
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Turn-based game for two based on classic
tabletop game "Naval Battle" using Unreal

Engine’s multiplayer framework and
Google’s ARCore framework.

Author:
BOHDAN PYSKO

Supervisor:
TARAS LESKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, BOHDAN PYSKO, declare that this thesis titled, “Turn-based game for two based on
classic tabletop game "Naval Battle" using Unreal Engine’s multiplayer framework
and Google’s ARCore framework.” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Russian warship, go **** yourself”

Roman Hrybov1

1According to the officials, Roman is not the real author

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Turn-based game for two based on classic tabletop game "Naval Battle" using
Unreal Engine’s multiplayer framework and Google’s ARCore framework.

by BOHDAN PYSKO

Abstract

Game development industry is rapidly evolving nowadays, and I, as a game de-
veloper, wrote this thesis to explore the capabilities of perhaps the most dominant
game engine up to date which is Unreal Engine. It is suitable for many tasks besides
gamedev, particularly architectural visualisation, education, product design and so
on. But one of the most complex and useful technologies it provides is the multi-
player framework. While making a major contribution to communication between
users and overall UX, it is also hard to master, what makes it even more enticing to
explore.
Additional motivation behind choosing UE is that UE5 was announced a year ago
and was highly praised in the community2.
To make my thesis even more interesting, I decided to add AR functionality to it.

With Augmented Reality market segment expanding, deeper integration of AR de-
vices will be observed both in our everyday life and jobs. Besides, Apple products’
LiDAR capabilities warm up my interest to AR development even more.

2Even though UE5 is a technological feat, this project was developed using UE4 due to UE5 being
in beta stage until recently

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I would like to express my gratitude to:

• Nineva Studios - for providing me with some great hardware

• Oleg Farenyuk - for teaching me the core of computer science

• Sam Pattuzzi and others for helping me learn the intricacies of Unreal Engine
multiplayer

• and finally, Epic Games for letting 7 million creative people across the globe
use state-of-the-art tools for free

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Multiplayer . 1
1.2 Augmented reality . 2
1.3 Procedural mesh slicing . 3
1.4 Purpose of this thesis . 3

2 Related works 4
2.1 Games like the one attached and why handheld AR format was chosen 4
2.2 Theoretical background . 4

2.2.1 Multiplayer . 4
2.2.2 AR . 4

One camera . 5
Two cameras . 6
LiDAR . 7

2.2.3 Mesh slicing . 7

3 Technical difficulties and solutions 8
3.1 First investigation in the scope of this thesis 8

3.1.1 Menu . 11
3.1.2 UGameInstance . 12

3.2 Second Investigation . 13
3.3 Final product . 14
3.4 Mesh Slicing . 17

3.4.1 Approaches . 17

4 Conclusions and future work 19
4.1 Conclusions . 19
4.2 Future work . 19

5 Description of used resources besides bibliography 20

Bibliography 21

vi

List of Figures

1.1 ResearchGate AR/VR market projection 3

2.1 Example of optical flow . 6

3.1 Host entered the common world, client - not yet 9
3.2 Joining process (final app does not require text input) 9
3.3 Now client has joined . 10
3.4 Client’s platform moving after server stepped onto his 10
3.5 Both players are moving . 11
3.6 Players have reached their destinations 11
3.7 starting the game - locations coincide . 13
3.8 Not long after start problems emerge . 14
3.9 Final joining system on a mobile device 15
3.10 Selecting a plane . 16

vii

List of Tables

Multiplayer Genres Table . 2

viii

List of Abbreviations

UE Unreal Engine
AR Augmented Reality
HMD Head Mounted Display
OSS Online Subsystem Steam
MMO Massive Multiplayer Online
PVP Player Versus Player
LAN Local Area Network
NPC Non-Player Character
API Application Programming Interface
LiDAR Light Detection And Ranging
UMG Unreal Motion Graphics
RPC Remote Procedure Call
BSP Binary Space Partitioning

ix

To my family

1

Chapter 1

Introduction

This thesis covers many different aspects of game development, mainly:

• connection between players

• augmented reality

• real-time mesh deformation

In this section, you will see explanations why these three topics are worth inves-
tigating as of today and what are the challenges they can impose.
The project attached to this thesis is the digital implementation of my research. It is
a turn-based multiplayer game in Augmented Reality, particularly handheld kind of
it. It means that the build was made for Android and AR is implemented using the
standard phone camera.
The game itself is based on a classic tabletop game "Naval Battle", you can take a
look at the rules here:
Bradley, 1967
Although my project has fewer limitations imposed on the game, e.g. fields can
vary in size, there is one more ship shape etc, the following text is written with the
assumption that the reader knows the rules in mind.

