
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Fragments of formal verification of the
Solidity smart contracts

Author:
Maksym SHUMAKOV

Supervisor:
Vasyl LENKO

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Maksym SHUMAKOV, declare that this thesis titled, “Fragments of formal verifi-
cation of the Solidity smart contracts” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“The lessons of all the failures, and the process of examining them and their implications,
were the lifeblood of mathematics. In that sense, failure is nothing more than the history of
the proof of the hypothesis. As Mao puts it, the logic of the people is ’fight, fail, fail again,
fight again... till their victory’. ”

Alain Badiou

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Fragments of formal verification of the Solidity smart contracts

by Maksym SHUMAKOV

Abstract

We present our elaborations on the software verification techniques using the Coq
formal proof management system of the Solidity smart contracts. As modern Blockchain
systems that provide smart contracts functionality often manage enormous amounts
of valuable digital assets, it is significant to understand the inherent vulnerabilities of
the system’s general architecture and implementation. We have confined our model
only to Solidity and analogues depth-first execution blockchains. Our research con-
siders the Safe Remote Purchase Solidity contract and modelled in Coq’s functional
language Gallina.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I express gratitude to my supervisor Vasyl LENKO, my teacher Oleh FARENYUK, and
all the stuff of the Ukrainian Catholic University for instilling in me the enthusiasm
to explore complex and poorly understood areas of science.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Overview . 1
1.2 Proposed Solution . 1

2 Blockchain and Solidity Smart Contracts 2
2.1 General overview . 2
2.2 Layered Blockchain Architecture . 4
2.3 Solidity Smart Contracts . 5

3 Formal Verification 7
3.1 Propositions As Types . 8

3.1.1 Natural Deduction . 8
3.1.2 Lambda Calculus . 9
3.1.3 Type Theory . 11
3.1.4 Curry-Howard Isomorphism . 11

3.2 FPMS Coq . 13

4 Related Works 18

5 Model Structure 20
5.1 General Architecture . 20
5.2 Computational Reflection . 22
5.3 External Instruments . 22
5.4 Safe Remote Purchase Contract . 23

6 Results and Conclusion 24

Bibliography 25

vi

List of Figures

2.1 Two versions of topology of ledger control. U stands for user, L for
ledger. 3

2.2 Blockchain layered architecture with separated application and exe-
cution levels . 4

2.3 Blockchain data structure example . 5
2.4 Solidity SimpleStorage smart contract example 6

3.1 Lambda calculus syntax grammar . 10
3.2 Natural deduction annotated with proof terms. 12
3.3 Natural deduction of the lambda function that proves A ∧ (A ∧ A →

B) → B . 13
3.4 CoqIDE theorem proving environment. 14
3.5 Definition of the type of the natural numbers and function pred 14

4.1 Evaluation judgments from [24] . 18

5.1 Model of the blockchain smart contracts 20
5.2 Coq implementation of the BlockchainInfo record typeclass that rep-

resents blockchain status that is accessible for smart contracts. 21
5.3 Bool.Reflect type in Coq . 22
5.4 BlockchainState proof of address equality using computational re-

flection . 22

6.1 Lemma with proof of equivalence of blockchains 24

vii

List of Tables

2.1 Relations between control and location centralization types 4

3.1 Gentzen’s natural deduction rules . 16
3.2 Type theoretic notions representation in Gallina 17

viii

List of Abbreviations

DyCS Distributed yet Centralized System
P2P Peer-to-Peer
EVM Ethereum Virtual Machine
FV Formal Verification
FPMS Formal Proof Management System
SRPC Safe Remote Purchase Contract

ix

Dedicated to the heroic resistance of the Ukrainian people to
Russian fascism

1

Chapter 1

Introduction

1.1 Overview

As modern Blockchain systems that provide smart contracts functionality often
manage enormous amounts of valuable digital assets, it is significant to understand
the inherent vulnerabilities of the system’s general architecture and implementation.
There are many methods to verify the correctness of the program, but usually all of
them are reduced to testing on input data, which is very inefficient and does not give
a broad understanding of how the system works and what its shortcomings. This
applies to blockchain systems.

Formal verification is gaining momentum in use in complex systems. In recent
years, many attempts have been made to formalize such systems as blockchain and
smart contracts. this usually requires significant simplifications and abstractions
from how the system actually works.

However, it is necessary to develop such a thorough and fundamental approach
to the areas on which finances, people’s lives or the democracy of society depend.
In our opinion, formal verification is a fundamental method that has deep potential
for testing such systems.

1.2 Proposed Solution

We use the mathematical proof system Coq, which uses the functional Gallina pro-
gramming language, to model some aspects of the formal verification of smart con-
tracts. We have confined our model only to Solidity and analogues depth-first execu-
tion blockchains. Our research considers the Safe Remote Purchase Solidity contract
and modelled in Coq’s functional language Gallina.

