
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Aggregation system of news search with
configurable notifications by keywords

Author:
Arsen Ilchyniak

Supervisor:
Dmytro Pryimak

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Arsen Ilchyniak, declare that this thesis titled, “Aggregation system of news search
with configurable notifications by keywords” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“quote”

Author

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Aggregation system of news search with configurable notifications by keywords

by Arsen Ilchyniak

Abstract

This thesis focuses on analysing current news resources and optimization of accessi-
bility. Other focus is performance of program, algorithms and tools connected to it.
One of main things is implementation of solution with usage of Java programming
language and spring framework. Data integrity is implemented with Apache Kafka.
Two types of algorithm are proposed to implement main logic. As result, one of
them is chosen and effective telegram bot with its implementation is created.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I appreciate help from my supervisor Dmytro Pryimak, who supported me during
this time and was reminding to do this work and not to drop it.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Reasons of resource improvement . 1
1.3 Goals . 1

2 Analysis of existing sources 2
2.1 Introduction . 2
2.2 Google trends . 2
2.3 Similarweb . 3
2.4 tgstat . 5
2.5 Conclusions . 6

3 Architecture and implementation 8
3.1 Architecture planning . 8
3.2 Used tools and frameworks . 8
3.3 Algorithms testing . 10

4 Conclusions 13

5 References 14
5.1 References . 14
5.2 Analytical websites . 14

vi

List of Figures

2.1 My architecture . 2
2.2 Google analytic about most popular search topics 3
2.3 Censor.net statistics . 4
2.4 Ukr.net official statistics . 4
2.5 Pravda statistics . 4
2.6 TSN statistics . 5
2.7 Truexanewsua statistics . 6
2.8 Zelenskiy official statistics . 6

3.1 Architecture . 9
3.2 User interactions . 9
3.3 Database model . 11
3.4 Milliseconds it takes to process n words on 10000 characters. 12

1

Chapter 1

Introduction

1.1 Motivation

Last month I spent hours reading the news and becoming more dependent on them.
I decided to watch through information connected to news resources. As a result,
short research helped me discover that many users have the same problem and be-
came a new idea for my work.

1.2 Reasons of resource improvement

News always was a popular theme. However, in our country, the number of people
interested in the news has significantly increased over the last time. This has led
to creating an uncountable number of news resources. However, in modern reality,
not everyone can spend a significant amount of time reviewing each resource sepa-
rately and looking through information that interests him. Web users have become
much pickier than they used to be. That is why many people began to switch from
the usual sources of information such as websites to alternatives, the central place
among which took Telegram, including channels, chats and bots. However, users
still spend much time looking through different sources to find the information that
interests them.

1.3 Goals

• Analyze and collect information about the available media resources.

• Plan and architect the solution based on advantages gotten.

• Implement an alternative solution.

2

Chapter 2

Analysis of existing sources

2.1 Introduction

In this part different analytical tools are used to show trends and demand of different
news resources.

2.2 Google trends

Google trends - https://trends.google.com/
A resource allows viewing and analyzing specific queries that users have typed

in Google and other related systems. This tool will help see a reasonably accurate
picture of changes in the popularity of specific topics and search trends for each day.
The popularity of news in Ukraine has grown significantly since the war started,
as indicated by statistics, see Fig. 2.1. Firstly, it was a panic growth, but now we
can talk about a steady audience growth, which is currently three times larger than
before the war.

Many people are surfing the internet searching for information during this pe-
riod. They want to be confident in the information and choose a source for them-
selves or find a place where more compelling or exclusive news is. Another im-
portant factor is which queries are still the most popular. People are more likely
to query specific news than watch news in general, as shown in Fig. 2.2. The gen-
eral conclusion is that individual moments and details are much more interesting to
people than giving them a broad picture. These results suggest that the information
distributed in individual parts is more popular than when all the news follows one
another. This information will be taken and compared with the results of further
analysis.