1.1 Multiplayer

As mentioned above, multiplayer is one of the key aspects of modern gaming expe-
rience. It is mostly used in games nowadays, but maybe the situation will change so
that more people can experience its benefits.
Multiplayer technology elevates user experience to a new level. It can facilitate
player cooperation or the opposite - form a PVP match for a realistic difficulty level
as well as providing creative and unpredictable opponents for everybody. Many
game studios invest high amounts of resources into game AI. Enabling and NPC to
behave like a human is not an easy task.

Multiplayer capability can be used in a wide variety of ways with different pur-
poses. Also, multiplayer games can be divided into three categories based on their
synchronicity and session length.

• widely known MMO games - synchronous gameplay with potentially infinite
sessions and large amount of participants. Players can enter and leave the so-
called world at any time.

Chapter 1. Introduction 2

• real-time session-based games - a good example of which can be the recently
very popular app Among Us. It is a very small piece of software, does not even
use 3D graphics, and encompasses a big amount of genres and gameplay me-
chanics. It can be mainly defined as a puzzle game, based on social interaction.
You cannot win it just by learning internal mathematics and clicking quickly, it
requires communication skills and understanding social interactions. A very
good example of how to take advantage of multiplayer technology.

• turn-based games - originating from what may well be the oldest games ever
- chess and alike. This genre can be characterised by not too long sessions and
what is important - asynchronous approach.

A table to sum up:

Genre Synchronicity Session Length
MMO Yes Potentially infinite

Session-based Yes Usually < 1 hour
Turn-based No Usually < 1 hour

Now may be a good time to explain what synchronous means in multiplayer.
Generally, players need to communicate somehow via the game itself to consider
it a multiplayer experience. Whether it be a chess board, an interactive maze or,
most commonly, a mutual level (aka world). In most cases, when players stay in the
same level and see each other or the consequences of each other’s actions - the game
is synchronous. Maintaining synchronicity is crucial to games like this because, like
in real life, actions and following events are strictly consecutive. The problem is,
communication is not instant, especially when players are far from each other. With
every multiplayer game the engineers try to compensate the lag by transferring only
the minimal amount of data over large distances and reproducing other player’s
actions on the local PC. This is the beauty of multiplayer technology - and it’s most
complex part.
This project does not require any complex code in terms of multiplayer because it is a
turn-based game (which means asynchronous, as stated above) and also LAN-based
- players are relatively close and the devices communicate to a common router or
even directly to each other. But the most complex part here is to coordinate players’
position in the game world as well as the real one. More on that in the next section.

1.2 Augmented reality

8 years have passed since the collocations "AR" and "VR" became familiar to the
masses, many devices have been launched too. Although these technologies have
not yet been widely adopted, it is only a question of time. With the emergence
of more energy efficient mobile processing units, better energy storing technologies
and higher quality HMDs these types of hardware will become more and more com-
mon.
AR/VR can be applied to increase the quality of life of many poeple - doctors, stu-
dents, pilots etc. Besides, Facebook has been developing these technologies rapidly
over the past few years. With the launch of Metaverse people’s lives can change
drastically. This virtual world is a topic worth investigating, and it encompasses the
same technologies as this project - AR and multiplayer. This is part of the reason
why this topic was chosen for my research.
Concerning market size, AR/VR market was estimated at 17 billion USD by the end

Chapter 1. Introduction 3

FIGURE 1.1: ResearchGate AR/VR market projection

of 2021 and is expected to reach 105 billion by the year 2028. (VantageMarketRe-
search, n.d.) I personally find it difficult to make predictions for 6 years from now,
mainly because of the mentioned Metaverse. It is hard to overestimate its influence
on the industry.
Another source (Markopoulos and Luimula, 2020) makes predictions for 2025:

1.3 Procedural mesh slicing

Real-time mesh deformation, or a subset of it - procedural mesh slicing, are both
very important parts of modern graphics. They enable developers to implement
dynamic surfaces like human skin, waves and trees and visual effects like disinte-
gration, wreckage and many more.

