
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Mobile application for UCU Library

Author:
Kateryna DETSYK

Supervisor:
Serhii MISKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Kateryna DETSYK, declare that this thesis titled, “Mobile application for UCU Li-
brary” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Books are a uniquely portable magic.”

Stephen King

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Mobile application for UCU Library

by Kateryna DETSYK

Abstract

Not so long ago, calculators, photo galleries, books, photo cameras, and even a video
camera were physically different, unrelated objects. However, with the advent of
smartphones, they have all become available in small, compact devices that you can
always carry with you wherever you go. Smartphones offer access to many different
features. I think the most important of them is access to the information.

It is highly important for students and all people of the 21st century to have quick
access to information. Not all books are freely available on the Internet, and it is not
always possible to go to the library to bring a paper book or take a large number
of books with you. These are just a few issues that the electronic library on your
smartphone can solve.

Registered users of the library of Ukrainian Catholic University will be able to
read books on their smartphones, no matter when and no matter where they are if
they have access to the Internet.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
First of all, I would like to thank my supervisor Serhii Miskiv for the support and
good advice. I am also very grateful for the help in finding the topic. Because finding
a topic for the thesis was a pretty difficult thing for me.

My sincere thanks to the UCU University and the UCU Library for the oppor-
tunity to work on this project. I like books, both paper and electronic. Reading is
an integral part of my life, so I am very happy to have worked on this project. Big
thanks to Andriy Stankevych, Olexandra Yaruchyk, Oksana Mykytyn, Oleh Lahod-
niuk, Volodymyr Bokla and Roman Pototskyy.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Structure . 3

2 Background 4
2.1 Library resources . 4

2.1.1 Koha . 4
2.1.2 Koha REST API . 4
2.1.3 Dataset . 5
2.1.4 Server . 5

2.2 Flutter . 7
2.2.1 Pros of Flutter . 7
2.2.2 Cons of Flutter . 7

2.3 Python Flask . 8

3 Related works 9
3.1 First Example . 9
3.2 Second Example . 10
3.3 Conclusions on related works . 10

4 Application Implementation 11
4.1 User Flow . 11
4.2 UI . 12
4.3 State Management . 13

4.3.1 Flutter BLoC library . 14
4.4 Repository . 16

4.4.1 MySQL Repository . 16
4.4.2 API Repository . 17
4.4.3 Service locator . 18
4.4.4 Secure Storage . 19

4.5 Navigation . 19
4.6 Screens . 21

4.6.1 Splash Screen . 21
4.6.2 Login Screen . 22
4.6.3 Home Screen . 23

vi

4.6.4 Borrowed Books Screen . 25
4.6.5 Book Screen . 26
4.6.6 Reading Screen . 27

5 API Implementation 28
5.1 Advantages of using API . 28
5.2 Connection to the database . 29
5.3 Functionality . 29

5.3.1 Login . 29
5.3.2 Search . 30
5.3.3 Recent . 31
5.3.4 Borrowed . 31

6 Conclusion 33
6.1 Result summary . 33
6.2 Future works . 33

Bibliography 34

vii

List of Figures

2.1 Opening connection to the server . 6
2.2 SSH Tunneling tab . 6
2.3 Shared Shell . 7

3.1 Digital Library screens from Play Market 9
3.2 Koha OPAC screens from Play Market 10

4.1 User Flow . 12
4.2 UI Design . 13
4.3 BLoC Architecture . 14
4.4 BLoC Architecture Workflow . 16
4.5 Workflow with MySQL Repository . 16
4.6 Workflow with API Repository . 17
4.7 Navigation . 20
4.8 Splash Screen . 22
4.9 Login Screen . 23
4.10 Login Screen show password . 23
4.11 Login Screen alert popup . 23
4.12 Login Screen validation . 23
4.13 Home Screen . 24
4.14 Home Screen, search results . 24
4.15 Home Screen, no results . 24
4.16 Home Screen, loading . 24
4.17 Borrowed Books screen . 25
4.18 Borrowed Books screen, expired books 25
4.19 Books screen, reading available . 26
4.20 Book screen, reading not available . 26
4.21 Reading screen . 27
4.22 Reading screen, choose page . 27

5.1 Communication between mobile application and database via API . . 28

https://play.google.com/store/apps/details?id=com.ddspak.ddskoha
https://play.google.com/store/apps/details?id=com.lisacademy.org.kohaopac&gl=US
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/
https://bloclibrary.dev/####/architecture

viii

List of Tables

4.1 Navigator push functions’ stacks comparison 21

5.1 API login responses . 30
5.2 API search responses . 31
5.3 API recent responses . 31
5.4 API borrowed responses . 32

ix

List of Abbreviations

UCU Ukrainian Catholic University
ILS Integrated Library System
PDF Portable Document Format
API Application Programming Interface
REST REpresentational State Transfer
SQL Structured Query Language
id identity document
JSON JavaScript Object Notation
WSGI Web Server Gateway Interface
SSH Secure SHell
BLOB Binary Large OBject
BLoC Business Logic Component
UI User Interface
URL Uniform Resource Locator
APK Android PacKage
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure

x

Dedicated to my Family, those who always support me and
believe in me, even when I don’t believe in myself.

1

Chapter 1

Introduction

This chapter provides an overview of the Ukrainian Catholic University(UCU) Li-
brary. It describes the problem of publishing e-books that the UCU library has faced.
It tells the reasons why electronic libraries are relevant in our times. The chapter de-
scribes the motivation for creating a mobile application to overcome these problems
and defines the main goals of the thesis.

1.1 Overview

The library of Ukrainian Catholic University is located in the Sheptytsky Center and
in the building of the Faculty of Philosophy and Theology. The library offers its users
a lot of different books. Currently, the information site of the library works as a part
of the site of the Sheptytsky Center1. Here library visitors can learn about library
events, opening hours, rules of use and other information. Last year, UCU students
developed a new separate information site for the UCU library with a comfortable
design and user-friendly interface. However, the site is not finished yet, and it is still
not freely available. If the users wants to find out whether there is a desired book
in the library or check on which bookshelf it is located, they must use the electronic
catalog Koha UCU2. It is also possible for authorized users to make a booking. How-
ever, none of these web resources provides an opportunity to read books online.