FIGURE 2.1: My architecture

Chapter 2. Analysis of existing sources 3

FIGURE 2.2: Google analytic about most popular search topics

2.3 Similarweb

Similarweb - https://www.similarweb.com/
This part uses several parameters for evaluation, namely the number of visitors,

average visit time, page attendance, bounce rate, features. Censor.net is used to be
the most rated system among others. With only ninety million visits per month and
most rated among other websites, it has several features that make it so favoured.
First of all, it is an independent resource where the editor-in-chief is Yuriy Butusov,
who is known for being on the front lines of war. Secondly, it can find texts by
predefined keywords. Compared to others, it has better access to the previously
mentioned feature. Lastly, it has pretty unique materials about the situation on the
front line and is different from the official resources view. On the other side, it has
a bigger than average bounce rate caused by people checking the website for new
information and closing when they do not see anything new. The same thing can be
said about all information resources.

TSN is the most visited website. It has two hundred millions visits per month.
A pretty similar one has Pravda. Both resources have a small average page visit
rate. At the same time, the main difference is the interface. Pravda has a simpler
one, which causes a lower bounce rate, while TSN has the biggest one caused by site
complexity. TSN got its audience from TV, partly because of its connection to the
president in the past. One interesting feature that both of them have is the up bar of
losses of the occupiers’ army.

UKR.NET has the biggest average visit time and the number of pages visited,
but it can be due to its usage as email. However, Similarweb still rates it as second
among news resources. So, it is not only about email usage but about the news too.
Furthermore, the primary thing that makes it popular is topic-based information.
Usage of diverse information resources is a reason too.

Chapter 2. Analysis of existing sources 4

FIGURE 2.3: Censor.net statistics

FIGURE 2.4: Ukr.net official statistics

FIGURE 2.5: Pravda statistics

Chapter 2. Analysis of existing sources 5

FIGURE 2.6: TSN statistics

Based on previous results, several conclusions about the efficiency and disad-
vantages of different resources were made. First of all, this is the number of vis-
ited pages. Web sites with separated topics have a lower bounce rate. Due to that,
UKR.NET and Censor.net have higher results by this parameter. Moreover, Pravda
has a bigger audience due to its straightforward interface. Despite the fact that TSN
is the most visited one, its bounce rate and small average page visit rate tell us about
its weaknesses and show that a significant part of the audience will leave soon.

2.4 tgstat

Tgstat - https://uk.tgstat.com/ratings/channels/news?sort=members
For subscribers’ analysis and news popularity in Telegram, the work compares

the two biggest channels in Ukraine with several official ones. U_Now provides in-
formation in quite an ordinary manner. All information is verified and comes almost
already after official publication on the internet. On another side, Truexanewsua
quite often publishes not verified information. However, this allows him to publish
many exclusive materials at the exact moment after some event happens, making it
popular among users.

This work takes @V_Zelenskiy_official as the biggest official information resource.
Generally, the subscribers’ number of official information resources is between 0.6
and 1.3 million when biggest unofficial channels have close to 2 million subscribers.
Mostly it is connected to the ability of unofficial channels to public information from
as many sources as they can process. However, the total number of views of official
posts is often higher than others. It is connected to resend of official sources. For
example, views of one post in @V_Zelenskiy_official is 1.15 higher than subscribers.
At the exact moment, @Truexanewsua have only 40 per cent views compared to its
subscribers. Despite this, the number of subscribers of @Truexanewsua continues to
rise when @V_Zelenskiy_official decreases.

The other resource that is popular in telegram is @UASmartNewsBot. Opened
information about these bot users is missing. However, due to its spread among
different media when KitSoft launched it and its new way of accessing data, it is
assumed that the audience is quite significant. The main advantages are different

Chapter 2. Analysis of existing sources 6

FIGURE 2.7: Truexanewsua statistics

FIGURE 2.8: Zelenskiy official statistics

sources of information collected in one place and that customers can write and get
news by keywords that interest them. Because of the decision to take information
only from official resources and not add new resources after launch, the channel
became worthless resource for a significant part of the audience. Another big draw-
back is its base of 86 official channels that post similar information, and users get
notifications about the same action but from many similar sources.

2.5 Conclusions

• People require structured information.

• People want to see information from different resources.

• Alternative resources have become more popular and continue to improve.

• Telegram is one of the significant resources.

• Information delivery has to be fast to interest subscribers.

Chapter 2. Analysis of existing sources 7

• A variety of sources make information sound more confident.

• Exclusive materials make the resource more attractive.