1.4 Purpose of this thesis

This thesis aims at investigating the capabilities of Unreal Engine multiplayer tech-
nology and AR capabilities of the said engine. It is not a scientific synthesis of some
state-of-the-art algorithm. While such algorithms will be discussed further with the
purpose of providing theoretical background for the mobile application attached,
this thesis is a description of my experience of combining two complex modern tech-
nologies to implement a game that is relatively novel by its concept.

4

Chapter 2

Related works

2.1 Games like the one attached and why handheld AR for-
mat was chosen

There have been many turn-based PVP games released since the term "multiplayer"
became widely known. Variants of Naval Battle were among them. Although, the
adoption of AR technology does not seem so widespread. I chose handheld AR for
this game for the reason of simplicity of access. While dedicated AR/VR devices do
not see much adoption yet, cell phones can be found in every pocket, so the game
can be played anywhere and anytime, you just need a flat surface.

2.2 Theoretical background

This section describes essential to know concepts, as well as the papers used as a
theoretical background for the application attached.

2.2.1 Multiplayer

While many of the first classic games could be called multiplayer, they were actually
non-networked, this means, two players were playing on the same device. A classic
example of a non-networked game would be Mortal Kombat - a sample of fighting
genre, where two players use different joysticks, but the same computing hardware.
But modern notion of multiplayer implies that players are connected via the Internet.
This is much more complex connection to establish, fortunately, nowadays almost
all of the networking process is hidden under numerous abstraction layers, the only
aspect of it that developers need to take care of is synchronicity and lag.
While there is no need for explanations here as to how LANs or WANs work, the
principles of establishing and maintaining user connection via UE and Steam (OSS)
API will be described in detail in "Technical difficulties and solutions" chapter.

2.2.2 AR

There are two kinds of AR - with translucent displays (HoloLens, Google Glass) and
non-translucent - Oculus devices, Handheld AR. Only the latter is the object of this
investigation.
The problem with non-translucent AR is that it is fairly hard to seamlessly integrate
virtual objects and the real world due to how challenging a task of measuring dis-
tances to real objects is. Proper occlusions need to be implemented, surface tangents,
etc. What follows is an analysis of approaches to said task. There are 3 options when
it comes to measuring distance. The device either has one camera, or 2, or a whole

Chapter 2. Related works 5

LiDAR scanner. Obviously, the last one available only to Apple devices as of now.
Unreal Engine supports all of the most popular devices - Android, iOS, Oculus. This
project was implemented for and tested on a Google Pixel smartphone with one
camera.

One camera

Alizadeh, 2015 proposed two methods of estimating the distance to an object using
a single camera.
One of them is using object’s given size - which is impossible to apply in real-world
handheld AR use cases; and the other is using the height of the camera and the es-
timated horizontal projection of the distance from camera to the object. The second
method can be applied to more use cases, but it is also quite impossible to use it for
Handheld AR needs due to lack of information on device height.
One of the universal approaches to this problem is machine learning - by classifying
some of the scene objects, the algorithm can estimate their real size and use the first
algorithm of the two mentioned above to calculate the distance. But such a program
could possibly take hundreds of megabytes and require a powerful GPU, which is
rarely available on mobile devices.
But there is one more option which is estimating optical flow. OF is a representation
of how objects move in the scene. If two adjacent regions have nearly the same OF
it means that they are probably a part of the same object or two objects moving to-
gether.
OF is a 2-dimensional matrix of 2D vectors, or a tensor. Each vector starts in the
position of particular pixel and points in the direction which is basically a projection
of the corresponding object’s speed onto the camera sensor plane.
It is relatively easy to estimate the OF: the most straightforward way to do it is recog-
nising patterns and their evolution over time. And this is a task that is very suitable
for a relatively small neural network.
There are many papers written to this date on the topic of optical flow, because it is
one of the crucial aspects of distinguishing one object from the other and computer
vision overall.
The famous Lucas-Kanade method for estimating optical flow is described in much
detail by now, I suggest that the reader take a look at this algorithm.