1.2 Motivation

The UCU Library has long planned to switch to digital format, but they did not
have a suitable platform to offer e-books. In recent years, the need for electronic
libraries is growing as well as the need for remote access to educational materials
and information in general. The deadly virus, quarantine, distance learning, and
war, forced us to face enormous challenges. It is not always possible to get to the
paper book lying on the shelf in the Sheptytsky Center. The Internet considerably
simplifies access to information. A huge bookstore in a small gadget can save you
time searching for a physical book. There are many reasons to create an electronic
library on a smartphone. There are many problems that such a compact library can
solve :

• Not all users of the UCU library, including students, live in Lviv. They can live
in other cities or even other countries. In the conditions of distance learning,
quarantine or vacation, they may not have the opportunity to come to the li-
brary to pick up the book they need to study. E-library can make books from
UCU Library available for them.

1https://center.ucu.edu.ua/biblioteka/
2https://opac.ucu.edu.ua/

https://center.ucu.edu.ua/biblioteka/
https://opac.ucu.edu.ua/

Chapter 1. Introduction 2

• The number of copies in the library is limited. The capacity of the library is
limited by the number of bookshelves in the Sheptytsky Center. The library
purchases fewer copies of one book but more different books to increase the
range of books on the shelves. If UCU Library is available in electronic format,
the students preparing for an important exam will be able to read a book in
PDF format simply from their smartphones. And they should not worry that
there will not be a copy for them in the library.

• Another problem is that some of the books are stored in the building of the
Faculty of Philosophy and Theology. And UCU library has no book delivery
from one building to another.

• One more important aspect is spending time searching for a book and get-
ting to the library, for example, from the other side of the city. Students and
other holders of a reader’s tickets will be able to read books at any time and
anywhere if they have access to the Internet. The time they saved, they could
spend more productively, for instance, doing their homework.

Of course, there are many more problems that an electronic library in a smart-
phone can solve, here are just a few of them.

Another significant reason to create an e-library is the relevance of mobile appli-
cations. Most people carry smartphones with them everywhere. They are compact
and very functional. You can open the desired book and read it just in a cafe sit-
ting at a table, or when you travel. If the application is relevant, comfortable, and
does not take up much space on the device, it has high chances of being liked by
users. Furthermore, most UCU library users visit the Koha UCU catalog from their
smartphones.

1.3 Goals

My thesis aims to create a mobile application for UCU Library readers. All users
will have the opportunity to search for books and browse the catalog. Registered
holders of reader’s tickets will be able to read all available e-books and see a list of
books they borrowed.

Functionality to be implemented in the application in the framework of the the-
sis:

• Login - holders of reader’s tickets can enter the login and password to access
e-books.

• Book Search - anyone, not just logged-in users, will be able to search for books.

• Borrowed Books - authenticated users will see the list of borrowed books.

• Book Information - all interested users will be able to view information about
the book, title, author, the number of pages, and others.

• Book Reader - logged-in users can read the book in PDF format, provided that
the PDF file of this book is available in the database.

Chapter 1. Introduction 3

1.4 Structure

• Chapter 1 Introduction - describes the problem statement and the motivation
to create a mobile application to solve this problem. And it defines the goals of
the thesis.

• Chapter 2 Background - describes the technologies, services, data, and other
stuff that were used for the implementation of a mobile application.

• Chapter 3 Relative works - This section describes two applications most simi-
lar to my application. It also highlights their pros and cons and why my appli-
cation has an advantage over them.

• Chapter 4 Application Implementation - describes the implementation of this
application in detail.

• Chapter 5 API Implementation - performs the overview of the new API for
this app and Koha database and describes the implementation.

• Chapter 6 Conclusions - summarizes the results and describes the future works.

4

Chapter 2

Background

The second chapter provides an overview of library resources necessary for this ap-
plication development. It also describes the technologies chosen to implement this
mobile application and API.

2.1 Library resources

This mobile application has to work with library resources such as a book catalog
or a data set with library users. During the development, I got acquainted with the
UCU Library system ILS(Integrated Library System) Koha1 in more detail, as my
work intersected with it. The application works with the same database used by the
electronic catalog Koha UCU.

2.1.1 Koha

ILS Koha is an automated web-based open source library system for accounting
books and library users. The name "koha" means "gift" in the Maori language. It
provides opportunities to search, catalog, and track any number of readers, book
copies, and other data. Registered library users can keep a reading list and rate
books. And librarians can enter all the necessary information about books and users
in the database.

There are some pros and cons of using ILS Koha. Some disadvantages complicate
the use of Koha or even complicate the opportunity of expanding its functionality.
ILS Koha was built with the Perl programming language back in 1999. Implemen-
tation in Perl makes it difficult to change or update the code because not many pro-
grammers use this language. Thus, it is almost impossible to expand the backend of
the catalog to add a function to read books online.

Therefore, the mobile application has the potential to become popular among
users as a more user-friendly and functional environment.

2.1.2 Koha REST API

ILS Koha has its own REST API(Representational State Transfer Application Pro-
gramming Interface)2 also implemented in Perl. API offers some functionality, for
instance getting information of book location : /api/v1/items/{item_id} or infor-
mation about library patrons : /api/v1/patrons/{patron_id}.

However, this API does not provide some useful functions, including those nec-
essary for the mobile application. There is no method for authentication, so it is

1https://koha-community.org/
2http://koha.ucu.edu.ua/api/v1/.html#op-get-holds

/api/v1/items/{item_id}
/api/v1/patrons/{patron_id}
https://koha-community.org/
http://koha.ucu.edu.ua/api/v1/.html##op-get-holds

Chapter 2. Background 5

impossible to develop a login using this API. There is also no method to get infor-
mation about books such as author, title, pages, and others. Such a necessary search
method is also not implemented there.

Unfortunately, it is impossible to update this API because its implementation in
Perl is very complicated.

I created a new API to get access to the Koha database. In chapter 5, you can read
about the new API in more detail.

2.1.3 Dataset

API fetches necessary data from the MySQL database of ILS Koha. Our mobile ap-
plication will need information about books and library users from the database.

To provide authentication, we need to know users’ ids and passwords. Since
email is unique for everyone, it is used as an id (Identity document) in the database.
User passwords are stored in the hashed form to make a system more secure.

Book information is divided into several tables in the database. We need three of
them. Basically, we need tables that contain information about the book’s title, the
author, the image, the place of storage, and a link to the PDF file of the book.

2.1.4 Server

ILS Koha UCU, with its database, is located on the virtual server that uses Linux
Debian 9 operating system.

