
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Trip planning based on sequential
recommender systems using textual

representations

Author:
Bohdan YATSKIV

Supervisor:
PhD. Taras FIRMAN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
https://www.linkedin.com/in/bohdan-yatskiv-6bb698195/
https://linkedin.com/in/taras-firman-752684b8
https://apps.ucu.edu.ua/en/
https://apps.ucu.edu.ua/en/

i

Declaration of Authorship
I, Bohdan YATSKIV, declare that this thesis titled, “Trip planning based on sequential
recommender systems using textual representations” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“A year spent in Artificial Intelligence is enough to make one believe in God.”

Alan Perlis

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Trip planning based on sequential recommender systems using textual
representations

by Bohdan YATSKIV

Abstract

Finding interesting places to visit is one of the most common problems while travel-
ling. With the development of review services, a large amount of personalized infor-
mation is produced by the users. We believe that the information that review texts
contain could be used to improve the personalized recommendations. This work fo-
cuses on creating a sequential recommender system that provides recommendations
based on the chronological history of users’ text reviews. The proposed model uses
BERT text embeddings to get review text representations and a Transformer encoder
to learn the context between items in sequence with the multi-attention mechanism.
This approach allows to provide relevant recommendations based on the user’s se-
quential behavior and makes the trip planning more comfortable.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/

iv

Acknowledgements
First, I am extremely grateful to my supervisor Taras Firman for the main idea of
the work and guidance throughout this project. Also, I would like to thank all the
people at UCU who made my four years here a great experience. Finally, I want to
express a huge thank to my family for supporting me throughout all the years of
studying.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Related works 3
2.1 Traditional recommender systems . 3

2.1.1 Content-based filtering . 3
2.1.2 Colaborative filtering . 4

2.2 Sequential recommender systems . 6

3 Technical background 9
3.1 Transformer model . 9

3.1.1 Attention . 9
3.1.2 Transformer model architecture 10

3.2 Text encoding . 11
3.2.1 word2vec . 11
3.2.2 fastText . 12
3.2.3 BERT . 12

4 Proposed method 15
4.1 Dataset . 15

4.1.1 Data preprocessing . 15
4.2 Model . 16

4.2.1 Embedding layer . 16
4.2.2 Transformer block . 17
4.2.3 Linear block . 17

5 Experiments and results 19
5.1 Experimental setup . 19
5.2 Evaluation metrics . 19
5.3 Experiments . 20
5.4 Results . 21

5.4.1 Regression metrics . 21
5.4.2 Top-n metrics . 21

6 Conclusions 22
6.1 Summary . 22
6.2 Future work . 22

Bibliography 23

vi

List of Figures

1.1 Example of same place page on different review services(Google, Tri-
padvisor, Trip.com, Yelp) . 1

2.1 Representation of classification problem and matrix completion prob-
lem. Source: [Aggarwal, 2016] . 5

2.2 Diagram of a user’s purchase sequence. Source: [Cui et al., 2016] . . . 6
2.3 SRS classification. Source: [Wang et al., 2019b] 7
2.4 Example of attention based SRS architecture. Source: [Yakhchi et al.,

2020] . 8

3.1 Transformer model . 10
3.2 "king"-"man"+"woman"="queen". Source[Alammar, 2019] 11
3.3 CBOW and Skip-gram models. Source[Mikolov et al., 2013] 12
3.4 BERT model architecture. Source[Devlin et al., 2019] 13
3.5 BERT embeddings. Source[Devlin et al., 2019] 14

4.1 Model architecture . 16
4.2 Embedding block . 17
4.3 Linear block . 18

vii

List of Tables

2.1 Example of utility matrix . 4

4.1 Sequences dataset sample . 15

5.1 Model configuration . 20
5.2 MAE and RMSE results . 21
5.3 Precision@N and Recall@N results . 21
5.4 NDCG@N results . 21

viii

List of Abbreviations

ML Machine Learning
NN Neural Networks
SRS Sequential Recommender Systems
MF Matrix Factorization
NLP Natural Language Processing
MAE Mean Absolute Error
MSE Mean Squared Error
RMSE Root Mean Squared Error
NDCG Normalized Discounted Cumulative Gain

ix

Dedicated to all Ukraine’s defenders fighting for the freedom of
our country

1

Chapter 1

Introduction

The Covid-19 pandemic has changed our lives in many ways. In 2020 massive
tourism stopped almost completely. However, now when borders are open again,
and most countries are loosening covid restrictions, travel-related problems become
relevant again.

If you google the list of the most common questions during traveling, the route
planning, and interesting spots to visit exploration will definitely be there. When
you visit a new city, all the guidebooks usually propose quite the same popular
routes and common places which are not based on your preferences. There are also
plenty of services that help in seeking places, the most popular are Google, Tripad-
visor, Yelp, Trip.com. They all provide reviews and “5 stars” ratings for businesses
all around the world. For example, we can take a look at how the famous ice cream
shop Berthillon in Paris, France looks like on all of these services.

