, as it has a tendency to smooth pixels on the image. Its
main advantage is the stabilization of the training procedure. The main advantage
of RaGANs is that when evaluating a sample from the positive set, they take into
account statistics of a negative one and vice versa. So we expect, that combination of
LSGAN and RaGAN should provide higher perceptual quality and stable training.

5.6 User study

Quantitative evaluation of face reenactment is quite bounded. In recent days there
appears no proper metric. Even a combination of different metrics provides an in-
complete representation of the actual situation. Therefore it is common for works
in this field additionally to quantitative results provide human evaluation, which is
usually conducted on Amazon mechanical turk (Crowston, 2012). We do not have
the possibility to use AMTurk. However, we conduct a similar study.

We incorporated our user study in a Google Form. The protocol is as follows.
We selected ten pairs of images (source and target). With each of our six approaches
(described in Sec. 5.5) we produced ten fake persons out of these pairs. For every
person, we ask the participants to say which fake looks more real to them. In the
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case where we compare more than two approaches, we ask people to select two, in
their opinion, the most realistic fakes.

We collected 32 responses and present results in Figures 6.2, 6.3, 6.4. It is worth
to mention that most of the participants are familiar with face manipulation tech-
nologies.
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Results

6.1 Expression penalization

From metrics in Table 6.2 it is visible, that landmark loss significantly outperforms
landmark discriminator. It was expected in terms of NMSE, as the loss directly pe-
nalized distance between landmarks of source and generated. What is interesting,
that landmark loss shows higher results in perceptual quality and identity preserva-
tion. Observe, that user study correlates with quantitative results. A higher number
of participants in total selected landmark loss over the discriminator.

6.2 Landmark detectors

Observe from Table 6.3 that our custom landmark detector outperforms DLib detec-
tor in terms of NMSE, while loses in performance (i.e. prediction time). However,
our detector is more robust to corner cases, such as severe poses, occlusions, mus-
tache, beard (Table 6.1). The use of augmentations highly influences it.

When we apply both detectors to face reenactment, they show close results. From
Table 6.2, one may see, that our detector improved expression accuracy and identity
preservation, while slightly lost in perceptual quality. The reason may be a small
inconsistency in predictions on the same images observed in our detector. By in-
consistency, we mean a slight difference in landmark locations for the same image
predicted on different runs. (see in Fig. 6.1).

6.3 GAN losses

From Table 6.2 we can see, that WGAN clearly shows the highest performance in
terms of the metrics. RaGAN, LSGAN and RaLSGAN show quite similar results.
However, while LSGAN has the highest perceptual quality (i.e. FID) among those
three, it produces the least accurate expression and identity. RaGAN shows ‘mir-
ror‘ results to LSGAN. RaGAN has the poorest perceptual quality (which also cor-
relates with user study), but the highest expression transfer and identity preserva-
tion. RaLSGAN is in-between those two quantitatively. At the same time, based
on conducted user study, it produces the most realistic faces and exceeds WGAN
significantly. Observe, that visual quality degrades with nearly the same step from
RaLSGAN to RaGAN.
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Case DLib U-Net Ground truth

Average

Pose

Occlusion

Mask

Beard

TABLE 6.1: Qualitative comparison of landmark detectors.
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FID ↓ NMSE ↓ CSIM ↑
Landmark detetectors

DLib 17.36 17.77% −0.13

U-Net 18.83 15.38% 0.02

GAN losses

RaLSGAN 21.97 11.1% 0.38

LSGAN 22.25 13.26% 0.17

RaGAN 23.24 8.96% 0.57

WGAN 15.22 6.49% 0.75

Landmark penalization

Discriminator 18.83 15.38% 0.02

Loss 12.15 3.37% 0.89

TABLE 6.2: Quantitative face reenactment experiments results.

Error (NMSE) ↓ Average prediction time on CPU (ms.) ↓
DLib 10.86% 7.83

U-Net 6.73% 48.81

TABLE 6.3: Landmark detectors comparison

RaLSGAN/DLib U-Net/Discriminator Loss LSGAN RaGAN WGAN

TABLE 6.4: Qualitative results of face reenactment
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FIGURE 6.1: Example of small inconsistency between two distinct
predictions of U-Net detector.

FIGURE 6.2: User study. Expression penalization

FIGURE 6.3: User study. Landmark detectors
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FIGURE 6.4: User study. GAN loses

FIGURE 6.5: Mouth expression reenactment
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Source Target Result

TABLE 6.5: Example of background preservation.
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Conclusion and Future work

7.1 Conclusion

In this work, we provide a flexible and efficient one-shot solution for many-to-many
face reenactment problem using GAN architecture.

We studied various adversarial losses and showed, that combination of Relativistic-
average GANs and Least-squares GANs is the most visually pleasing and produces
accurate expression transfer.

We focused on landmark representation of facial expression and built our cus-
tom landmark detector based on U-Net architecture, which shows higher accuracy
compared to DLib detector. We showed that DLib detector is sensitive to numerous
corner cases (i.e. occlusions, masks, poses), while our detector is highly robust.

We examined two alternatives for stimulating accurate expression transfer, namely
landmark discriminator and landmark loss, and found that the later shows satisfac-
tory results both quantitatively and qualitatively.

We admit that no proper metric for evaluation of face reenactment is present yet.
Therefore in our work, we conducted a user study to measure the visual quality of
synthetic images.

We acknowledge that the problem of face reenactment touches ethical questions
and can be used for violating purposes. Therefore we do not open-source our code.
However, we are open to cooperation in the improvement of existing neural gener-
ated content detection systems.

7.2 Future work

For future work, we consider the following directions.
In terms of face reenactment, we plan to enhance the abilities of our GAN to

pose and eye gaze transfer. That would provide better higher realism and would be
highly useful for videos of synthetic faces.

There is still a gap in the identity preservation of a target person. We observe
that sometimes face characteristics of source (i.e. eyes shape, mouth forms) may be
copied. Therefore we consider an additional module that would emphasize the iden-
tity features of the target. As a starting point, we can use style discriminator similar
to. An important step towards better identity preservation may be adaptation (i.e.
warping) of source landmarks to target in calculating landmark loss. Consecutively
it would make generated landmarks more natural for a target face.

For our landmark detector, we plan to work towards higher consistency of pre-
dictions. To enhance our study, we want to provide a broad comparison of existing
landmark detectors with ours.
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Finally, we want to expand our user study. For example, we may add real images
to the form and ask participants to say whether the person is real or fake. Another
option would be to use AMTurk.
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Appendix A

GitHub repository link: https://gitlab.com/vosar/thesis
User study Google Form link: https://forms.gle/7Yho4KqFVbjixu8d7

https://gitlab.com/vosar/thesis
https://forms.gle/7Yho4KqFVbjixu8d7
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