But before using actual data from the production server, I use a testing server
with a copy of the library system during application development. I was given all
necessary data for connection to the virtual server via SSH (Secured Shell).

SSH - Secure Shell is a protocol that allows securely connecting to the remote
computer or server and manipulating server typing commands on your local com-
puter. SSH server that works on the virtual server. It listens to the clients’ connec-
tions and after successful authentication starts serving the client. SSH client is used
to connect to the SSH server and execute commands. For connection I needed a host,
port, user and password. To open a connection from the computer with Windows
10 operating system, I use the open-source application PuTTY3.

The connection to the server was needed to access the database on that server. It
was impossible to access the database directly from the code because the 3306 port
was closed due to security reasons. I used the SSH Tunneling method to access the
database and redirect the port.

Firstly, I need to enter the host and port in the corresponding input fields. See
the figure 2.1.

Then I need the Tunneling tab. It can be found : Connection/SSH/Auth/Tun-
nels. Then, I needed to specify the source port and destination, the same as in the
figure 2.2. Then press the Add button and the Open button.

Then in the console, I needed to put down the username and password. See
figure 2.3. After these steps, I could access the server. That also allowed me to con-
nect to the database directly from the application source code, just using localhost,
port 3307, database user, and its password. It was useful when I was creating a new
API locally on my computer. However, after the deployment of the new API on the
server, the need to use this connection method has disappeared.

3https://www.chiark.greenend.org.uk/~sgtatham/putty/

https://www.chiark.greenend.org.uk/~sgtatham/putty/

Chapter 2. Background 6

FIGURE 2.1: Opening connection to the server

FIGURE 2.2: SSH Tunneling tab

Chapter 2. Background 7

FIGURE 2.3: Shared Shell

2.2 Flutter

Flutter[8] is an open-source UI framework developed by Google. It was released in
2015 at the Dart developers summit. Flutter is mainly used for building IOS, An-
droid, and web applications. In addition, version 2.2 gave early access to creating
desktop applications for Windows, Mac, and Linux. The biggest advantage of Flut-
ter is that a single codebase can be run on different platforms.

The Flatter framework is based on the Dart language. For Android and iOS, it
compiles into machine code. For the Web, the Dart translates into JavaScript, and for
desktop applications, it uses Dart Virtual Machine.

One of the most useful Flutter features is “hot-reload”. It allows you to rebuild
the screen without recompiling the whole project. Any changes in source code will
be immediately seen on the running application without losing state and without
restarting.

2.2.1 Pros of Flutter

• Flutter is the best technology for multi-platform development.

• It is an open-source technology.

• ’Hot reload’ feature makes development faster and more comfortable.

• Flutter framework consists of a big library of widgets that can be personalized
as developers want.

• There are also a lot of packages and plugins that can be useful for developers.

2.2.2 Cons of Flutter

Although Flutter is a very comfortable technology, there are still some disadvan-
tages. But I think in this case advantages outweigh disadvantages.

Chapter 2. Background 8

• Even if it is a cross-platform technology, developers still need to think about UI
adaptation for different screen sizes. Applications for desktop and applications
for mobile still have differences in the UI.

• Not all Flutter packages satisfy all platforms. And when developers create a
package it should at least satisfy Android and iOS requirements.

2.3 Python Flask

As ILS Koha REST API was not suitable for the application needs and that it was
impossible to update it, I had to create a new REST API. It would help my application
communicate with the library database. This mobile application would not make
any updates to the database. It needs only to take the information. So, I needed to
create only to get requests. It is usual for mobile application development if the data
comes in JSON (JavaScript Object Notation) format.

For the new API implementation, I chose Flask [7]. Flask is a micro web frame-
work realized in Python. Based on Werkzeug WSGI (Web Server Gateway Interface)
toolkit and Jinja templates engine. WSGI is a calling convention between the Python
web application and web server, in our case it was Apache.

This time, I was working with Python 3.5.3 version and Flask 1.1.4, which was
installed on the virtual server of UCU Library.

9

Chapter 3

Related works

Market research is an important part of new product development. Ready-made
potential competitors can be there. Identifying strengths and weaknesses in those
existing solutions can help us create a better product based on market needs.

Looking for products similar to our new application, I decided to overview not
just applications for reading books, but applications related to the ILS Koha. Al-
though a lot of libraries all over the world use the Koha library system, I found only
two such mobile applications available on the Play Market.

3.1 First Example

The closest example of such an application was Digital Library1. It allows access to
the Pakistan Libraries that use ILS Koha. Unauthenticated users have the opportu-
nity to search books. Logged-in users can make a booking. This app just copied the
functionality of web ILS Koha for users : searching books, authentication, managing
booking, reservations, and others.

Pros of this application: a few libraries can use it.
Cons: that application does not allow e-book reading and has a quite old-fashioned

design.

FIGURE 3.1: Digital Library screens from Play Market

1https://ddspak.com/dds/koha-mobile-app/

https://play.google.com/store/apps/details?id=com.ddspak.ddskoha
https://ddspak.com/dds/koha-mobile-app/

Chapter 3. Related works 10

3.2 Second Example

One more application developed for libraries using ILS Koha is Koha OPAC2. This
application also has the same functionality as web ILS Koha. You can search for
books there, see your list of borrowed books, your reading history, and others. How-
ever, this application does not allow reading books online.

FIGURE 3.2: Koha OPAC screens from Play Market

3.3 Conclusions on related works

Therefore none of these applications allows you to read books online. They are just
mobile versions of ILS Koha and they do not expand its functionality.

Looks like no application works with ILS Koha and provides digital library fea-
tures. That means that our new mobile application is unique without any analogs.

2https://play.google.com/store/apps/details?id=com.lisacademy.org.kohaopac&gl=US

https://play.google.com/store/apps/details?id=com.lisacademy.org.kohaopac&gl=US
https://play.google.com/store/apps/details?id=com.lisacademy.org.kohaopac&gl=US

11

Chapter 4

Application Implementation

This chapter describes how the library’s mobile application was created. The func-
tionality of the application and its implementation are considered here. The chapter
also provides the application screens’ functionality and appearance, implementation
of navigation, application architecture (state management), and how the back-end
part of the application was handled.

4.1 User Flow

At the beginning of the application implementation path, I had to decide what users
and stakeholders wanted to see in the library application. And what exactly should
be implemented in this application.