FIGURE 1.1: Example of same place page on different review ser-
vices(Google, Tripadvisor, Trip.com, Yelp)

Chapter 1. Introduction 2

Although these review services can be helpful in getting information and gen-
eral impressions about the place, they do not totally solve the problem of finding
interesting places interesting for you. The 5-star ratings that review services provide
are way too general and, as well as guidebooks, do not take into consideration your
personal tastes and opinions. In addition, the ratings that users usually provide are
quite polar. The most popular ratings among the users are 1 and 5. So this system
of ratings is helpful in filtering places with principally negative reviews. But when
the customer wants to compare some places with a reasonable number of positive
reviews, the stars are not so representative in that case. Popular places will probably
have around 4.5 stars, so it’s often hard to compare such places based only on the
rating. However, the 5-star rating is still the factor that matters the most to the con-
sumers [Pitman, 2022]. Another interesting insight says that a bigger rating does not
always mean better, and a perfect five score seems to be suspicious for most users
[Collinger and Malthouse, 2015].

Hence there are plenty of problems that make the common rating system not per-
fect. Consumers will still need to check not only the rating but also read a couple of
reviews and descriptions of the business and spend some amount of time discover-
ing each place until they find one they like. All these problems, in addition with the
idea of automatizing the process of getting place recommendations, are the reasons
why we think that ML can be applicable and effective in this field. The task is to
find some patterns in the review texts and star ratings. Here is where recommenda-
tion systems come in. Our goal would be to create a solution based on a sequential
recommender system that learns from thousands of users’ experiences and their text
reviews and builds a unique sequence-route in each city, taking into consideration
your previous history and preferences.

3

Chapter 2

Related works

2.1 Traditional recommender systems

By the definition, a recommender system is a set of algorithms that generates a
personalized, optimized experience for a customer selected from discrete options
[Burke, Felfernig, and Göker, 2011]. As the amount of information is increasing
drastically and the problem of content filtering has become relevant as never. Rec-
ommender systems have become common in recent years and have a large range of
usage on various websites such as streaming services or e-commerce services. The
most common example is when a list of similar or related items is displayed under
the current item you are exploring on some website. These lists are the result of
recommender systems’ work, and they try to follow the psychology that if a user
chooses product A, he will choose product B.

There are two main paradigms for building classical recommendation systems:
collaborative filtering and content-based filtering.

2.1.1 Content-based filtering

Content-based filtering focuses on similarities between items that users liked in the
past. Usually, content-based systems take into consideration some metadata such
as the description of the local business, the genre of the movie, the category of the
product, e.g. These features are taken as input, and the output is user rating. Then
this data is used to create a classification or regression model, which is specific to
the current user. This model is used to predict whether the user will like some new
items for which his ratings or buying behavior are unknown [Aggarwal, 2016].

This method has some advantages. Content-based filtering approach does not
require other users’ data for recommendations. It also works well for new or un-
popular items as it does not require a lot of ratings for this item but finds similarities
with other items the user has liked.

However, one of the main issues in the content-based approach is the quality of
the features. The items that are going to be recommended the need to be described
very well in order to receive some meaningful learning of user preferences. More-
over, it is supposed that every object is described at the same level, which is often not
true as some items have missing features or are described in less detail than others
[Burke, Felfernig, and Göker, 2011]. Another problem is that if the user is new and
has no previous rating history, this approach is not able to work, so it is the reason
why some apps often ask you to choose at least a couple of categories or themes you
are interested in right after the registration.

Also, here comes the problem of overspecialization as if users do not have any
ratings for items of some category, these categories will never be recommended even

Chapter 2. Related works 4

if the user can actually like them. So in this way, the user can always be kept in his
own limited content profile and never be recommended anything outside of it.

2.1.2 Colaborative filtering

Instead of using items or user features, collaborative filtering analyzes relationships
between users and their rating history to create some user-user, user-item, or item-
item associations. The users’ ratings data can be represented as a utility matrix with
one axis being users and one axis being items.

User Item1 Item2 Item3 Item4 Item5 Item6

A 2 3 3 5
B 5
C 4 3 5
D 1 3 4 2 5
E 5 4

TABLE 2.1: Example of utility matrix

There are also different methods inside the collaborative filtering approach.
Memory-based methods aim to find the closest neighbors, which means the

most similar users or items. The difference from the model-based technique is that
memory-based methods do not use any parametric machine learning algorithms and
are based only on mathematical operations or transformations, including cosine sim-
ilarity, Pearson correlation, or non-parametric algorithms such as KNN. Memory-
based methods can also be divided into two categories: user-based and item-based.

• In user-based, similar users who have similar ratings for similar items are
found for the target user. Then to predict the rating for an item unrated by
the target user, a weighted average of the ratings of some k most similar users
is computed. For example, in Table 2.1 for user A the system will define users
C and D as the most similar as they rate Item3 and Item6 close to user A. Then,
the prediction for user A rating for Item4 can be calculated based on users C
and D ratings.

• In contrast, the item-based approach finds not the most similar users but the
most similar items. Then a rating of an item can be predicted based on the
ratings of a set of some k closest items. Different similarity functions such
as adjusted cosine similarity or Pearson correlation are used to compare how
similar the columns of the utility matrix are [Sarwar et al., 2001]. For example,
in Table 2.1, Item2 and Item3 are the closest, so Item3 rating can be used to
predict Item2 rating for user E.

The main problem of memory-based techniques is the bad scalability. When the
amount of users is becoming big enough, the utility matrix is growing significantly,
and the system requires loading a large amount of in-line memory. Then computa-
tional power becomes a bottleneck, and performance goes down [Do, Nguyen, and
Nguyen, 2010].