Here the reader can see an illustration of what OF is (IMO = independently mov-
ing object) (top left part probably illustrates the notion of OF the best):

Chapter 2. Related works 6

FIGURE 2.1: Example of optical flow

The advantages of this approach are obvious: it can be easily used to determine
the speed of the object and hence, its distance to the AR device. The faster the object
moves in the frame during camera movements (which can be determined using a
gyroscope), the closer it is to the device.
The OF approach comes with limitations, though. If the camera is moving very little
or is completely steady, it will be impossible to estimate the optical flow. Also, if
the scene has very little steady objects, or at least objects that do not accelerate, i.e.,
move with a constant speed, it will be hard to figure out how much the optical flow
was influenced by the AR device movement and how much - by movement of the
object itself.

Two cameras

Using parallel streams of data from two cameras the algorithm can estimate distance
to objects in the frame just like humans with their both eyes. In AR-capable devices
market, this was successfully implemented by the first 2-camera cell phone which is
iPhone 7+ in 2016.

Neshov and Manolova, 2021 described an approach to processing data from two
cameras with the purpose of providing better user experience with AR devices.

Two sections above can also benefit from some sort of image segmentation based
on colours like Grady et al., 2012, or even an alpha-matting algorithm. I, the author

Chapter 2. Related works 7

of this thesis, have implemented the Random Walks algorithm at
https://github.com/pyskonus/random_walker/tree/mask

LiDAR

The LiDAR sensor provides devices with an absolutely new type of data - it is ac-
tually just the data needed for implementing proper occlusions and other functions
during an AR session. The issue is, LiDARs are quite an expensive hardware.

Still, it is worth mentioning that Kumar et al., 2020 proposed an algorithm for
measuring distance in automotive industry using LiDAR and camera data together.
Probably light scanners are not going to see widespread adoption in the next few
years, but much cheaper ultrasonic scanners totally can.

Unreal Engine supports both non-LiDAR Google ARCore framework for An-
droid devices, and Apple ARKit for LiDAR-enabled iPhones.

2.2.3 Mesh slicing

Parker and O’Brien, 2009 described in implementation of a system for deformation
and fracture of solid objects in real-time gaming. This article is not necessary to un-
derstand the further described technical difficulties and solutions, but it can help the
reader understand how objects are represented in a virtual world and what could be
the implementations for mesh slicing.

Schmidt, 2020 , an employee of Epic Games provided a tutorial that I, the author,
followed to get to know Unreal’s API for mesh generation and deformation.

8

Chapter 3

Technical difficulties and solutions

UE’s built apps usually take hundreds of megabytes, so I will be unable to provide
you with a Git repository that contains .exe and .apk files, only source code. I will
include screenshots instead, executables will be demonstrated on June, 20-24.

3.1 First investigation in the scope of this thesis

I would like to mention that on
https://github.com/pyskonus/UdemyMultiplayer
the reader can see the first attempt to investigate Unreal’s multiplayer framework in
the scope of this thesis.
This project will demonstrate to the reader how UE’s internals work and how a
session-based multiplayer app would function. It is appropriate here because session-
based games are considerably better supported by Unreal than turn-based ones.
Therefore, it should be much easier to understand how multiplayer works on a
session-based example.

This application, just like the final project of this thesis, enables players to host an
online session as well as join one. But unlike the final app, this one has a slightly less
detailed user interface, where you have to type an IP address in order to connect
to another player. What follows is a short description of a very simple multiplayer
game in Unreal.

First, two users start a game instance on their machines. UE has a corresponding
class for this. UGameInstance is a class that represents the game process. It is a sin-
gleton, one instance, or copy, of this class, is created when the game loads up and
it is destroyed when the game shuts down. This class is used to implement connec-
tions between players.
Unreal Engine uses a client-server model of multiplayer, which implies, one of the
game instances is authoritative and the others are not. This is used in order to ex-
clude the possibility of cheating and, more importantly, to synchronise players.