I used the User Flow technique to determine the application’s structure and con-
vey the process of working with it. User Flow shows the sequence of actions that
users can perform in the application. This technique is often combined with wire-
frames and not just presented as a chart. But in our case, it is just a chart that spells
out the possible steps of our user. This chart uses various geometric shapes to visu-
ally convey the beginning of the flow, decision-making moments, errors, transition
to screens, and others.

Why is this technique useful?

• Such a scenario scheme will help to agree with stakeholders, potential users,
and developers on the structure and functionality of the product.

• After creating a User Flow diagram, you can see where the path is too confus-
ing and where it should be simplified. You can notice the possible mistakes
before you start developing an application.

• The diagram shows whether all processes in the application have a logical con-
clusion and whether they are in principle appropriate.

On our User Flow chart 4.1 we can see :

• To cover all necessary functions we had to implement six different screens.
They are filled with violet color on the chart.

• All screens would have a back button to return to the previous screen, except
Splash Screen and Home Screen.

• There are branches for authorized users and non-authorized users. Some fea-
tures such as reading books will be closed to unauthorized users.

• Our chart is not too big and confusing. This means that the structure of the
application will be pretty easy to use.

Chapter 4. Application Implementation 12

FIGURE 4.1: User Flow

4.2 UI

An essential requirement for the UI (User Interface) design of the application was
that it must be in the same style as the new library site. Therefore, to create an
application design, I used the same research results that were conducted for the
UCU Library website. That design was developed by the students of the Applied
Science Faculty in the summer of 2021. I was familiar with the requirements, because
I also participated in it. Through surveys, brainstorming, and various studies, we
have developed a palette of the site and adapted the design to the mission of the

Chapter 4. Application Implementation 13

UCU Library: openness, minimalism, accessibility, and even visual inclusiveness,
avoiding outdated library templates that exist in Ukraine.

• The main principles were minimalism and accessibility.

• The color scheme was the same as it was on the library site.

• Except for the font colors, unlike dark gray, I use black to make the text more
contrasted.

• On the Borrowed Books Screen, overdue books’ cards would be colored light
red.

• Font family - Fira Sans.

• To make an accent on some important text, like titles, I use semibold font-
weight or medium font-weight.

• Icons were taken from the standard Flutter Icons class1.

• The application language is Ukrainian.

FIGURE 4.2: UI Design

4.3 State Management

For the development of this application, I chose BLoC state management. BLoC
(Business Logic Component)[5] is a state management architecture designed by Google

1https://api.flutter.dev/flutter/material/Icons-class.html

https://api.flutter.dev/flutter/material/Icons-class.html

Chapter 4. Application Implementation 14

developers and presented in 2018 during Dart Conferention. This architecture is rec-
ommended for Flutter application development. The BloC approach aims to sepa-
rate Business Logic from UI.

This approach is useful because the separation of UI and Business Logic makes
updating, testing, and debugging code easier. UI can be easily updated without
disturbing Business Logic and vice versa. Developers would be able to know the
application state at every moment. Bloc is based on Streams and used for reactive
programming. "Reactive programming is programming with asynchronous data
streams."[3]

As it was explained in the article "Reactive-Programming-Streams-BLoC" [3],
Streams are usually visualized like a pipe. The information comes on the one end
of the pipe, then something can happen to this information inside, and then it gets
out from the second end of the pipe. Streams can have a few listeners that can be
notified when the stream has some new data. Listeners can react to this notification.
For instance, widgets can rebuild themselves. A Sink is an abstraction used to send
data to the Steam.

In figure 4.3, we can see the visualization of this process. Some widgets can
send events to the BLoC via Sink. Then something happens with this data in the
BLoC. However, UI does not take part in it. When all operations with data are over,
widgets are notified by a BLoC via Steam. As we can see, UI and Business Logic are
separated.

FIGURE 4.3: BLoC Architecture

4.3.1 Flutter BLoC library

I use the flutter_bloc package[2] to provide a bloc approach in my application. It is
a very comfortable and easy-to-use package that offers different widgets to provide
BLoC state management in Flutter applications.

Bloc Widget needed in application :

• BlocProvider is a widget that gives its children access to a certain block. It
allows you to create an instance of a block only once, and all widgets in the
tree will have access to it.

https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/

Chapter 4. Application Implementation 15

• MultiBlocProvider can give access to a few Blocs at the same time.

• BlocBuilder - we use it over the widgets that had to be rebuilt if an event has
happened and the state has changed.

• BlocListener is working similarly. It is used when we want to do something
in response to state changes. For example, in our application, we use it for
navigation and showing alerts if a user enters the wrong password.

There are also a few more widgets in the flutter_bloc package, but I did not use
them in this application. In the code, we can create a new bloc like a separate class
that extends the Bloc class with the asynchronous mapEventToState function that
returns Stream. This function sets bloc in the proper state depending on the event
that happened.

Example of use :

class NewBloc extends Bloc<BlocEvent, BlocState> {
NewBloc () : super(InitState());

@override
Stream<BlocState> mapEventToState(BlocEvent event) async* {
if (event is AEvent) {

yield AState();
} else if (event is BEvent) {

yield BState();
}

}
}

So every Block has an event and state. The bloc state can be represented as a
separate class. It can also be an abstract class with several consequences.

abstract class BlocState {}
class AState extends BlocState {}
class BState extends BlocState {}

Similarly with the event. The bloc can have one event or several different events.

abstract class BlocEvent {}
class AEvent extends BlocEvent {}
class BEvent extends BlocEvent {}

Then Widgets that are provided with this Bloc would be able to put events to it :

context.read<NewBloc>().add(AEvent());

And widgets wrapped with BlocBuilder will react to the state changing.
In figure 4.4, we can see what this workflow looks like :

• When a user triggers some UI element, it sends an event to the Bloc.

• Bloc reacts to this event, it can ask for some data from the repository.

• Then Bloc changed his state.

• And the UI element rebuilds itself in response to state changing.

Chapter 4. Application Implementation 16

FIGURE 4.4: BLoC Architecture Workflow

4.4 Repository

A repository is a pattern that encapsulates the logic of working with data sources.
The repository pattern is used for communication with the REST API. In the reposi-
tory, data that comes in JSON can be turned into models. Those models can be used
by widgets and blocks in the application. The repository can be introduced as a class
with methods that return some data.

In our case repository must implement the methods :

• login(email, password) - method for authentication with checking user login
and password, and if his reader’s ticket is not expired.

• logout()

• search(query) - method returns a list of books with titles or authors that match
the search word.