Model-based methods solve this problem by using supervised or unsupervised
machine learning algorithms to predict users’ ratings. There are plenty of approaches
such as decision trees, rule-based methods, Bayes classifiers, regression models, sup-
port vector machines, and neural networks. Almost any of the traditional machine

Chapter 2. Related works 5

learning methods can be generalized and optimized for the collaborative filtering
problem as the classical machine learning regression and classification problems are
actually just more specific cases of matrix completion problem, which is actually the
same as what collaborative filtering is[Aggarwal, 2016].

FIGURE 2.1: Representation of classification problem and matrix
completion problem. Source: [Aggarwal, 2016]

For example, we can present the classical classification problem as a matrix where
the first columns are input features, and the label is the last column with some empty
values. The difference is that data is not structured, and there is no difference be-
tween features and labels or training and test sets. So, collaborative filtering can
be interpreted as a more general variant of well-known machine learning problems,
which means classical methods can be adapted and also used to solve the matrix
completion problem.

The most successful and popular realization of the model-based approach is us-
ing the matrix factorization (MF) method. The Basic MF method gives a charac-
teristic for both items and users by vectors of factors derived from rating patterns.
Then if the user and item have high correspondence between their factors, the item
is recommended [Koren, Bell, and Volinsky, 2009].

It aims to discover some k latent features (factors). MF maps users and into same
latent factor space R in which each item i is corresponding to some vector qi ∈ R

and each user u corresponding to vector pu ∈ R. Then for some user u vector pu
represents association between the user and latent features. Same for some item i
vector qi shows the item-factors association. Then interaction between user u and
item i can be calculated as a dot product of corresponding vectors pu and qi:

r̂ij = qT
i pj =

k

∑
k=1

qik pkj

The task is to find the mapping of each user and item to corresponding vectors p
and q. The most popular approach to achieve this is gradient descent which aims to
minimize the following error - squared difference between real rij and predicted r̂ij

Chapter 2. Related works 6

e2 = (rij − r̂ij)
2 = (rij −

k

∑
k=1

qik pkj)
2

2.2 Sequential recommender systems

With the development of technologies, recommender systems are also developing,
becoming more complex, and using new approaches. Although collaborative fil-
tering methods show themselves extremely effective in the recommendation, they
work with users, items, and ratings as with a large static collection. Hence, they are
good in the general preferences of users, but they do not take into account the order
of user interactions. As a result, they are not able to figure out some recent prefer-
ences or short-time behavior. People’s tastes and preferences in some areas are not
always static and can change over time. Recent researches regarding recommender
systems usually focus on working with sequential data[Xu, Liu, and Xu, 2019]. Sys-
tems that try to predict the next item based on a sequence of previous interactions
are the most popular nowadays. You could see them on the majority of modern
e-commerce, streaming services, and other websites. Basically, any website with a
catalogue of some entities is the place where sequential recommendations can be
used. They can be session-based[Wang et al., 2019a] meaning recommending some
items based only on the current web session, next-basket[Li et al., 2021] meaning, for
example, if you bought a phone, you would probably buy some phone accessories,
or next-item[Hsu et al., 2016] that for example, recommend you next video or song.

FIGURE 2.2: Diagram of a user’s purchase sequence. Source: [Cui et
al., 2016]

The figure above shows an example of a sequential recommendation application.
The goal is to predict an item the user would buy in the near future based on the
sequence of items the user bought at a different time in the past. Text description,
images, and other additional features associated with the items can be included to
build a sequential recommendation model.

Chapter 2. Related works 7

There are different approaches to the sequential recommendation. In general
sequential recommender systems(SRS) can be divided into several categories.

• Traditional sequence models represent the simplest solutions, such as sequen-
tial pattern mining and Markov chain models. The implementation of these is
relatively simple, but there is a number of drawbacks, such as finding some
false patterns in case of pattern mining or disability to work with long-term
sequences in case of Markov chain models.

• Latent representation models use latent features space. They develop the
ideas of collaborative filtering MF and adapt them for the sequential recom-
mendation.

• Deep neural network models. In the last years, neural networks(NN) have
proven their strength in working with sequential data. Recent progress in nat-
ural language processing(NLP), computer vision, and image processing. The
development of such NN models as RNN, LSTM, Attention models, and CNN
make their usage in SRS the most advanced and popular choice.

FIGURE 2.3: SRS classification. Source: [Wang et al., 2019b]

As Google paper[Vaswani et al., 2017] introducing the Transformer model(which
will be described in the next section) made a huge impact in NLP and machine trans-
lation, attention-based models have become a new trend in the sequential recom-
mendation. The main advantage of attention models is that they are able to give
more importance to relevant interactions and less to irrelevant ones [Wang et al.,
2019b].

Chapter 2. Related works 8

FIGURE 2.4: Example of attention based SRS architecture. Source:
[Yakhchi et al., 2020]

The common SRS architecture using attention networks consists of an embed-
ding block where the encodings of features and positional embeddings are made, an
attention block that uses the attention mechanism and works with sequential data,
and a fully-connected block to receive an output. On the Figure 2.4 an example
of attention-based SRS architecture is provided. it combines both long-term prefer-
ences and short-term behavior sequences and contains two attention networks for
each of these types of inputs, respectively. The user embedding is also included and
passed directly to the fully-connected layer to make recommendations more person-
alized.

9

Chapter 3

Technical background

3.1 Transformer model

As it was said before, the Transformer model introduced by [Vaswani et al., 2017]
has changed NLP a lot. The main problem of RNN and LSTM is that for sequences
that are long enough, the context of an item that is far away from the current is lost.
Also, the fact that in these types of models, the sequence is being processed item by
item makes parallelization impossible, so the process of their training is quite slow.