2

Chapter 2

Blockchain and Solidity Smart
Contracts

2.1 General overview

In accounting systems, business transactions are stored in accounting journals
and ledgers. When the journal is filled with information in the system, it is moved to
the ledger. As it is critical for companies, organizations and businesses to maintain
the proper state of their accounts, ensuring the reliability and accuracy of the records
in the van is a priority. Accounting is a model that can design systems that are not
directly related to finance—for example, ensuring the security of rights for referen-
dums, polls, and consensus decision-making. Thus, the issue of ledgers becomes,
for instance, a matter of ensuring the democracy of society.

In addition to transaction records, accounting systems can reproduce stored in-
formation. This allows owners to track the transfer of assets, the availability of an
asset to the user, forecasting and more. Historically, there are two types of such
systems based on the type of their ledgers [19]:

• single-entry: a single record carries out the maintenance of accounting require-
ments in the accounting journal. We meet such systems every day when we
receive confirmation of the purchase of goods in the form of a check, etc. This
approach is convenient for small businesses, community organizations and
similar organizations. However, single entries have drawbacks, such as the
lack of a method to record the status of user accounts. Because of this, it is
difficult to assess the system’s general state, which in some cases can lead to
fraud and such use of the system, which the designers do not provide.

• double-entry: all accounts contain a table of two columns: debit and credit.
When completing a transaction, the user who redirects the asset rules out it
from his account (credits), and the receiver adds to his (debits). As a result, we
have a display of each operation in two records. It significantly expands the
possibilities of accounting, as it becomes possible to track suspicious activity
and the system’s overall status. Another essential characteristic is the invariant
of the assets:

Assets = Liabilities + Equities

At the end of a set of transactions in the system, the total debit and credit must
be equal. Any deviation from this equation will highlight an error.

Ledger centralization is considered based on two topology characteristics: cen-
tralization of control and location. Both system control and localization can be cen-
tralized or decentralized. Combining these aspects of the system determines its vul-
nerabilities, advantages and connectivity.

Chapter 2. Blockchain and Solidity Smart Contracts 3

L

U
U
U
U
U

(A) central-
ized

L

U
U
U
U
U

L

L U

U
U

U
U

(B) decentralized

FIGURE 2.1: Two versions of topology of ledger control. U stands for
user, L for ledger.

Fig.2.1 shows the topology of a centralized and decentralized approach to the
organization of control over ledgers. In approach (A), we have a system in which
one of the graph’s vertices representing the structure has complete control over the
ledger and therefore establishes control over all network participants. In turn, in ap-
proach (B), we have a decentralized practice in which several mutually independent
entities exercise control. In this case, there is no single medium of all information,
which has both advantages and disadvantages.

Another essential characteristic of implementing such systems is the physical
location of its elements. We will call this centralization by location. Centralized by
location is a system in which all its parts (leader, servers, devices, etc.) are located in
one geographical region. Distributed is one in which its functional parts do not have
a single location.

The relationship between these types of organizations of accounting systems de-
termines their types. Table 2.1 shows which type of organization is characterized by
which place and type of control. Two of them are important for our topic: DyCS and
distributed.

• DyCS: the type of organization in which the arrangement of equipment and
means of storing information about transactions is distributed by location but
controlled by a single user or another entity. This approach is often used to im-
plement cloud access systems, where the provider has control over the entire
network.

• Distributed: in this approach, both location and control of the ledger are dis-
tributed. There is no single top of the network that has complete control over
assets or other resources. Implementing such an architecture is a P2P network
in which all users are independent of each other, and there is no functional
centre.

Blockchain is a P2P network with a distributed double-entry ledger, storing in-
formation about all transactions and events. Anyone on the network can access
Ledger, but read-only. Transactions that have already taken place are immutable and
cannot be changed [10]. Changes to the blockchain are made through a consensus
system, which does not presuppose centralized control. It is replaced by collective
management provided through the protocols inherent in the system. After making
a consensus decision, information about the blockchain is transmitted over the P2P
network to all its users. Implementing a blockchain requires a considerable amount
of functionality, such as smart contracts and sophisticated cryptography.

Chapter 2. Blockchain and Solidity Smart Contracts 4

Centralized by
location

Distributed by
location

Centralized
control

Centralized system DyCS

Decentralized
control

- Distributed system

TABLE 2.1: Relations between control and location centralization
types

2.2 Layered Blockchain Architecture

There are many blockchain implementations (Bitcoin, Ethereum, Litecoin, etc.).
All of them more or less fit into the layered structure of the blockchain, which is
an abstraction that allows one to divide the functional parts of the blockchain sys-
tem into several levels (layers) depending on their complexity and features. Fig.2.2
shows the classification of the layers of the blockchain, and the arrows indicate that
the current layer is inferior to the successive in its abstraction level [19].