• recent() - returns list of 20 newest books.

• borrowed() - returns a list of borrowed books for a specific user.

4.4.1 MySQL Repository

It is common for mobile applications to use API to communicate with databases.
However, Koha Rest API does not provide the necessary methods. Thus, my first
approach to reaching the data was a direct connection to the database. In that case
the project’s workflow would look like in the figure 4.5.

FIGURE 4.5: Workflow with MySQL Repository

To open a connection to the database from the source code, I needed:

• Host

• Port

• User

• Password

https://bloclibrary.dev/##/architecture

Chapter 4. Application Implementation 17

But since the port was closed, it was impossible to connect to the database from
the code. Before connecting to the database, I needed to open a connection to the
server via SSH. I did it with PuTTy using the SSH Tuning method. It is described in
more detail in the section 2.1.4.

I use the mysql1 package[11] to open a connection to the MySQL database in the
Dart code. There is an example below, how it looks like :

Future<MySqlConnection> getConnection() async {
var settings = ConnectionSettings(
host: ’10.0.2.2’,
port: 3307,
user: ’user_name’,
password: ’user_password’,
db: ’db_name’,

);
return await MySqlConnection.connect(settings);
}

The code above shows one of the repository methods for opening the connection.
It is important to note that instead of localhost address 127.0.0.1, I use 10.2.2.2 to con-
nect to the local web server. Because in this case, 127.0.0.1 will refer to the emulator
itself and not to the server.

In the repository, we also have all necessary methods: login(), search(), recent(),
and others. They run proper SQL queries with the query() method from mysql1 and
return data fetched from a database or null if nothing has been found.

However, this approach did not satisfy us because opening such a connection
required third-party software and port redirection. Therefore, the application will
not be able to work independently and access the database because the server has a
closed 3306 port.

4.4.2 API Repository

API is a much better, secure, and more common way for mobile applications to
obtain data. This approach became possible after the implementation of API with
Python and Flask and its deployment on the Apache server. More about API imple-
mentation in the chapter 5.

In that case projects workflow would look like on the figure 4.6.

FIGURE 4.6: Workflow with API Repository

API Repository is a separate class that encapsulates communication with the API.
It implements methods : login(), logout(), autologin(), search(), recentBooks(), bor-
rowedBooks().

I use http dart library[4] to make requests to the API.

Uri.https(baseUrl, path, queryParameters)

Repository methods :

Chapter 4. Application Implementation 18

• login() method accepts the user’s email and password and checks whether
such a user exists. It requests the API and gets data in JSON. If the response
code is 200, the user is found, and the method returns true.

The method throws an error if the response code is 403 means that the user is
not in the database, the user has not got a reader’s ticket, or the reader’s ticket
expired.

Method stored user’s email and password in the secure storage, more details
about secure storage in section 4.4.4.

• logout() method deletes user data from the secure store.

• autoLogin() method works similarly to the login method but with some differ-
ences. It takes the user login and password from the secure storage. It returns
true if the user was successfully logged-in and false if there was no user data,
the response code is not 200 or if the reader’s ticket expired. Throw an error if
there is no Internet connection.

• search() method accepts the query parameter, makes an HTTP request, and
returns a list of books that matches the query.

• recentBooks() method returns a list of the 20 newest books in the library. Re-
turns an empty list if the response code is not 200.

• borrowedBooks() method returns the list of borrowed books for the specific
user. It also converts the book’s deu_date value to DateTime type. Later it will
be used on a borrowed books screen to make expired books’ cards red

4.4.3 Service locator

In our application, Business Logic is separated from UI. However, it is still possible
that access to the repository will be required from both the UI and the blocks. Cre-
ating a repository class instance every time would be a bad practice. To avoid this,
we can use a provider, but in such a case, we will need BuildContext to get to the
repository from the business layer.

In this project I use get_it[9]. "This is a simple Service Locator for Dart and Flut-
ter projects with some additional goodies highly inspired by Splat. It can be used
instead of InheritedWidget or Provider to access objects e.g. from your UI."[9]

Advantages of using get_it:

• Opportunity to create an instance of service(repository) only one time.

• We can easily access repositories from everywhere. Business logic can be sepa-
rated into the blocs, but there may be a situation when the developer needs to
reach the repository from the UI.

• The library does not complicate our widget tree, because it does not use any
provider widgets. And it also does not rely on BuildContext.

• The package is easy to use and it works fast.

Example of using :
In the locator.dart file :

Chapter 4. Application Implementation 19

final locator = GetIt.instance;

void setUp() {
locator.registerLazySingleton<ApiRepository>(() => ApiRepository());
}

In the main() function :

void main() {
setUp();
runApp(const MyApp());
}

Access repository instance via locator anywhere in code :

locator.get<ApiRepository>().login(email, password)

4.4.4 Secure Storage

The user’s email and password are stored with the flutter_secure_storage to provide
the opportunity of auto login in the future - "A Flutter plugin to store data in secure
storage: use Keychain2 is used for iOS AES encryption is used for Android. AES se-
cret key is encrypted with RSA and RSA key is stored in KeyStore3"[10]. The plugin
provides the opportunity to store user data between program launches.

Storage is performed in a separate class with methods to read from storage and
write to storage on both iOS and Android platforms. Thus, the user does not need
to enter his email address and password every time he opens the application. The
application will do it. If the user logged out, his data will be deleted from the storage.

4.5 Navigation

This application has six different screens. So it should be possible to switch between
them and return to the previous screens, maintaining their state. In addition, during
switching, you may need to transfer the information to the next screen. It can be
implemented with the Flutter Navigator4 class.

Navigator is a widget that provides stack-like navigation. That means that when
we visit a new screen, the screen’s route is pushed into the stack. When we go back,
we make a pop. The element at the top of the stack deletes, and the new top screen
appears. See figure 4.7.

Simple use of pop and push methods from Navigator can make code messy and
create a lot of duplications.

To solve this problem, we can define navigation routes, which means that the
application should visit a specific route using the pushNamed() method when the
navigator is called.