3.1.1 Attention

The problem of losing context is solved by using the attention mechanism intro-
duced by [Bahdanau, Cho, and Bengio, 2016]. Sequence to sequence models usually
contain an encoder and decoder, which work with fixed-length vectors. In non-
attention models, each sequence element is processed separately, and the decoder
processes the final hidden state provided by the encoder. Here the problem with
handling long sequences of data occurs because the longer distance between some
relevant information and the current step is, the more probability that it would be
rewritten by the next steps in the chain becomes. Basically, attention can be inter-
preted as an interface connecting the encoder and decoder, which uses a weighted
sum of all of the hidden states provided by the encoder and passes it to the decoder.
By doing this, the decoder can focus on relevant parts of the sequence.

The process of deciding how much attention should decoder pay to each se-
quence element and calculation of the weighted sum is done in the following way:

ci =
T

∑
j=1

αijhj

a context vector ci is computed as a sum, where T is number of hidden states means
length of sequence, hj is jth hidden state, and αi j is attention weight which is cal-
culated by applying softmax operation to alignment score between input at j and
output at i.

αij = so f tmax(eij)

eij is computed as an output of feed forward neural network denoted as function a
where si−1 is previous output of the decoder and hj hidden state

eij = a(si−1, hj)

Chapter 3. Technical background 10

3.1.2 Transformer model architecture

,

FIGURE 3.1: Transformer model

Attention solves the problem of losing context, but not parallelization. Trans-
former with its architecture solves it too.

The Transformer consists of stacks of 6 encoders and decoders. Each encoder
consists of self-attention and feed-forward NN. Decoders consist of self-attention,
encoder-decoder attention block, and feed-forward NN. The main point is that each
item of the sequence is processed simultaneously, which makes parallelism possible.
The self-attention mechanism works by computing attention for all items of the same
sequence to encode the sequence. Basically, it helps to look at another sequence of
items when encoding a single item to take context into consideration.

The inputs embedding received on first step is transformed into 3 vectors - queries,
keys and values of dimension d. They are then stacked to matrices Q, K and V and
attention is computed as:

Attention(Q, K, V) = so f rmax(
QKT
√

dk
)V

The Transformer also uses a Multi-head attention mechanism that linearly projects
the queries, keys, and values to h dimensions using different learned projections.
The attention function is performed in parallel, and then outputs of each attention
block are concatenated to receive one result [Vaswani et al., 2017].

Self-attention blocks in the encoder take the Q, K, and V inputs as the outputs
from the layer below. In the decoder, the self-attention layer is called masked multi-
head attention because it allows using only earlier positions in the output sequence.
It achieves it by setting future positions to −in f (masking them). The encoder-decoder

Chapter 3. Technical background 11

attention is used to allow the decoder to focus on different parts of the encoder’s out-
puts for each of its own outputs. It works the same as multi-head self-attention but
takes Q from the previous decoder layer, while K and V ate taken from the encoders
stack output.

3.2 Text encoding

As our system is using review texts as the input feature, the problem of representing
texts as numerical values appears. In this section, we review the theory and existing
approaches for natural language processing and word embeddings.

Word embeddings are vectors representation of the words. The length of the
vector is the number of dimensions in which each word is encoded. Then these
embeddings can be compared with cosine similarity to say how similar the words
are. Word embedding is one of the key concepts of NLP.

By adding or subtracting the embeddings, interesting results can be achieved,
so some logic can be built on top of this. The most famous example is "king"-
"man"+"woman"="queen"

,

FIGURE 3.2: "king"-"man"+"woman"="queen". Source[Alammar,
2019]

In the Figure 3.2, we can see embedding vectors where numerical values are
encoded by the color for visualization. The result of subtracting the embedding of
the word "man" from the word "king" and adding "woman" after is very close to the
word "queen" embedding.

3.2.1 word2vec

The word embeddings are created by looking at neighboring words in the text. The
mechanic of language model training creates a sliding window of fixed size that
slides along the text data from the training dataset. This sliding window generates
a training sample. For example, if the size of the window is n, then the first n − 1
words can be used as input features and the last one as an output, then this training
set is used to train a NN.

Word2vec introduced by [Mikolov et al., 2013] proposes two new model archi-
tectures. First of all, word2vec takes into consideration not only previous words but
also the following. The first model is called Continuous Bag of Words(CBOW) and
adds not only n previous words but also n following to the train set inputs. The
second proposed model works in an opposite way. It aims to predict the previous
and following neighboring words based on the current word; it is called Skip-gram.

Chapter 3. Technical background 12

,

FIGURE 3.3: CBOW and Skip-gram models. Source[Mikolov et al.,
2013]

Word2vec is also introducing a mechanism called negative sampling. The main
idea is to reduce computation complexity by changing the problem from predicting
the next word to the classification problem of whether two words are neighbors
or not. It simplifies the task to a logistic regression which is a way less complex
problem. However, in that case, if all the train examples are positive, the model can
achieve 100% accuracy by always returning 1. To avoid this, a negative sample of
not neighboring words is randomly chosen from the global words vocabulary and
added to the train set [Alammar, 2019].