8

Chapter 3

Architecture and implementation

3.1 Architecture planning

First of all, I have thought about the type of information delivery. Channels this time
have too much information and are too generalized. I have chosen the "Telegram"
bot, which has potential. However, as mentioned in the last part, "@UASmartNews-
Bot" has not used this potential. Commonly, users have two primary needs. Firstly,
subscribers want to get notifications when information that interests them is pub-
lished. Secondly, they want to get information about some topic in the past.

As a result, this work needs to have a database to save information about two
different types of information. The first one is subscribers’ keywords needed to make
information delivered user-specific. Another one is articles that have to be delivered
to users interested in past events.

It is possible to make a new resource that will interest people, but this work is
about improving news accessibility. Therefore, I have decided to scrap and process
different popular resources.

Another mandatory part is the effectiveness of this work. The number of sub-
scribers and keywords will increase with time, and naively making this work will
lead to failure. According to this, I have tested several algorithms for keyword
checking in texts. Last but not least, according to data consistency and modules
that process the information, I have to add a message broker for the transmission
user requests reliability.

There are a set of commands that users will use:

• Add keyword. To do this, send a keyword to the bot. Then the user is sub-
scribed to the news that contains this word. Later, he has to wait for when new
news containing his keywords appear

• Delete keyword. Works with /delete keyword.

• Get posts by keyword and dates. A user enters command /get_posts_by_keyword_and_dates.
After that, he has to enter a keyword and two dates in the next message.

3.2 Used tools and frameworks

Java was chosen as the programing language.
Java is a programming language and computing platform first released by Sun

Microsystems in 1995. It has evolved from humble beginnings to power a large
share of today’s digital world, by providing the reliable platform upon which many
services and applications are built. New, innovative products and digital services
designed for the future continue to rely on Java, as well.

Chapter 3. Architecture and implementation 9

FIGURE 3.1: Architecture

FIGURE 3.2: User interactions

Chapter 3. Architecture and implementation 10

Its libraries are pretty helpful and easy to use.
It has many tools to simplify work and use different annotations to replace tones

of code.
Kafka was chosen as a message broker. Combining it and Spring for Apache

Kafka makes it the most suitable option.
Apache Kafka — Robust Queue Broker

" Kafka combines three key capabilities so you can implement your use cases for
event streaming end-to-end with a single battle-tested solution:

• To publish (write) and subscribe to (read) streams of events, including contin-
uous import/export of your data from other systems.

• To store streams of events durably and reliably for as long as you want.

• To process streams of events as they occur or retrospectively.

And all this functionality is provided in a distributed, highly scalable, elastic, fault-
tolerant, and secure manner. Kafka can be deployed on bare-metal hardware, virtual
machines, and containers, and on-premises as well as in the cloud. You can choose
between self-managing your Kafka environments and using fully managed services
offered by a variety of vendors. " Description of kafka at official page.

" The Spring for Apache Kafka (spring-kafka) project applies core Spring con-
cepts to the development of Kafka-based messaging solutions. It provides a "tem-
plate" as a high-level abstraction for sending messages. It also provides support for
Message-driven POJOs with @KafkaListener annotations and a "listener container".
These libraries promote the use of dependency injection and declarative. " Descrip-
tion of spring-kafka at official page.

I have chosen "PostgreSQL" as a database because it is standardized and easy to
work with.

"PostgreSQL is a powerful, open source object-relational database system with
over 30 years of active development that has earned it a strong reputation for relia-
bility, feature robustness, and performance. ". Description of PostgreSQL at official
page.

3.3 Algorithms testing

There were two main algorithms that this work tests.
The first one is - "Aho-Corasick algorithm".

" Let there be a set of strings with the total length M (sum of all lengths). The Aho-
Corasick algorithm constructs a data structure similar to a trie with some additional
links, and then constructs a finite state machine (automaton) in O(MK) time, where
K is the size of the used alphabet.

It was considered that code would need to process big text files. However, prac-
tice shows that the average amount of chars in one file is less than 1000. Moreover,
there is a variety of letters in the alphabet. As a result, this algorithm was the worst
among others. ". Description of suffix-automation from cp-algorihms.
The second one is - "Suffix Automation".

