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Abstract

The primary purpose of this thesis is to create fast lightweight 3D CAD model-based
tracking for 6 degrees-of-freedom object pose estimation and review current ad-
vancements in object pose tracking. The proposed approach is focused on running
in real-time on low-performance devices with limited computation power.
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Chapter 1

Introduction

One of the basic human cognitive skills is the ability to understand the 3D context of
the environments around us. We can easily estimate the shape of the object, predict
the distance to that object, do the object segmentation and instantly solve many other
heavy computing tasks to understand the full context of the 3D world surrounding
us. Researchers in the computer vision sphere try their best to learn how to solve
these tasks with human accuracy or sometimes even overcome the limitations of the
eye, however relying on human-built sensors and advances in artificial intelligence.
Cognitive abilities that are natural to human beings are still a matter of research
when it comes to AI but have the potential to unlock a variety of applications in
spatial computing.

One of such cognitive abilities is object pose estimation, which is the task of re-
constructing the object’s position and rotation relative to the camera 3D coordinate
system. The solution to this problem opens numerous possibilities for creating as-
tonishing AR/VR applications with unique functionality and unlocks new frontiers
in the robotics field.

1.1 Problem Statement

The main goal of this thesis is a 6 degrees-of-freedom object pose estimation using
an available 3D CAD model of the object and an RGB image from the camera. Ob-
ject pose consists of 6 parameters - 3-dimensional rotation vector and 3-dimensional
translation vector - that uniquely define the object in the 3D camera coordinate sys-
tem.

FIGURE 1.1: Object pose estimation model.



Chapter 1. Introduction 2

1.2 Constrains

1.2.1 Textured object’s 3D CAD model

A high-quality textured object 3D CAD model must be provided for the high accu-
racy of object tracking. Based on the fact that the proposed approach uses the ob-
ject’s feature points (see more in 4.2.2), the 3D object itself should be rich with such
feature points. Otherwise, the object will not be adequately detected (texture-less
models cannot be used, and models without any high-contrast features, as well).

1.2.2 Stationary objects

The proposed in this thesis approach presumes that the object (which pose we try to
estimate) stays stationary within the whole observation, and only the camera posi-
tion is allowed to change. Support for moving objects is left for future consideration.

1.3 Requirements

The object pose estimation approach proposed in this thesis has 2 preliminary re-
quirements: real-time performance and memory/resources limits.

1.3.1 Real-time performance

The proposed approach has to be fast enough for usage in real-time applications,
even on low-performance devices with limited computational CPU and GPU power.

1.3.2 Memory and resources limits

As mentioned above, the tracking approach should be applicable to devices with
limited computation resources, which means that approaches that depend on high-
performance and memory-rich GPU are not being considered.
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Chapter 2

Related Work

Object pose estimation is a well-studied field in computer vision. Nowadays, the
approaches for object pose estimation can be divided into 2 categories: pure ma-
chine learning ones (which regress object pose directly from the image using Neural
Networks) and mixed ones (where object descriptors/keypoints are being extracted
first, using either Neural Networks or classical computer vision algorithms, and the
6 DoF object pose is being computed based on these descriptors).

2.1 Neural Network approaches

Several authors ([1], [2], [3]) propose state-of-the-art approaches with validation
on well-know object pose datasets, such as LINEMOD, Occlusion-LINEMOD, and
YCB-Video.

RNNPose ([1]) propose the recurrent neural network architecture that utilizes
the 2D features from the camera image, 2D features of the reference object image
(synthetic object’s image), and the 3D features of the model (computed directly from
the 3D point cloud of the object based on the 3D convolution described in [4]) and
predicts the direct object pose. The proposed model is iterative so that after each
iteration, the reference object image will be re-rendered with the corrected object
pose.

SO-Pose ([2]) paper tries to solve the low accuracy limitation of end-to-end neu-
ral network approaches for pose estimation. The authors propose 2 stages architec-
ture that combines an end-to-end neural network for direct pose estimation followed
by the stage of pose refinement using a Perspective-n-Point (PnP) based algorithm.

DeepIM ([3]) model solves object-pose estimation using iterative pose refine-
ment approach. Given the input of a test image with an initial pose, the model can
calculate for the observed image the relative object pose. Later using that relative
pose, the test image can be iteratively re-rendered with a corrected pose, improving
pose estimation, and making the test and observed images more and more similar.

While these approaches provide great accuracy, they considerably lack gener-
ality. The models are re-trained for each specific object, with a significant dataset
requirement in each case. Moreover, they typically require large amounts of GPU
memory and resources to fulfill the real-time performance constraints.