3.2.2 fastText

FastText introduced by [Bojanowski et al., 2017] develops the ideas of word2vec and
takes into consideration subword information. It is based on the Skip-gram model,
but each word is represented as a bag of character n-grams. It adds special tokens
< and > meaning the beginning and the ending of the word. For example, for the
word "queen" and n=3, the following sequences will be added to the vocabulary:
<qu, que, uee, een, en> and the full-word sequence <queen> itself.

In such system of n-grams where G is set of n-grams for word w each word can
be represented as sum of vector representation zg of its n-grams,

s(w, c) = ∑
g∈G

zT
g vc

This helps the embeddings understand suffixes, prefixes, and, respectively, dif-
ferent forms of the same words and deal with out of vocabulary words.

3.2.3 BERT

The introducing of Bidirectional Encoder Representations from Transformers(BERT)
by [Devlin et al., 2019] was named as the beginning of a new era in NLP. BERT
model showed itself extremely powerful in NLP tasks, broke several records, and
still remains the leading model in terms of text representation.

BERT’s key point consists in the application of the Transformer model to lan-
guage modelling. Previous approaches were handling text sequences either from

Chapter 3. Technical background 13

left to right or trying to combine left-to-right and right-to-left. The bidirectional ap-
proach allows making the context significantly deeper.

BERT uses Transformer to learn how words or sub-words contextually relate.
As it was described in the previous section, the base Transformer model consists of
encoder and decoder blocks, but the task of BERT is only to encode text to some
representation, so only the encoder block of the Transformer is used. As the Trans-
former processes all the sequences at the same time and not word by word, so does
BERT, simplified it is just a stack of Transformer encoders.

BERT uses two training strategies:

• Masked Language Model(MLM) takes a sentence with random words re-
placed with a [MASK] token. The goal is to fill that blanks and output the
masked words. This helps BERT to understand the context between words in
the sentence.

• Next Sentence Prediction(NSP) is a kind of binary classification problem. Two
sentences are passed as the inputs, and the model predicts if sentence B follows
sentence A. This mechanism helps BERT to understand the context between
sentences which, together with MLM, means it can understand the language
well.

,

FIGURE 3.4: BERT model architecture. Source[Devlin et al., 2019]

BERT is doing both these strategies simultaneously processsing two sentences.
The embedding layer described in Figure 3.5 consists of the positional, sentence,
and token embeddings. Positional embedding encodes the position of a word in
the sentence, sentence embedding adds sentence A or B(as there are two sentences
processed simultaneously), and token embeddings are the vocabulary ids for each
of the tokens.

Chapter 3. Technical background 14

FIGURE 3.5: BERT embeddings. Source[Devlin et al., 2019]

Then received embeddings are processed by the Transformer layer, and after
classification and normalization layers, the output consists of C, which determines
whether sentence B is following sentence A, and the same as in input number of
TN+M words including predicted masked ones.

15

Chapter 4

Proposed method

4.1 Dataset

In our solution, we use Yelp open dataset which contains around 7 million reviews
from 2 million users for 150k businesses in 11 USA metropolitan areas.

4.1.1 Data preprocessing

The dataset consists of a file containing reviews of businesses and a file with the
information about businesses themselves. The first step was to filter reviews only
for places from one city, as our trip planner should give recommendations inside the
chosen city. Philadelphia was chosen as the city with the most data. But the solution
can be easily adapted for another city or dataset.

The dataset contained reviews not only in English but also some number of re-
views in other languages. In order not to use multilingual text processing models,
we decided to filter reviews only in English. To achieve this, pre-trained language
identification model by fastText presented in [Joulin et al., 2016a] and [Joulin et al.,
2016b] was used. Some outliers were also filtered, and category features were ex-
tracted from the places’ information files.

After that process of creating the user behavior sequences was done. The se-
quence length was chosen as 8. The reviews were grouped by user and sorted by the
date. For users that have more than eight reviews, several sequences were generated
using a similar sliding window technique that is used in creating word embeddings.
Users with less than reviews that chosen sequence length were filtered out.

The final sequences dataset for training is presented in a following way:

user id place ids review texts ratings

0 [4450, 9672, 1981... ["Frequented this spot quite... [3.0, 4.0, 2.0, 4.0...
1 [5773, 14427, 2293... ["I love Village Whiskey... [4.0, 3.0, 5.0, 5.0...
...

TABLE 4.1: Sequences dataset sample

https://www.yelp.com/dataset
https://fasttext.cc/docs/en/language-identification.html

Chapter 4. Proposed method 16

4.2 Model

The SRS architecture of our solution was inspired by the BST model presented by
[Chen et al., 2019].

The model can be divided into three blocks. The embedding block encodes user
ID and items sequence features into embedding vectors. Then the behavior sequence
embeddings are passed to the Transformer block to learning some relations and con-
texts between the items in the sequence. Finally, outputs received from the Trans-
former layer are concatenated with user ID embedding, and the resulting vector is
passed as the input to the fully-connected block, which consists of 3 linear layers
and uses MSE loss to solve the regression problem and outputs the predicted user
rating for the next item in the sequence.

FIGURE 4.1: Model architecture

4.2.1 Embedding layer

The embedding layer is the most important part in our case, as it defines the fixed-
size vector representation of sequential data, and actually, the feature engineering
process happens here.