Chapter 3. Technical difficulties and solutions 9

FIGURE 3.1: Host entered the common world, client - not yet

When players join, they are presented with two platforms. You can see them in
bottom left corner of the image above and middle right. Each platform has a but-
ton on the floor. Each button moves the opposite platform. This way, if one player
steps on their platform, another player’s platform will move. The goal of this simple
puzzle is to reach the opposite destination, i.e. players must step on their platforms
simultaneously.

After the host has entered the world and started an online session, another player,
or client, can join:

FIGURE 3.2: Joining process (final app does not require text input)

On the next screenshot you can see that the client has joined the world and is
ready to interact with the level:

Chapter 3. Technical difficulties and solutions 10

FIGURE 3.3: Now client has joined

Server has stepped onto his platform and it has called an event, aka a delegate,
to the client’s platform.
Delegates are similar to hardware interrupts on a lower level of abstraction.

FIGURE 3.4: Client’s platform moving after server stepped onto his

Now two players stepped on their platforms:

Chapter 3. Technical difficulties and solutions 11

FIGURE 3.5: Both players are moving

Mow both players have reached their destinations:

FIGURE 3.6: Players have reached their destinations

Now I will very shortly describe the UE multiplayer API - what it takes to host a
session, join one, and reproduce actions of players for one another.

3.1.1 Menu

Menu was implemented with the help of Unreal’s UMG module. It provides devel-
opers with the necessary UI elements like buttons, text input fields etc. All these
represent their corresponding classes and are capable of registering the appropriate
callbacks, properties and more.
In this game, menu was implemented as a separate module that can be easily de-
coupled, therefore those parts of code that interact with it have been inherited from
Unreal’s special interface class, much like interfaces in Java.

Chapter 3. Technical difficulties and solutions 12

3.1.2 UGameInstance

Host and Join functionality is implemented in this class.

World->ServerTravel("/Game/ThirdPersonCPP/Maps/ThirdPersonExampleMap?listen")

This is a function used to host a session, it takes path to the multiplayer map and
?listen at the end of it to state that this map must be hosted by a listen server.
Unreal also supports dedicated servers, which means, level is run on a remote PC
and this PC does not represent any players, nor does it take any input.

PlayerController->ClientTravel(Address, ETravelType::TRAVEL_Absolute)

This function enables player to join a server, hosted by another player.

Next, I will describe how actor replication works, i.e. the platforms.

There are two different notions of replication - actor replication and property
replication. Actors are updated either through property replication or remote pro-
cedure calls (RPCs). Simply put, RPCs are functions that run both on server and
client at the same time. I suggest that the reader take a look at the following doc-
umentation to have a deeper understanding of how replication works in Unreal:
EpicGames, 2022

As mentioned above, the server is the authoritative part of multiplayer while the
client is not. This means, server is responsible for running core gameplay logic that
is crucial to the game’s outcome, and the client is only responsible for constructing
an appropriate picture to the remote player’s screen and transferring this player’s
input to the server.
So since distinguishing these two is so important, there is a corresponding function
in the engine -

if (HasAuthority()) // this means, if this instance of code, or process,
{ // is running on the server

DoSomething();
} else
{

DoSomethingElse(); // and this will only run on the client side
}

Of course, there is much more to multiplayer gaming than what is mentioned
here, part of it will be described in subsequent sections, but in short, connecting
players requires a special module called Online Subsystem Steam (or any other on-
line subsystem, Unreal supports Google, Apple, Amazon and many more), repli-
cating players’ actions is not an easy task too, but this is not a topic for this paper,
everything is available on GitHub and I highly recommend the reader visits at least
the mentioned repository for the main project.

Chapter 3. Technical difficulties and solutions 13

3.2 Second Investigation

Second project that I created while learning the necessary material for the final one
is this:
https://github.com/pyskonus/KrazyKarts
It contains much more detail about multiplayer that I will shortly cover in the fol-
lowing text.
This project was specifically aimed at dealing with high-latency connections. It was
developed by solving the simulation errors one by one and implements several com-
plex mechanisms of reproducing another player’s actions and properties correctly
on the local machine.