2.2 Classical Computer Vision

On the other hand, solutions that are based on classical computer vision algorithms
usually are independent of the chosen object model and are far less resource expen-
sive. Therefore, they can be used in a variety of applications and support a larger
range of devices.
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Chapter 3

Background

3.1 Camera Calibration

Camera calibration is a process of estimating the camera lens and image sensor pa-
rameters. The estimated parameter, usually called the camera’s intrinsics, consists
of 4 parameters that define the camera matrix and 5 parameters that estimate the
distortion of the camera lens.

Camera Matrix

The camera matrix is the matrix that can describe the projection of the 3D point
P = [X, Y, Z]T in the camera coordinate system onto the image plane of the camera
in the point p = [u, v]T.

FIGURE 3.1: Pinhole camera model.

The camera’s projection matrix that uses a pinhole camera model can be esti-
mated using the camera’s focal length and position of the principal point (intersec-
tion of an optical axis with the image plane).

K =

 fx 0 cx
0 fy cy
0 0 1

 (3.1)
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Lens Distortion

The distortion of the lens is usually described by:

• radial distortion (that consist of barrel distortion and pincushion distortion)
can occur if the camera lens are not equally bending the light

• tangential distortion can occur when the lens and sensor are not parallel but
rotated with a slight angle.

FIGURE 3.2: Lens distortions.

Mathematically lens distortion usually described using 3 parameters of radial
distortion (k1, k2, k3) and 2 parameters of tangential distortion (p1, p2):

Xundistorted = X · (1 + k1 · r2 + k2 · r4 + k3 · r6) + [2 · p1 · x · y + p2 · (r2 + 2 · x2)]

Yundistorted = Y · (1 + k1 · r2 + k2 · r4 + k3 · r6) + [p1 · (r2 + 2 · y2) + 2 · p2 · x · y]
(3.2)

where X and Y are the coordinates of the point (P = [X, Y, Z]T) in the camera
coordinate system.

Projection

The final pinhole projection model can be described using both lens distortion and
camera matrix:

Z

u
v
1

 = K

Xundistorted
Yundistorted

Z

 =

 fx 0 cx
0 fy cy
0 0 1

Xundistorted
Yundistorted

Z

 (3.3)

where u and v are the coordinates of a projected point in the camera image plane.



6

Chapter 4

Proposed Method

Object pose estimation approach described in this thesis consists of two parts:

• initial object model preprocessing;

• the actual object pose tracking.

The latter pose tracking part can be logically divided in three parts:

• object localization;

• feature extraction;

• pose estimation.

4.1 Initial object model preprocessing

Object model preprocessing aims to get the 3D keypoints and their projections at
different object orientations and distances with respect to the camera.

The first step of model preprocessing is selecting the 3D viewing software. In
this case, Blender was used because it has all the required 3D viewing functionality
and rich support for Python scripting, which allows partially atomizing the prepro-
cessing procedure.

After that, we can generate synthetic object images from different rotations and
scales.

FIGURE 4.1: Blender environment setup.

Later the generated images will be processed to detect edges using a Canny edge
detector [5]. After that SIFT feature detector [6] is used for extracting keypoints and
corresponding descriptors.
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FIGURE 4.2: Model preprocessing. Features extraction.

After that, we need to calculate the 3D position for each 2D keypoint. In order
to achieve this, a direction vector is calculated (starting at the camera origin and
going through the point in the camera frame) for each 2D keypoint. That is done by
unprojecting the 2D point in a homogeneous coordinate system using the inverse of
the camera matrix (that is described in 3.1):X

Y
Z

 = K−1 ·

u
v
1

 (4.1)

Then, the intersection of each direction vector with the object model is calculated.
That is done by constructing the Bounding Volume Hierarchy (BVH) Tree [7] from
all the object’s polygons and later searching for the nearest intersection in this tree.

After that, the preprocessing of the object’s model is done. Now we stop working
with the 3D CAD model and use only the generated templates (together with all the
calculated data of the object) in the following sections of the pose estimation.

4.2 Object pose tracking

4.2.1 Object localization

The first iteration of the object localization is the hardest because there is no pre-
liminary data on the object’s location in the real world. Hence, a more exhaustive
algorithm needs to be applied. Based on previous knowledge of the prepossessed
model, we aim to find the initial crude pose of the model by comparing the image
from the camera and our generated images of the object model from different orien-
tations. That will give us a better starting point for object tracking.

Template matching

Template matching is the perfect technique for finding the object’s position in the
image using previously generated images during the preprocessing stage. During
the matching procedure, the image from the camera will be matched with all existing
templates and different scales of those templates. For object detection, 3 different
approaches for template matching were tested to select the most suitable for this
task.