From the user features user ID is taken and embedding of vector size of square
root of max user ID + 1 is created:

dim(huser) =
√

max(userID) + 1 (4.1)

The items in the sequence are embedded in a more complex way. The review
texts are encoded using pre-trained BERT language model presented by [Wang et
al., 2020]. The SentenceTransformers Python framework was used as an engine.

https://huggingface.co/microsoft/MiniLM-L12-H384-uncased?text=I+like+you.+I+love+you
https://www.sbert.net/index.html

Chapter 4. Proposed method 17

FIGURE 4.2: Embedding block

User and place IDs are transformed into vectors of lengths 140 and 121, respec-
tively. Place ID embedding is concatenated with category one-hot encoded vector.
Then embedded review text is concatenated with the resulting place features vector,
and the received result is multiplied by the rating. These procedures are performed
on N-dimensional matrices where N is sequence length(in the basic case is equal to
8), so doing this, we receive N vectors of length 530 which are then passed to the
Transformer layer.

4.2.2 Transformer block

The Transformer block consists of the Transformer encoder that encodes the inputs
using multi-attention mechanism. The parameter n-heads is by default set to 5 defin-
ing the number of multi-attention heads.

The N-1 input vectors and the target vector are processed by the transformer
(where N is the sequence length). Then results are concatenated and adding the user
ID embedding vector passed through the linear layer.

4.2.3 Linear block

The linear block consists of a fully connected network that takes the Transformer
outputs and predicts the rating for the next item in sequence. The network itself
consists of 3 hidden layers. Each of the layers consists of the Dense layer, Batch
Normalization layer, Leaky ReLU activation layer and Dropout layer of parameter
d (by default is equal to 0.2). The advantage of Leaky ReLU is fixes "dying ReLU"
problem which is common in case of basic ReLU function. The loss function is mean
squared error(MSE)

Chapter 4. Proposed method 18

L(y, ŷ) =
1
N

N

∑
i=0

(y − ŷi)
2

The linear block schema looks in following way:

FIGURE 4.3: Linear block

19

Chapter 5

Experiments and results

5.1 Experimental setup

We used Python 3.7 and PyTorch Lightning library[Falcon, 2019], which is a high-
level interface for popular PyTorch[Paszke et al., 2019] deep learning framework, in
our solution.

In addition, following libraries were used:

• fastText [Bojanowski et al., 2016] - for language detection

• sentence-transformers [Reimers and Gurevych, 2019] - for creating the embed-
dings from the review texts

with some common Python libraries:

• pandas - for data processing

• numpy - for data processing

• tensorboard - for logging and metric monitoring

The model was trained using CUDA on NVIDIA GeForce GTX 1050Ti videocard.
Also, it was discovered that processing the text during the training process is not

good in terms of performance because the same review texts can appear in multiple
sequences. As a result, they are encoded multiple times, which makes the perfor-
mance of the model poor. To avoid this, the text processing was done before the
training, and all 887 159 review texts from the dataset were encoded in advance, and
the resulting dataframe was saved in a .pkl file. The training data was then changed,
and instead of review texts, as in table 4.1 the lists contain review IDs. Then the en-
coded review text can be retrieved by ID from the loaded processed texts dataframe.

5.2 Evaluation metrics

The process of evaluation of recommendation algorithms is complicated. In compar-
ison with some other ML tasks, lack of some effective benchmarks for evaluation of
recommendation systems is one of the problems the community is facing. Usually,
an empirical study is conducted, and the model is compared to the state-of-the-art
and several datasets and metrics are used.

As our work is aimed to trip recommendations and we use only the Yelp dataset,
we compare our model with some other recommender systems evaluated on the
Yelp dataset.

As the metrics for evaluation of regression and rating prediction we used MAE
and RMSE.

Chapter 5. Experiments and results 20

However, goal of the recommender systems themselves is actually not to pre-
dict the rating but to recommend some items to the user. So in evaluation we also
calculated widely used performance ratings for top-N recommendations:

Recall@N
Recall at N is the proportion of relevant items found in the top-N recommenda-

tions

recall@N =
of relevant items in N
total # of relevant items

Precision@N
Precision at N is the proportion of recommended items in the top-N recommen-

dations that are relevant

precision@N =
of relevant items in N

N
NDCG@N
We consider the item rating as relevance score. Then Cumulative Gain(CG) is the

sum of all the relevance scores in N recommended items. To take into consideration
the order of recommendations Discounted Cumulative Gain(DCG) is calculated by
dividing relevance with the log of the position in recommended sequence.

DCG =
N

∑
i=1

ratingi

log2(i + 1)

Normalized Discounted Cumulative Gain(NDCG) is computed as the ratio of DCG
of recommendation to DCG of ideal possible order(iDCG).

NDCG =
DCG
iDCG

To evaluate our model using these metrics for each user we take all existing se-
quences from the test dataset, and then predict the ratings for all items user has
ratings for. We define rating 3.5 as a threshhold of relevant/irrelevant recommenda-
tion. Then the above metrics are calculated and then average is calclulated among
all users.

5.3 Experiments

We run the training with different sequence length - 4 and 8. After some model pa-
rameters experiments we got the best result using sequence length 8 and following
model configuration:

num of hidden layers 3
linear block dropout 0.2
Transformer d-model 530
Transformer n-heads 5
Transformer dropout 0.2

batch size 64
train epoch num 50

TABLE 5.1: Model configuration

Chapter 5. Experiments and results 21

5.4 Results

5.4.1 Regression metrics

With the selected model configuration we achieved MAE=0.7632 and RMSE=0.9749
We compared our results with a couple of researches that present recommender

systems and are evaluated on the Yelp dataset [Kaluza, 2016]. Also CNN based
solution (DeepCoNN) that uses review texts was compared[Zheng, Noroozi, and
Yu, 2017].