The first problem was about client’s position absolutely not corresponding to it’s
position on the server. Here you can see cars starting the game and the on the next
screenshot they are some seconds into the session (screenshots taken from a course
website because on my instance of the project these problems have already been
eliminated. Illustrative purposes only):

FIGURE 3.7: starting the game - locations coincide

Chapter 3. Technical difficulties and solutions 14

FIGURE 3.8: Not long after start problems emerge

Replicated actor location is calculated by integrating its function of speed over
time, which, in turn, is obtained by calculating speed from acceleration, which is
basically the user input.
This error is rooted in differences during integration, which means

1. since travelled distance is update on each frame, different time periods be-
tween frames result in different results

2. what is more important: since the lag, client’s version of the game is updated
only when the server sends the simulated results back two-times-the-latency
seconds after the client sends its input to the said server

3. rotation input also contributes a lot to the observed error

The ultimate solution to this divergence between server and client is the follow-
ing: sending not only the current input, but also periods of time between frames
to the server in order to eliminate the integration error, and then, only if client’s
position is deemed inappropriate, update it from the server.

3.3 Final product

So, it is finally time to integrate almost all of the material used above and describe
what the developed final application looks like. It is a representation of the classic
Battleship tabletop guessing game.
The game takes place on a flat rectangular horizontal surface, which is detected by
the Google ARCore framework and chosen by the user’s tap. After this, the classical
guessing game takes place in the "real" world.

After the game opens, it displays an already familiar host button and a list of
other hosts that the player can join to. Joining sequence is initiated by tapping on
one of the available host rows in the scrollbox:

Chapter 3. Technical difficulties and solutions 15

FIGURE 3.9: Final joining system on a mobile device

When players join into the world, the host chooses a plane and the game starts:

Chapter 3. Technical difficulties and solutions 16

FIGURE 3.10: Selecting a plane

Chapter 3. Technical difficulties and solutions 17

The code of the final application, developed in the scope of this thesis, can be
found here:
https://github.com/pyskonus/NavalBattle

This project replicates the battlefield grid - a 2-dimensional array of each cell’s
states. Whether the cell contains a healthy ship part, a destroyed one or no ship at
all. "Replicates" means this data must be synchronized between server and client.
To avoid needless traffic usage, cell replication triggers on change only.

Some of the resources included in the project like the UI style and BP_Plane class
have been copied from the official EpicGames AR template. It contains bare mini-
mum of the code and project settings needed to successfully launch and AR project.
This does not imply that I do not understand how the copied parts work. Some
things just do not need to be reimplemented.

3.4 Mesh Slicing

This is a description of a task, or a function of my app, if you will, that I did not
succeed to implement due to lack of understanding of UE API, but certainly plan
to do so in the future updates. Still, a considerable amount of time was spent on
investigation, so I will shortly describe the problem at hand here and in the following
sections.
To begin with, let us define what is a mesh. It is a notion that is commonly used
when describing objects in virtual worlds. A mesh is a digital representation of a
solid object. Meshes are what can be drawn on the screen using 3D graphics and
collided with using physics engines.
To draw a mesh, the software must establish a correspondence between parts of
said mesh and pixels on the screen. This is done by dividing the simulated body
into simplest 2-dimensional shapes - triangles. Even the most up-to-date virtualised
geometry software uses this approach. The more triangles - the more detailed the
picture is, because the main point is that every triangle must be drawn in a single
color. This is imposed on the rendering software by how GPUs work.
So, why did this project need mesh slicing? The thing is, one additional function was

planned to be implemented which is the radar. It had to look like a sector being cut
out of the water bodies shown before and moving rapidly. There are some additional
details about why this function would not be regarded a cheating and why it would
come with a cost to its user, but let us skip this discussion.