RGB template is more computationally expensive but provides more data that
can be used for better accuracy of the matching. The major limitation of this ap-
proach is the high dependency on the lighting as well as occlusions of the object. To
partially overcome the lighting problem, correlation coefficients are used for tem-
plate matching:
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R(x, y) = ∑
x′ ,y′

((T(x
′
, y

′
)− µT) · (I(x + x

′
, y + y

′
)− µI)), (4.2)

where T is the template, I is the image from the camera, µT is the template’s
mean value, and µI is the mean value of the camera’s image.

Edges templates are binary images that contain knowledge of the shape of the
object and its features. If the object’s environment is clean and the edges of the
object are well visible, the edges templates should be preferred for better matching
performance. The matching score can be calculated using a cross-correlation of the
template and the main image:

R(x, y) = ∑
x′ ,y′

(T(x
′
, y

′
) · I(x + x

′
, y + y

′
)), (4.3)

where T is the template and I is the image from the camera.
Using the fact that both images are binary, the cross-correlation equation can be

further optimized using bitwise AND operations:

R(x, y) = ∑
x′ ,y′

(T(x
′
, y

′
)&I(x + x

′
, y + y

′
)), (4.4)

Similarity measures is the another approach for template matching proposed
in [8]. The proposed approach takes as an input the feature points of the template
(p′i = (x′i , y′i)

T) and main image (pi = (xi, yi)
T) together with the direction vectors

for each of those feature points (di = (ti, ui)
T and ei = (vi, wi)

T, corespondent). That
allows to compute the score of the similarity between the 2 images as the average
cosine of angles between the direction vectors, taking into account directions of the
edges during matching:

s =
1
n

n

∑
i=1

〈
d′i, eq+p′

〉∥∥d′i
∥∥ · ∥∥eq+p′

∥∥
=

1
n

n

∑
i=1

t′ivx+x′i ,y+y′i
+ u′

iwx+x′i ,y+y′i√
t′2i + u′2

i ·
√

v2
x+x′i ,y+y′i

+ w2
x+x′i ,y+y′i

(4.5)

The similarity measurements approach was selected for template matching be-
cause it provides excellent accuracy, even in the situations of partial occlusions of
the object, and does not depend on the intensity of the images.

FIGURE 4.3: Object Detection. Template matching. For visualization
the blue rectangular represent the location of the best match with tem-

plate.
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In order to use the template matching in a real-time application, the performance
of the algorithm needs to be improved. The paper [8] proposes an additional crite-
rion for early stopping the matching. Given the metric for similarity calculation:

s =
1
n

n

∑
i=1

〈
d′i, eq+p′

〉∥∥d′i
∥∥ · ∥∥eq+p′

∥∥ (4.6)

The additional smin score threshold can be added to construct constrain for all
matching scores: s > smin.

Therefore, for each sj (the partial score for the first j direction vectors) the next
constrain must be satisfied:

1
n

j

∑
i=1

〈
d′i, eq+p′

〉∥∥d′i
∥∥ · ∥∥eq+p′

∥∥ > smin −
1
n

n

∑
i=j

〈
d′i, eq+p′

〉∥∥d′i
∥∥ · ∥∥eq+p′

∥∥ (4.7)

Using the fact that the cosine of the angle is in the range [−1; 1] the above con-
strain can be simplified to:

sj > smin −
n − j

n
(4.8)

For even better performance, the template matching was further speed-up by
resizing images (both camera’s image and template image) using Gaussian pyramid
[9]. Firstly, finding the object at the lowest level and then moving to the original
image, but performing the search in a limited neighborhood instead of the whole
image. In this case, we used just 1 level (effectively halving the image).

FIGURE 4.4: Object Detection. Template matching performance. The
performance of original image (resolution is 640x480) matching with
the template (resolution is 275x200) was tested with and without early

stopping. The same was done for resized images.

After obtaining match scores for each template, the match with the maximum
score is selected. If the similarity score exceeds the minimum threshold, the match
is considered correct. This best match will be considered object location and used as
ROI for object pose estimation in the following stages.
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4.2.2 Feature extraction

The next pose estimation step is to extract the features in the previously detected (by
template matching) region. The same algorithm for feature extraction must be used
in this step as the one used in the preprocessing stage for generated templates. That
is why the Canny edge detector [5] is used again to extract feature points (keypoints)
and their correspondent descriptors.

After the keypoints with the correspondent descriptors are calculated, they need
to be matched with previously calculated keypoints of the template image. In order
to improve the performance of the feature matching, the k-nearest-neighbor-based
algorithm was chosen. Afterward, matched features were filtered using Lowe’s ratio
test [6] to extract only the most accurate matches.