MF SVD SVD++ NMF DeepCoNN BiPartite Our solution
RMSE 0.9807 1.0913 1.0952 1.1700 1.441 1.0863 0.9749
MAE - 0.8568 0.8583 0.9033 - 0.6663 0.7632

TABLE 5.2: MAE and RMSE results

As we can see, our solution shows itself as the best RMSE result and second best
in terms of MAE, where Weighted BiPartite Graph Projection [Sawant, 2013] shows
significantly better results than all the other solutions.

5.4.2 Top-n metrics

We got average precision@10=0.8079 and precision@20=0.8017, which means that,
on average, around 80% of items we recommend are relevant for users.

Precision@1 0.8117
Precision@5 0.8110

Precision@10 0.8079
Precision@20 0.8017

Recall@1 0.0555
Recall@5 0.1461
Recall@10 0.1968
Recall@20 0.2549

TABLE 5.3: Precision@N and Recall@N results

From the recall metrics, we can see that we recommend almost 20% of all relevant
items in the first ten items of our recommended set.

NDCG@5 0.4303
NDCG@10 0.4281
NDCG@20 0.4275

TABLE 5.4: NDCG@N results

NDCG showed very good performance. However, to compare it with other so-
lutions some further studies should be done because of the specifics of our testing
experiment.

22

Chapter 6

Conclusions

6.1 Summary

In this work, we presented a sequential recommendation system for trip planning
using user reviews textual information. We took the common architecture of attention-
based SRS as a base and adapted it for working with text by extending the embed-
ding layer with review texts embedding. The model demonstrated good perfor-
mance in comparison with other approaches to the recommendation. But there is
still a place for improvements to be made in order to approach to state of the art.

6.2 Future work

Our goal in the future would be to hold more experiments and try to apply some
improvements in each block of the model. As our computational resources were
not of the highest level, we could not afford some experiments in this work. First,
the bigger-size text embedding model can be used to get better representations with
bigger word embeddings vectors. With a faster process of training, a bigger number
of epochs can be chosen, and more experiments with model optimizers can be done,
as it seems like there is still a place to improve. In addition, the task can be expanded
beyond the problem of travel recommendations, and the model can be adapted for
solving other tasks based on text reviews. Some more datasets can be used. As a
result, a more detailed evaluation and comparison with related works can be made.

23

Bibliography

Aggarwal, Charu C. (2016). Recommender Systems: The Textbook. Springer Interna-
tional Publishing. ISBN: 978-3-319-29659-3. DOI: 10.1007/978-3-319-29659-
3.

Alammar, Jay (2019). The Illustrated Word2vec. URL: https://jalammar.github.io/
illustrated-word2vec/.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2016). Neural Machine
Translation by Jointly Learning to Align and Translate. arXiv: 1409.0473 [cs.CL].

Bojanowski, Piotr et al. (2016). “Enriching Word Vectors with Subword Information”.
In: arXiv preprint arXiv:1607.04606.

— (2017). Enriching Word Vectors with Subword Information. arXiv: 1607.04606 [cs.CL].
Burke, Robin, Alexander Felfernig, and Mehmet H. Göker (2011). “Recommender

Systems: An Overview”. In: AI Magazine 32.3, pp. 13–18. DOI: https://doi.org/
10.1609/aimag.v32i3.2361.

Chen, Qiwei et al. (2019). Behavior Sequence Transformer for E-commerce Recommenda-
tion in Alibaba. DOI: 10.48550/ARXIV.1905.06874. URL: https://arxiv.org/
abs/1905.06874.

Collinger, Tom and Edward C Malthouse (2015). From Reviews to Revenue Volume
1: How Star Ratings and Review Content Influence Purchase. URL: https://www.
powerreviews.com/wp-content/uploads/2019/02/From-Reviews-to-Revenue-
Northwestern-Report-Volume-1.pdf.

Cui, Qiang et al. (2016). MV-RNN: A Multi-View Recurrent Neural Network for Sequen-
tial Recommendation. DOI: 10.48550/ARXIV.1611.06668. URL: https://arxiv.
org/abs/1611.06668.

Devlin, Jacob et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv: 1810.04805 [cs.CL].

Do, Minh-Phung, Dung Nguyen, and Loc Nguyen (Aug. 2010). “Model-based ap-
proach for Collaborative Filtering”. In.

Falcon, William (2019). PyTorch Lightning: The lightweight PyTorch wrapper for high-
performance AI research. Scale your models, not the boilerplate. DOI: 10.5281/zenodo.
3828935. URL: https://www.pytorchlightning.ai.

Hsu, Kai-Chun et al. (2016). Neural Network Based Next-Song Recommendation. DOI:
10.48550/ARXIV.1606.07722. URL: https://arxiv.org/abs/1606.07722.

Joulin, Armand et al. (2016a). “Bag of Tricks for Efficient Text Classification”. In:
arXiv preprint arXiv:1607.01759.

Joulin, Armand et al. (2016b). “FastText.zip: Compressing text classification models”.
In: arXiv preprint arXiv:1612.03651.

Kaluza, Clara De Paolis (2016). “Recommender System for Yelp Dataset CS 6220
Data Mining Northeastern University”. In.