3.4.1 Approaches

So, why is slicing a mesh complicated. A mesh, as stated above, is a collection of
triangles, and when it is sliced or deformed, these triangles must be rearranged,
often at runtime. as stated in Schmidt, 2020 , there are several approaches to this
task:

• FDynamicMesh3/FDynamicMeshBuilder

• UStaticMeshComponent

• UProceduralMeshComponent

Chapter 3. Technical difficulties and solutions 18

I also tried using the BSP geometry, provided by Unreal Engine mainly for level
design purposes, but also, at first glance, perfectly suiting my needs since it imple-
ments subtractive geometry. Subtractive geometry is the first notion that comes to
mind when one needs to cut out a part of a rigid body. But, as it turned out, BSP is
not suitable for runtime tasks, so I needed to check the three options above. The one
that suited me the best was BProceduralMeshComponent, since it easily deals with
runtime fast-updating geometry which is exactly what this project needed. But, as it
turned out, it is either quite hard or maybe impossible to use it in AR environment.
Every way to so this that was explored during developing this project resulted in a
failure.

19

Chapter 4

Conclusions and future work

4.1 Conclusions

In conclusion, AR is a suitable technology for multiplayer tasks. While synchronis-
ing players in AR world seems to be a hard task, multiplayer game in AR are possible
and more complex activities like session-based AR communication between people
is worth investigating.
Each of the two mentioned technologies are hard to master on their own, let alone
their combination. But the more work will be put into this investigation, the sooner
the results will emerge.

4.2 Future work

I do plan to learn multiplayer in greater detail, there is a lot of material to study.
On top of this, as mentioned earlier, I still did not succeed to implement proper mesh
slicing functionality in this project. As it turned out, there is much more to mesh
rendering and especially deformation than one can see at first glance. But with the
emergence of technologies like Nanite and Lumen (launched with UE5) more and
more engineers feel the motivation to study the complex field of computer graphics,
me included.

20

Chapter 5

Description of used resources
besides bibliography

The following materials were used mainly as theoretical background and guides to
understanding the framework APIs and structure of the code libraries.

• https://docs.unrealengine.com/5.0/en-US/networking-and-multiplayer-in-unreal-
engine/ - guide to networking and replication in Unreal Engine

• https://partner.steamgames.com/doc/sdk/api and https://docs.unrealengine.com/4.26/en-
US/ProgrammingAndScripting/Online/Steam/ - not used very often, official
documentation on how OSS works. Used mainly for establishing connection
between players.

• https://www.youtube.com/watch?v=qx1c190aGhs - a lecture on mesh draw-
ing pipeline for UE

• https://www.pluralsight.com/blog/film-games/understanding-uvs-love-them-
or-hate-them-theyre-essential-to-know - a tutorial on how UVs work. UV is a
coordinate space that determines how a texture is applied to the mesh surface.
Needed to understand the mesh drawing pipeline.

• https://www.youtube.com/watch?v=1zJM1gKoU14 - an entry-level tutorial
on mesh slicing

• https://cedric-neukirchen.net/Downloads/Compendium/

UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf

- a detailed, but compact compendium on how UE multplayer works

• https://forums.unrealengine.com/ - the official community, used very fre-
quently, stackoverflow for UE developers

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

absolutely not essential, but provides an understanding on how supercomplex meshes
can be effectively drawn at runtime. "Supercomplex" means mentioned triangles of-
ten take 1 pixel of screen space.

21

Bibliography

Alizadeh, Peyman (2015). “Object Distance Measurement Using a Single Camera for
Robotic Applications”. In: None. URL: https://www.mdpi.com/2073-8994/12/2/
324.

Bradley, Milton (June 1967). Battleship(game). https://en.wikipedia.org/wiki/
Battleship_(game).

EpicGames (2022). Actor Replication. https://docs.unrealengine.com/4.26/en-
US/InteractiveExperiences/Networking/Actors/.

Grady, Leo et al. (May 2012). “Random walks for interactive alpha-matting”. In.
Kumar, G Ajay et al. (2020). “LiDAR and Camera Fusion Approach for Object Dis-

tance Estimation in Self-Driving Vehicles”. In: Symmetry 12.2. ISSN: 2073-8994.
DOI: 10.3390/sym12020324. URL: https://www.mdpi.com/2073-8994/12/2/324.