FIGURE 4.5: Feature Matching. For visualization the blue rectangular
represent the enlarged bounding box computed in template matching
step. The multi-color lines represents the matches of the features cal-
culated in the template image (on the left) and image from the camera

(on the right).

The result of the matching keypoints is a direct correspondence of 2D keypoints
in the image (projections of the object points) to 3D keypoints of the 3D object model
(with respect to the object’s coordinate system). This can be achieved because, in
the preprocessing stage, all the generated templates were saved with calculated 2D
object features and correspondent 3D coordinates of those features in the object’s
coordinate system.
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4.2.3 Pose estimation

For the pose estimation Perspective-n-Point (PnP) algorithm is used to estimate ob-
ject pose. PnP is a well-known computer vision optimization problem that computes
the pose (extrinsic) of the object using known 3D points of the object (in the object’s
coordinate system) and their 2D projections onto the camera image plane. The op-
timization problem can be formulated as the minimization of the distance between
the projection of the 3D points using object pose (p̂i = [û, v̂, 1]T) and their detected
2D points (pi = [u, v, 1]T):

min∥

u
v
1

−

û
v̂
1

∥ (4.9)

,
where

û
v̂
1

 z = K TC
W


Xw
Yw
Zw
1


û

v̂
1

 z =

 fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




Xw
Yw
Zw
1


(4.10)

For better accuracy of the pose estimation, the modification of the PnP algorithm
was used that firstly uses the RANSAC algorithm [10] to illuminate all the outlier
features, followed by the Levenberg-Marquardt algorithm ([11], [12]) for the object
pose optimization.

FIGURE 4.6: Pose estimation. For pose visualization the green boxes
represents the ground-truth object poses and blue boxes are the de-

tected object poses.
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4.3 Pose tracking pipeline

FIGURE 4.7: Object Tracking Pipeline. For visualization, the green
ellipses represent the input and output of the pipeline, when dark
blue rectangles represent the computation blocks, light blue rectan-
gles represent the processor’s threads, yellow parallelograms repre-
sent the pre-calculated data, and the arrows represent the flow of the

data between the blocks.
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Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Dataset

The performance of the proposed method was tested on YCB-V (YCB-Video) dataset
[13]. YCB-Video is a large-scale dataset for 6 degrees-of-freedom object pose estima-
tion that contains accurate poses for 21 objects captured in 92 videos. For this exper-
iment, a subset of 4 objects in 12 videos was manually chosen from the original 92
videos.

(A) Cheez-It (id 2) (B) Domino (id 3) (C) Campbell (id 4) (D) Soft Scrub (id 12)

FIGURE 5.1: Dataset objects with assigned names and id in YCB-V
dataset.

5.1.2 Evaluation Metrics

The Object Detection accuracy was measured using Intersection-over-Union (IoU)
metric. The detection was considered correct if the prediction and ground-truth IoU
score exceeded 50%. The accuracy of the object pose estimation was measured using
Average Distance (ADD) [14]. ADD calculates the average distance between the
model points transformed with ground-truth object pose and estimated object pose.
The estimated object pose is considered correct if the ADD metric stays below 50mm.
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5.2 Object Detection

FIGURE 5.2: Object Detection Recall. Recall shows the ration of true-
positive detections over all labeled ground-truth detections. For ob-
ject detection IoU metric was used, the detection was considered cor-

rect if the prediction and ground-truth IoU score exceed 50%.

5.3 Pose Estimation

Object ADD (%) ↑ TP ADD (%) ↑
Cheez-It 54.66 58.57
Domino 58.66 81.48
Campbell 2.66 11.74
Soft Scrub 30.66 38.98

Average 36.66 47.66

TABLE 5.1: Pose Estimation Recall. To measure the pose estima-
tion accuracy Average Distance (ADD) [14] was used. The estimated
object pose is considered correct if the ADD metric stays below the
50mm. ADD metric represent the ration of true-positive pose estima-
tions over all the all labeled ground-truth poses. True-Positive ADD
(TP ADD) metric represent the ration of true-positive pose estima-

tions over all true-positive object detections.
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FIGURE 5.3: Pose Estimation ADD. The yellow lines represent the
mean ADD error per each object (in mm). The blue error bar represent

the standard deviation of ADD error per each object (in mm).

5.4 Pose Detection Examples

FIGURE 5.4: Pose Detection Examples. The green cuboid in images
represents the ground-truth object pose. The blue cuboid represents

the predicted object pose.
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Chapter 6

Conclusion

This thesis proposes a lightweight real-time solution for 6 degrees-of-freedom (DoF)
object pose estimation based on the object’s textured 3D CAD model. The thesis
demonstrates that classical computer vision algorithms can achieve high accuracy
of object pose estimation while preserving real-time performance requirements.
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