So instead of doing this :

Navigator.of(context).push(MaterialPageRoute(builder: (context) =>
NewScreen()));

2https://developer.apple.com/documentation/security/keychain_services#//apple_ref/
doc/uid/TP30000897-CH203-TP1

3https://developer.android.com/training/articles/keystore
4https://api.flutter.dev/flutter/widgets/Navigator-class.html

https://developer.apple.com/documentation/security/keychain_services##//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/documentation/security/keychain_services##//apple_ref/doc/uid/TP30000897-CH203-TP1
https://developer.android.com/training/articles/keystore
https://api.flutter.dev/flutter/widgets/Navigator-class.html

Chapter 4. Application Implementation 20

we do this :

Navigator.of(context).pushNamed("/new_screen_route");

FIGURE 4.7: Navigation

All routes should be defined in the router property of the MaterialApp class.
In my case, I use onGenerateRoute, because by using the onGenerateRoute

property, I can send arguments to the Screen widget, which is impossible with the
simple routes property.

Code example :

initialRoute: "/",
onGenerateRoute: (settings) {
if (settings.name == "/") {
return MaterialPageRoute(

builder: (context) => const SplashScreen());
} else if (settings.name == "/login") {
return MaterialPageRoute(builder: (context) => LoginScreen());

} else if (settings.name == "/book") {
final args = settings.arguments;
return MaterialPageRoute(
builder: (context) => BookScreen(book: args as Book),

);
}

Then if I want to navigate to the book’s screen I can do something like this :

Navigator.of(context).pushNamed("/book", arguments: book);

Where a book is a book model instance.

Chapter 4. Application Implementation 21

4.6 Screens

This section explains how screens have been implemented and what users can do
with them.

4.6.1 Splash Screen

Splash Screen is an initial screen of the application. It performs approximately for a
second after you open the application, then it switches to another screen. The main
task of this initial screen is to decide what screen should be open next: The Login
screen or the Home screen. The Business Logic of this screen is presented in the
Session block. The Session block has only one event, AutoLoginEvent. If this event
happens, the bloc accesses the API repository and calls the autoLogin() function. If
the user is active, the bloc’s state changes to SuccessAuthState, which means that the
user is logged-in. If the user does not exist, the state becomes FailedAuthState, which
means that the user is not logged-in. If there is no internet connection, then the state
becomes NoInternetConnectionState. The Splash screen widget uses BlocLister to
listen to whether there are any changes in the state of the session block.

Accordingly,

• If the state is SuccessAuthState, and the user is logged in, we navigate to the
Home screen.

• If the state is FailedAuthState and the user is not logged in, we navigate to the
Login screen.

• If there is no internet connection, a popup appears asking you to check the
internet connection.

The important thing is that when we switch from a Splash screen to another
screen, we no longer have to return to the Splash screen. So instead of using the
pushName() function from the navigator, we use pushReplacementNamed(). This
function allows you to replace the previous route after specifying a new one. There
was no more this screen route in the router stack. See the difference in the table 4.1.

When, in the future, we will make a pop() method, this route will no longer be in
the navigator stack. Thus, If we push the "back" button on the Home screen or Login
screen, we will get out of the application.

pushReplacementNamed() pushNamed()

/home_screen

/home_screen /splash_screen

TABLE 4.1: Navigator push functions’ stacks comparison

Screen shows the logo of UCU Library. See figure 4.8.

Chapter 4. Application Implementation 22

FIGURE 4.8: Splash Screen

4.6.2 Login Screen

If the user is unauthenticated, after the Splash screen, he will visit the Login screen.
The user can also enter this screen by pressing the logout button on the Home screen.

The user can enter his email and password to log in, or if he wants to enter an
application without authentication, he can press the gray button at the bottom of the
screen. See figure 4.9.

This screen uses a login bloc. Login bloc has a few events :

• EmailChangeEvent - happens when a user inputs something in the email text
field.

• PasswordChangeEvent - occurs when a user inputs something in the password
text field.

• HidePasswordEvent - happens when a user clicks the eye button to hide or
view his password. See figure 4.10.

• SubmitEvent - happens when a user presses the green submit button.

Login bloc has one state with different properties, and when any event happens,
the bloc changes the corresponding property inside the state. I use the copyWith()
function to provide it.

class LoginState {
final String email;
final String password;
final bool hidePassword;
final FormStatus formStatus;
...

Chapter 4. Application Implementation 23

All Login screen widget is wrapped with BlocProvider, which allows accessing
the login bloc from this screen’s widgets. I use the Flutter Form widget to cre-
ate forms with validation. This Form widget uses BlocListener, and when Login-
State.formSatus property is FailedFormStatus, a popup window appears with an
error message, see figure 4.11. When users try to submit the wrong email format or
empty email and password values, the Form shows the red messages under the text
input fields, see figure 4.12.

FIGURE 4.9: Login
Screen

FIGURE 4.10: Login
Screen show password

FIGURE 4.11: Login
Screen alert popup

FIGURE 4.12: Login
Screen validation

4.6.3 Home Screen

When a user enters the Home screen, he can see the search bar and list of recent
books.

Chapter 4. Application Implementation 24

This screen widget uses a search bloc. This block has three states :

• DefaultSearchingState - if there is a default state, you can see a list of recent
books on the screen, the figure 4.13.

• CurrentSearchResultsState - screen shows searching results, the figure 4.14.

• LoadingState - screen shows a progress indicator, the figure 4.16.

FIGURE 4.13: Home
Screen

FIGURE 4.14: Home
Screen, search results

FIGURE 4.15: Home
Screen, no results

FIGURE 4.16: Home
Screen, loading

When a user enters something in the search field and presses the search button,
the bloc receives SearchinEvent. Then it calls a search() function from the repository

Chapter 4. Application Implementation 25

that returns a list of searched books. Then Bloc changes its state on CurrentSearchRe-
sultsState, and the book list can be accessed in the UI via the state’s property. If there
was no search result and the list is empty, the widget will display a message that
there were no search results, can be seen on the figure 4.15.

If the user wants to return to the default page state, he can press the "clear search
results text button" under the search bar. That will send ToDefaultSearchEvent to
the SearchBloc. Then the bloc will call the recent() function from the repository and
change its state to DefaultSearchingSate. A list of recent books also can be accessed
via the state in the UI.

4.6.4 Borrowed Books Screen

If the user is logged-in, he can visit the Borrowed Books screen. Here, he can find
the list of books he borrowed and see some information about them, see figure 4.17.
For instance, he can find out when he should return the book. If some books’ return
date is expired, then the card with this book will be red, see figure 4.18.

The business logic of this screen is provided in a separate block. It calls a function
from the repository that returns a list of borrowed books.

Bloc has three states :

• LoadingState - the progress indicator appears on the screen when data from
the database is loading.