Hardware & Infrastructure Layer

Virtual machine
Containers
Services

Messaging

Data Layer

Digital signature
Hash

Markel tree
Transaction

Network Layer

P2P

Consensus Layer

PoW
PoS

DPoS
PoET

Application Layer

API

Execution Layer

Smart contracts

FIGURE 2.2: Blockchain layered architecture with separated applica-
tion and execution levels

• Hardware and Infrastructure Layer: is responsible for the integration of in-
dividual computers into the P2P blockchain network. Each such client is rep-
resented as a node responsible for the validation of transactions and the or-
ganization of blocks. Each node has a current copy of the ledger, updated as
changes are made by consensus to the blockchain. Each node is decentralized
and distributed. Take, for example, Ethereum. To initialize a new node in the
network, one needs to download the client to the machine and run the EVM
to perform actions as a client. In addition, the EVM allows the deployment of
Ethereum smart contracts.

• Data Layer: the data layer is responsible for implementing the blockchain data
structure. It presents itself as a linked list and pointer. The linked list arranges
the transaction blocks (Fig.2.3), containing a pointer to the previous block in
the chain, the Merkle root of the tree, and a list of transactions. The Merkel

Chapter 2. Blockchain and Solidity Smart Contracts 5

tree stored in the block contains its hash and additional cryptographic infor-
mation. Hashing differs depending on the implementation. The still usually
used algorithm is The SHA-256.

Block A Header

Hash of previous block

Root of Merkle tree

List of trasactions

Block B Header

Hash of previous block

Root of Merkle tree

List of trasactions

Block C Header

Hash of previous block

Root of Merkle tree

List of trasactions

FIGURE 2.3: Blockchain data structure example

• Network Layer: the network layer is responsible for network communication
between nodes. It contains functionality for finding, communicating, synchro-
nizing nodes with each other in the P2P network.

• Consensus Layer: the level of consensus is one of the most critical compo-
nents of any blockchain. At this level, the part of the system responsible for
the adoption of consensus, and hence proper functioning, operates between
the nodes of the P2P network of a particular blockchain. This level is respon-
sible for synchronizing the nodes with the ledger, monitoring the distribution
of the system to prevent "capturing" it, recognizing the truth of a decision and
many other functions. The consensus layer is at the heart of the blockchain, so
different providers offer different approaches. For example, Ethereum imple-
ments a system with probabilistic consensus, which allows a situation in which
not all users will have a current copy of the ledger, which leads to a split of the
blockchain. Some other providers use a deterministic version of the algorithm
[21].

• Application and Execution Layers: this layers of blockchain are often insepa-
rable, but with the introduction of Ethereum smart contracts, where these lev-
els are two distinct, it is considered good practice to see them as two different.
These two layers contain the entire functional part through which the user in-
teracts with the blockchain. The application layer provides API, allowing one
to work with the system efficiently. The execution layer is wholly dedicated to
the execution of smart contracts.

2.3 Solidity Smart Contracts

All nodes in the P2P blockchain network are divided into two types: users
and smart contracts. Each node has its unique address by which it can be identified.
Some blockchain implementations distinguish between addresses of these two types
(such as Ethereum), and some do not. So a smart contract is a node in a decentralized
network, but it is not managed from the outside by any agent. Instead, it contains
program code that, under certain circumstances, runs and can change its state.

When creating a transaction node, one must specify the address of the recipient,
as well as, if necessary, a message in which to provide additional information about
this transaction. It will be implemented or not by consensus. However, if the address
specified in the contract does not exist, a new smart contract will be created with the

Chapter 2. Blockchain and Solidity Smart Contracts 6

code encrypted in the transaction message. Also, in such messages, the input data
for the execution of the program code of the smart contract are transferred [17].

Each smart contract has its state, a local configuration of information in variables,
fields and storage that it stores. When one calls the execution of the smart contract
code, its status may change. The smart contract’s state is an essential tool for repre-
senting the status of real objects, such as the distribution of wages in the company,
Financial derivatives, and the contents of files in the archives. Transactions are the
only way to trigger code execution in a contract, and any state changes that will
result will be stored in the blockchain [19][12].