Markopoulos, Evangelos and Mika Luimula (Apr. 2020). “Immersive Safe Oceans
Technology: Developing Virtual Onboard Training Episodes for Maritime Safety”.
In: Future Internet 12, p. 80. DOI: 10.3390/fi12050080.

Neshov, N and Agata Manolova (Jan. 2021). “Objects distance measurement in aug-
mented reality for providing better user experience”. In: IOP Conference Series:
Materials Science and Engineering 1032, p. 012020. DOI: 10.1088/1757-899X/1032/
1/012020.

Parker, Eric and James O’Brien (Jan. 2009). “Real-time deformation and fracture in a
game environment”. In: Computer Animation, Conference Proceedings, pp. 165–175.
DOI: 10.1145/1599470.1599492.

Schmidt, Ryan (Oct. 2020). Mesh Generation and Editing at Runtime in UE4.26. http://
www.gradientspace.com/tutorials/2020/10/23/runtime-mesh-generation-
in-ue426.

VantageMarketResearch (n.d.). AR/VR Estimated Market Size. https://www.globenewswire.
com/en/news- release/2022/04/11/2420021/0/en/105- Mn- Augmented-
Reality-AR-and-Virtual-Reality-VR-Market-is-Expected-to-Grow-at-
a-CAGR-of-over-35-7-During-2022-2028-Vantage-Market-Research.html.
Accessed: 2022-04-11.

https://www.mdpi.com/2073-8994/12/2/324
https://www.mdpi.com/2073-8994/12/2/324
https://en.wikipedia.org/wiki/Battleship_(game)
https://en.wikipedia.org/wiki/Battleship_(game)
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Actors/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Actors/
https://doi.org/10.3390/sym12020324
https://www.mdpi.com/2073-8994/12/2/324
https://doi.org/10.3390/fi12050080
https://doi.org/10.1088/1757-899X/1032/1/012020
https://doi.org/10.1088/1757-899X/1032/1/012020
https://doi.org/10.1145/1599470.1599492
http://www.gradientspace.com/tutorials/2020/10/23/runtime-mesh-generation-in-ue426
http://www.gradientspace.com/tutorials/2020/10/23/runtime-mesh-generation-in-ue426
http://www.gradientspace.com/tutorials/2020/10/23/runtime-mesh-generation-in-ue426
https://www.globenewswire.com/en/news-release/2022/04/11/2420021/0/en/105-Mn-Augmented-Reality-AR-and-Virtual-Reality-VR-Market-is-Expected-to-Grow-at-a-CAGR-of-over-35-7-During-2022-2028-Vantage-Market-Research.html
https://www.globenewswire.com/en/news-release/2022/04/11/2420021/0/en/105-Mn-Augmented-Reality-AR-and-Virtual-Reality-VR-Market-is-Expected-to-Grow-at-a-CAGR-of-over-35-7-During-2022-2028-Vantage-Market-Research.html
https://www.globenewswire.com/en/news-release/2022/04/11/2420021/0/en/105-Mn-Augmented-Reality-AR-and-Virtual-Reality-VR-Market-is-Expected-to-Grow-at-a-CAGR-of-over-35-7-During-2022-2028-Vantage-Market-Research.html
https://www.globenewswire.com/en/news-release/2022/04/11/2420021/0/en/105-Mn-Augmented-Reality-AR-and-Virtual-Reality-VR-Market-is-Expected-to-Grow-at-a-CAGR-of-over-35-7-During-2022-2028-Vantage-Market-Research.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Multiplayer
	Augmented reality
	Procedural mesh slicing
	Purpose of this thesis

	Related works
	Games like the one attached and why handheld AR format was chosen
	Theoretical background
	Multiplayer
	AR
	One camera
	Two cameras
	LiDAR

	Mesh slicing

	Technical difficulties and solutions
	First investigation in the scope of this thesis
	Menu
	UGameInstance

	Second Investigation
	Final product
	Mesh Slicing
	Approaches

	Conclusions and future work
	Conclusions
	Future work

	Description of used resources besides bibliography
	Bibliography