" A suffix automaton is a powerful data structure that allows solving many string-
related problems.

https://kafka.apache.org/intro
https://docs.spring.io/spring-kafka/docs/current/reference/html/
https://www.postgresql.org/
https://www.postgresql.org/
https://cp-algorithms.com/string/suffix-automaton.html

Chapter 3. Architecture and implementation 11

FIGURE 3.3: Database model

For example, you can search for all occurrences of one string in another, or count
the amount of different substrings of a given string. Both tasks can be solved in
linear time with the help of a suffix automaton.

Intuitively a suffix automaton can be understood as a compressed form of all
substrings of a given string. An impressive fact is, that the suffix automaton contains
all this information in a highly compressed form. For a string of length n it only
requires O(n) memory. Moreover, it can also be built in O(n) time (if we consider
the size k of the alphabet as a constant), otherwise both the memory and the time
complexity will be O(n*log(k)).

The linearity of the size of the suffix automaton was first discovered in 1983 by
Blumer et al., and in 1985 the first linear algorithms for the construction was pre-
sented by Crochemore and Blumer.

". Description of aho-corasick from cp-algorihms.
Naive method. String method - ".contains()" is used to check whether a keyword

is in text. Its complexity is O(n*k), where n - text length, k - the number of keywords.
Comparing these two left algorithms, we can easily see that Suffix automation

is faster with a larger number of keywords. However, with a small number of key-
words, it deals better. This is because a naive algorithm does not have to prepare
some structure to give results about keywords much faster. According to this I can
say that naive algorithm will spend too much time and resources to execute the same
piece of work. If to watch from perspective of small program with limited number of
users it is quite satisfying. General results can be even better then Suffix Automation,
but users would not see them. And when the number of subscribers will increase
and number of keywords too, the program will need much more time to execute all
queries that come. As result information will not be delivered fast and exclusive as
it was planed for.

As the result, Suffix automation were taken, because of its overall result and good
complexity.

https://cp-algorithms.com/string/aho_corasick.html#references

Chapter 3. Architecture and implementation 12

FIGURE 3.4: Milliseconds it takes to process n words on 10000 char-
acters.

13

Chapter 4

Conclusions

As a result, I got a ready program that sends new news to subscribers by keywords
they entered. It has a simple interface and can run on any machine globally with
Telegram API. This work analyses algorithms and detects their weak and strong
sides. Aho-Corasick, which I have used much before, turned out to be useless here
because of its specification and data amount that incomes from news resources.

I have already partly launched it and gave bots link to several people to test it.
As a result, several of my acquaintances started to browse news sources less if to
believe their words. The most effect it had was on my acquaintance, who is sensitive
to everything, and this bot helps her see only good news and avoid bad by entering
specific keywords. Hope after deploy it will attract more people and I will show
statistics of its usage during presentation.

14

Chapter 5

References

5.1 References

• Telegram api documentation - https://core.telegram.org/bots/api

• Best message brokers - https://blog.containerize.com/2021/07/09/top-5-open-
source-message-queue-software-in-2021

• Aho-corasick algorithm - https://cp-algorithms.com/string/aho_corasick.htmlreferences

• Suffix-automation - https://cp-algorithms.com/string/suffix-automaton.html

• General Suffix Automaton Construction - https://static.googleusercontent.com/media/research.google.com/uk//pubs/archive/35395.pdf

• Kafka documentation - https://kafka.apache.org/documentation/

• Spring framework for Kafka documentation - https://docs.spring.io/spring-
kafka/docs/current/reference/html/

• Spring data jpa documentation - https://docs.spring.io/spring-data/jpa/docs/current/reference/html/

• Lombok documentation - https://projectlombok.org/features/all

• Jsoup documentation - https://jsoup.org/

• Date formats - https://jenkov.com/tutorials/java-date-time/parsing-formatting-
dates.html

5.2 Analytical websites

• Telegram statistics - https://uk.tgstat.com/ratings/channels/news?sort=members

• Similarweb - https://www.similarweb.com/

• Google trends - https://trends.google.com/

• Pravda advertise - https://www.pravda.com.ua/cdn/cd1/advertising/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Reasons of resource improvement
	Goals

	Analysis of existing sources
	Introduction
	Google trends
	Similarweb
	tgstat
	Conclusions

	Architecture and implementation
	Architecture planning
	Used tools and frameworks
	Algorithms testing

	Conclusions
	References
	References
	Analytical websites