• NoBorrowedBooksState - is a state where the user has no borrowed books.

• ListBorrowedBooksState(books : List<BorrowedBook> books) - is a state that
contains a list of borrowed books. Using this state property, the list can be
accessed in the UI.

FIGURE 4.17: Bor-
rowed Books screen

FIGURE 4.18: Bor-
rowed Books screen,

expired books

Book data stored in the separate Borrowed Book model :

Chapter 4. Application Implementation 26

class BorrowedBook {
final String? author;
final String? title;
final String? barcode;
final String? date_due;
final bool? overdue;
...

4.6.5 Book Screen

You can access the book’s screen by clicking on the book card on the Home page.
The widget does not use bloc because all the information will be transmitted here by
the Navigator from the previous screen.

If the user is authorized, he will be able to see the reading button at the bottom
of the screen. If the book is available for reading, the button will be green. See
the figure 4.19. If the book is not available in PDF, the button will be gray with a
corresponding title. See the figure 4.20. Unauthorized users cannot see the button.

On this screen, the user can see :

• Book cover

• Title

• The author

• Description

• Type

• Location

• Storage code

• State, whether the book is available in the library.

If any of these values are missed in the database, it will be the string "—" instead.

FIGURE 4.19: Books
screen, reading avail-

able

FIGURE 4.20: Book
screen, reading not

available

Chapter 4. Application Implementation 27

4.6.6 Reading Screen

Users can visit the Reading book screen If they are authenticated and if the book is
available in electronic format.

This screen widget does not use any bloc. It required only a URL(Uniform Re-
source Locator) with a PDF. The previous book screen gives the URL via Navigator.

To show the PDF book file, I use the plugin syncfusion_flutterpdfviewer[13].
This plugin has a function to view PDF files obtained from the web.

On this screen user can :

• Scroll pages.

• Switch pages with the arrow buttons on the footer bar.

• Zoom page.

• Search the page by number. Tap on the page indicator and input the page you
want to visit. See figure 4.22.

• Users can not download files or copy text from files.

FIGURE 4.21: Reading
screen

FIGURE 4.22: Reading
screen, choose page

28

Chapter 5

API Implementation

An important part of this project development was the creation of API because, with-
out API, the application could not function.

As mentioned in chapter 2, the Koha UCU REST API did not provide the neces-
sary functionality for us. All these functions had to be implemented for the applica-
tion to display current data from the database.

API is implemented using a Python Flask and deployed on the Apache server on
the library’s virtual server with the database.

Figure 5.1 shows a chart of the communication between the mobile application
and the database if we use the API.

FIGURE 5.1: Communication between mobile application and
database via API

During my work with the test server, the API used a not secure HTTP connection.
But after migration to the production server, it uses a secure HTTPS connection.

5.1 Advantages of using API

API became the communicator between application and database on the remote
server. This additional level of abstraction gives us some advantages :

• First of all, in our case, it was the only way to retrieve data from the database
on the server. The direct connection was impossible and needed additional
software and methods. Using API makes it easier.

Chapter 5. API Implementation 29

• The most important advantage of API is that API makes our application more
secure. If we open a connection to the database directly in the application
source code, hackers can also use it. For instance, they can decompile APK
files and find all necessary data. Using API can also save from SQL Injections.

• If the company decides to change the database, it will be easier to rewrite the
back-end than rewrite all applications and products and then release them a
few times.

5.2 Connection to the database

Since the API and the database are side by side on the same virtual server, connecting
to it from the code was quite simple. To connect to the database I use the Flask-
MySQL[6] extension.

I configure access to the database with such settings :

mysql = MySQL()

app.config["MYSQL_DATABASE_USER"] = "user_name"
app.config["MYSQL_DATABASE_PASSWORD"] = "user_password"
app.config["MYSQL_DATABASE_DB"] = "db_name"
app.config["MYSQL_DATABASE_HOST"] = "localhost"

mysql.init_app(app)

MYSQL_DATABASE_PORT default port is 3306, so there was no need to point it
in code.

The following steps are :

1. Open connection : conn = mysql.connect()

2. Create the cursor to execute SQL queries and returns dictionary : cursor =
conn.cursor(pymysql.cursors.DictCursor)

3. Execute SQL queries : cursor.execute("Select * from example_table;")

4. Fetch data with cursor.fetchone() or cursor.fetchall() functions

5. Finally close the connection with cursor.close() and conn.close()

5.3 Functionality

API provides access to the functionality that was necessary for the mobile applica-
tion. Now, these are four get requests that do not edit anything in the database but
return the necessary information from it.

Of course, in the future, the capabilities of the API can be supplemented with the
update and delete methods.

5.3.1 Login

The first ‘/login’ route aim is to check whether the user exists in the database. It
takes two parameters: email and password. If they are not provided, the method
returns code 400, meaning "Bad request".

"login?email=user@gmail.com&password=seacretpassword"

Chapter 5. API Implementation 30

The function executes a SQL query to select user data from the database. If the
user is found, it returns JSON with his data and if not found, then code 403 means
"Forbidden".

It is also important to note that passwords in the database are hashed. Therefore,
before transferring user data, the login function uses a special library to verify that
password from the database and the password inputted in the application match.
If the password is incorrect the function will return the response code 403. JSON
contains user data like first name, last name, borrower number to take the list of his
borrowed books, and others.

Response code Response

200 JSON with user data

400 "error":"Bad request"

403 "error" : "Forbidden"

500 "error":"Internal Server Error [’error message’]"

TABLE 5.1: API login responses

5.3.2 Search

The ’/search’ route provides a JSON file with the list of searched books’ information.
It requires a parameter - q (query). If q is not provided, the method returns response
code 400, meaning "Bad request". The method also takes one optional parameter
pdf, to return only books available in PDF format.

Method fetches from the database all books whose titles or author contain q
(query). The required book’s information is splitted between four tables in the
database. Therefore, I use the left join in the SQL query string to get all the nec-
essary data.

Some books have a cover image file. However, this image is stored as a BLOB
(Binary Large Object). It is a special data type that can store pictures, video, or audio
like binary data. Fetching such huge objects from the database and then transferring
them via the internet can take a lot of time. It also can be impossible, as there is a
limitation on how much data can be transferred via API response.