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix Factorization Tech-
niques for Recommender Systems”. In: Computer 42.8, pp. 30–37. DOI: 10.1109/
MC.2009.263.

Li, Ming et al. (2021). A Next Basket Recommendation Reality Check. DOI: 10.48550/
ARXIV.2109.14233. URL: https://arxiv.org/abs/2109.14233.

https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1607.04606
https://doi.org/https://doi.org/10.1609/aimag.v32i3.2361
https://doi.org/https://doi.org/10.1609/aimag.v32i3.2361
https://doi.org/10.48550/ARXIV.1905.06874
https://arxiv.org/abs/1905.06874
https://arxiv.org/abs/1905.06874
https://www.powerreviews.com/wp-content/uploads/2019/02/From-Reviews-to-Revenue-Northwestern-Report-Volume-1.pdf
https://www.powerreviews.com/wp-content/uploads/2019/02/From-Reviews-to-Revenue-Northwestern-Report-Volume-1.pdf
https://www.powerreviews.com/wp-content/uploads/2019/02/From-Reviews-to-Revenue-Northwestern-Report-Volume-1.pdf
https://doi.org/10.48550/ARXIV.1611.06668
https://arxiv.org/abs/1611.06668
https://arxiv.org/abs/1611.06668
https://arxiv.org/abs/1810.04805
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://www.pytorchlightning.ai
https://doi.org/10.48550/ARXIV.1606.07722
https://arxiv.org/abs/1606.07722
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.48550/ARXIV.2109.14233
https://doi.org/10.48550/ARXIV.2109.14233
https://arxiv.org/abs/2109.14233

Bibliography 24

Mikolov, Tomas et al. (2013). Efficient Estimation of Word Representations in Vector
Space. DOI: 10.48550/ARXIV.1301.3781. URL: https://arxiv.org/abs/1301.
3781.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach et al. Curran Associates, Inc., pp. 8024–8035. URL: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

Pitman, Jamie (2022). Local Consumer Review Survey 2022. URL: https://www.brightlocal.
com/research/local-consumer-review-survey/#.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics. URL: https://arxiv.org/abs/1908.10084.

Sarwar, Badrul et al. (2001). “Item-based collaborative filtering recommendation al-
gorithms”. In: Proceedings of the 10th international conference on World Wide Web,
pp. 285–295.

Sawant, Sumedh (2013). “Collaborative Filtering using Weighted BiPartite Graph
Projection”. In.

Vaswani, Ashish et al. (2017). Attention Is All You Need. DOI: 10.48550/ARXIV.1706.
03762. URL: https://arxiv.org/abs/1706.03762.

Wang, Shoujin et al. (2019a). A Survey on Session-based Recommender Systems. DOI:
10.48550/ARXIV.1902.04864. URL: https://arxiv.org/abs/1902.04864.

Wang, Shoujin et al. (July 2019b). “Sequential Recommender Systems: Challenges,
Progress and Prospects”. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, pp. 6332–6338. DOI: 10.24963/ijcai.2019/
883. URL: https://doi.org/10.24963/ijcai.2019/883.

Wang, Wenhui et al. (2020). MiniLM: Deep Self-Attention Distillation for Task-Agnostic
Compression of Pre-Trained Transformers. arXiv: 2002.10957 [cs.CL].

Xu, Mingming, Fangai Liu, and Weizhi Xu (2019). “A Survey on Sequential Recom-
mendation”. In: 2019 6th International Conference on Information Science and Control
Engineering (ICISCE), pp. 106–111. DOI: 10.1109/ICISCE48695.2019.00031.

Yakhchi, Shahpar et al. (2020). “Towards a Deep Attention-Based Sequential Recom-
mender System”. In: IEEE Access 8, pp. 178073–178084. DOI: 10.1109/ACCESS.
2020.3004656.

Zheng, Lei, Vahid Noroozi, and Philip S. Yu (2017). Joint Deep Modeling of Users and
Items Using Reviews for Recommendation. DOI: 10.48550/ARXIV.1701.04783. URL:
https://arxiv.org/abs/1701.04783.

https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.brightlocal.com/research/local-consumer-review-survey/#
https://www.brightlocal.com/research/local-consumer-review-survey/#
https://arxiv.org/abs/1908.10084
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1902.04864
https://arxiv.org/abs/1902.04864
https://doi.org/10.24963/ijcai.2019/883
https://doi.org/10.24963/ijcai.2019/883
https://doi.org/10.24963/ijcai.2019/883
https://arxiv.org/abs/2002.10957
https://doi.org/10.1109/ICISCE48695.2019.00031
https://doi.org/10.1109/ACCESS.2020.3004656
https://doi.org/10.1109/ACCESS.2020.3004656
https://doi.org/10.48550/ARXIV.1701.04783
https://arxiv.org/abs/1701.04783

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related works
	Traditional recommender systems
	Content-based filtering
	Colaborative filtering

	Sequential recommender systems

	Technical background
	Transformer model
	Attention
	Transformer model architecture

	Text encoding
	word2vec
	fastText
	BERT

	Proposed method
	Dataset
	Data preprocessing

	Model
	Embedding layer
	Transformer block
	Linear block

	Experiments and results
	Experimental setup
	Evaluation metrics
	Experiments
	Results
	Regression metrics
	Top-n metrics

	Conclusions
	Summary
	Future work

	Bibliography