So to avoid transferring huge amounts of data, API transfers the link to the image
instead of the huge image file. The base of the link looks like this :

"https://opac.ucu.edu.ua/cgi-bin/koha/opac-image.pl?biblionumber="
If we add the id of the book at the end, its biblionumber, we will have a link to

the cover of this book.
"https://opac.ucu.edu.ua/cgi-bin/koha/opac-image.pl?biblionumber=305094"
Due to this, we do not need to extract BLOB files from the database at all. We can

just extract the image id number from the images’ table and if it is not null, then add
the biblionumber to a link. After that, we can add this link to our JSON response
file.

JSON will contain information about searched books, like a title, author, link to
PDF file, and others.

Chapter 5. API Implementation 31

Response code Response

200 Json with books

400 "error":"Bad request"

404 "error":"Not Found"

500 "error":"Internal Server Error [’error message’]"

TABLE 5.2: API search responses

5.3.3 Recent

’/recent’ route returns the newest books in the library. It has one optional parameter
amount. We can define the number of recent books with it. But if we call this method
without defining the amount, it returns us the 20 newest books. It returns the same
information about the book as the search method. It is important to note that the list
of books is in descending order. Thus, first, the user sees new books.

Response code Response

200 Json with the newest books

404 "error":"Not Found"

500 "error":"Internal Server Error [’error message’]"

TABLE 5.3: API recent responses

5.3.4 Borrowed

’/borrowed’ route returns the list of books the user borrowed in the UCU Library.
Methods returns books for one specific user, so it requires a user borrower number.

The method does not need to return all possible book data. It returns the book
title, author, barcode, and due date. ’Due date’ means till when the user should
return the book to the library. So, the user will be able to find out from the application
how much time has left for him to finish reading the book.

Chapter 5. API Implementation 32

Response code Response

200 Json with the borrowed books

400 "error":"Bad request"

404 "error":"Not Found"

500 "error":"Internal Server Error [’error message’]"

TABLE 5.4: API borrowed responses

33

Chapter 6

Conclusion

6.1 Result summary

I built a mobile application for the UCU Library that allows reading e-books. Ap-
plication provides all functionality that was described in section 1.3. In addition, I
implemented an API that provided the mobile application with actual data from the
library’s database.

You can see a video demonstration of the application following this LINK. On
this video demonstration, application gets data from the database on the test server.
That allowed me to show you all the possibilities of the application, because I have
admin rights on the test server. And I can not login aplicattion that works with
production server withou reader’s ticket. On the Github I have separate branches
with test server and production server.

The Github repository of this project is private. If you need to see Github with
the project’s code, please contact me via email detsyk.k@ucu.edu.ua.

6.2 Future works

UCU Library application release on the Play Market and App Store is planned for
the end of June.

At the next meeting with stakeholders, we plan to discuss the future of the ap-
plication and possible features that will be released in the next versions of the appli-
cation.

I think there will always be something to add or improve in this application. The
application’s functionality can be expanded depending on the needs of the library
and its readers.

We can add update and delete methods to the API. This may allow us in the
future, for example, to implement bookings.

We can improve the application design. Flutter allows development for the web.
Therefore, if necessary, we can adapt this application to the web. Thus, the applica-
tion could be used from a computer.

https://drive.google.com/file/d/1KXEYVlsf7N7YRqDyqADlj7BQPJMSx7X9/view?usp=sharing
detsyk.k@ucu.edu.ua

34

Bibliography

[1] Przemyslaw Baraniak. “What is a User Flow – Everything You need to Know”.
In: uxmisfit.com (2020). URL: https://uxmisfit.com/2020/08/17/what-is-a-
user-flow-everything-you-need-to-know/.

[2] bloclibrary.dev. flutter_bloc package. URL: https://pub.dev/packages/flutter_
bloc.

[3] Didier Boelens. “Reactive-Programming-Streams-BLoC”. In: didierboelens.com
(2018). URL: https://www.didierboelens.com/2018/08/reactive-programming-
streams-bloc/.

[4] dart.dev. http package. URL: https://pub.dev/packages/http.

[5] BLoC’s Official Documentation. URL: https://bloclibrary.dev/#/.

[6] Flask-MySQL documentation. URL: https://flask-mysql.readthedocs.io/
en/stable/.

[7] Flask’s documentation. URL: https://flask.palletsprojects.com/en/2.1.
x/.

[8] Flutter documentation. URL: https://docs.flutter.dev/.

[9] fluttercommunity.dev. get_it package. URL: https://pub.dev/packages/get_
it.

[10] flutter_secure_storage plugin. URL: https : / / pub . dev / packages / flutter _
secure_storage.

[11] Adam Lofts. mysql1 package. URL: https://pub.dev/packages/mysql1.

[12] John Ryan. “Learning Flutter’s new navigation and routing system”. In: https:
/ / medium . com / flutter (2020). URL: https : / / medium . com / flutter /
learning-flutters-new-navigation-and-routing-system-7c9068155ade.

[13] syncfusion.com. syncfusion_flutter_pdfviewer package. URL: https://pub.dev/
packages/syncfusion_flutter_pdfviewer.

https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/
https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/
https://pub.dev/packages/flutter_bloc
https://pub.dev/packages/flutter_bloc
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/
https://pub.dev/packages/http
https://bloclibrary.dev/#/
https://flask-mysql.readthedocs.io/en/stable/
https://flask-mysql.readthedocs.io/en/stable/
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://docs.flutter.dev/
https://pub.dev/packages/get_it
https://pub.dev/packages/get_it
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/mysql1
https://medium.com/flutter
https://medium.com/flutter
https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://medium.com/flutter/learning-flutters-new-navigation-and-routing-system-7c9068155ade
https://pub.dev/packages/syncfusion_flutter_pdfviewer
https://pub.dev/packages/syncfusion_flutter_pdfviewer

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	Motivation
	Goals
	Structure

	Background
	Library resources
	Koha
	Koha REST API
	Dataset
	Server

	Flutter
	Pros of Flutter
	Cons of Flutter

	Python Flask

	Related works
	First Example
	Second Example
	Conclusions on related works

	Application Implementation
	User Flow
	UI
	State Management
	Flutter BLoC library

	Repository
	MySQL Repository
	API Repository
	Service locator
	Secure Storage

	Navigation
	Screens
	Splash Screen
	Login Screen
	Home Screen
	Borrowed Books Screen
	Book Screen
	Reading Screen

	API Implementation
	Advantages of using API
	Connection to the database
	Functionality
	Login
	Search
	Recent
	Borrowed

	Conclusion
	Result summary
	Future works

	Bibliography