Smart contracts can be designed in different languages, but the language pro-
posed by Ethereum, Solidity, was made specifically for this purpose. The user-
written source code is compiled using the Ethereum runtime engine. This allows
one to use the created bytecode for efficient execution on EVM. Solidity, in many re-
spects, follows the syntax of JavaScript and provides extensive functionality for the
implementation of smart contract programs.

contract SimpleStorage {
uint storedData;

function set(uint x) public {
storedData = x;

}

function get() public view returns (uint) {
return storedData;

}
}

FIGURE 2.4: Solidity SimpleStorage smart contract example

In Fig.2.4 [17] we have a smart contract SimpleStorage, which implements stor-
age for a single number of type uint. The variable uint storedData determines the
state of the contract. Every participant of the network has an access to get the state
of the contract by calling the get() function marked with the view keyword indicat-
ing that the function does not change the state. Via set(uint x) function one can
modify the state by assigning another value x of the type uint to the variable uint
storedData. This can only be done by creating the transaction with proper input
data encoded in a transaction message.

7

Chapter 3

Formal Verification

When designing software and hardware technology, the development team may
make mistakes or not anticipate other vulnerabilities in their technology. Most mod-
ern software contains vulnerabilities. Moreover, due to the principle of backward
compatibility, each such error is signalled in the future, requiring much more re-
sources to circumvent it. Checking the correctness of the program requires testing
it on all sorts of input data. A similar approach is used in unit testing. Moreover,
even though the possible combinations of input data are finite, their number usu-
ally makes it impossible to test the correctness of the technology effectively. Dijkstra
writes in his book [4]:

As I have now said many times and written in many places: program
testing can be quite effective for showing the presence of bugs, but is
hopelessly inadequate for showing their absence.

Another approach that differs from checking the correctness of all input data
is formal verification. FV is an approach in which an algorithm, program or hard-
ware is modelled using mathematical entities. Having a collection of such objects, it
becomes possible to prove the properties of the system using the methods of math-
ematical logic. It is evident that the characteristics proved in this way will be valid
regardless of the input data type.

Despite the theoretical sophistication of FV and the ability to prove general state-
ments about the technology, it has a number of shortcomings that prevent its widespread
use in applied fields [6]:

• Designing applications into a formal system is often a task in which the initial
structure of the project is lost to ensure the proper level of abstraction and
generality. Because of this, the mathematical model is confusing, complex and
problematic for financing.

• Proving claims about the properties of the application system is a difficult task.
The more complex the formalization, and the formal systems that fit well the
real ones are often very complex, the more sophisticated the skills required in
a mathematical proof.

• The correctness of the formal system does not necessarily entail the correctness
of the real one. During formalization, some aspects may be omitted, which
significantly affects the final result of verification.

Despite significant shortcomings, formal verification remains the most reliable method
of proving the correct operation of programs and hardware. It is widely used in de-
veloping processors, aircraft technology and more. FV requires some system that
will act as a mathematical model. Consider an approach that uses typed lambda
calculus and intuitionistic logic for modelling.

Chapter 3. Formal Verification 8

3.1 Propositions As Types

3.1.1 Natural Deduction

Natural deduction is a formalization of the derivation system that mathemati-
cians use in practice. Gentzen proposed the natural deduction in the 1930s due to
its dissatisfaction with the then widely used Hilbert system. The latter proposed
a set of axioms and inference rules based on which deduction could be formalized.
However, the process of working within the Hilbert system did not resemble the real
work of a mathematician. It was instead a rigid system of formalisms [13].

In turn, Gentzen set himself to get as close as possible to the usual, intuitive
understanding of deduction. The system of natural deduction he proposed is the
Gentzen NJ system. It does not contain axioms but only inference rules. The latter
defines the content of logical connections.

A language of terms is build using the following grammar [5]:

Terms t ::= x | a | f (t1, t2, . . . , tn)

where x is a variable, a - parameter and f is a functional symbol of arity n. Therefore the
possible terms are: f (x, g(a, b)), f (g(f (x, x, a, h(c)))), etc.

The language of propositions is built up from predicate symbols P, Q, etc. and
terms in the usual way:

Propositions A ::=P(t1, . . . , tn) | A1 ∧ A2 | A1 → A2 | A1 ∨ A2 |
¬A | ⊤ | ⊥ | ∀x.A | ∃x.A

In natural deduction each logical connective and quantifier is uniquely deter-
mined by two rules: introduction and elimination rules. Moreover, it cannot use other
connectives and quantifiers in its definition. This principle is called orthogonality
stipulating that basic blocks of natural deduction are all independent of each other.

• Introduction rule: determines how to infer the truth of logical connective or
quantifier (i.e. conjunction, implication) based on the truth-value of the inputs.

• Elimination rule: deduces the truth-values of other propositions given that
the connective is true.

A connective is considered to be defined if it is provided with both rules (intro-
duction and elimination) such that they satisfy two properties:

• Local soundness: when introducing a connective and then immediately elim-
inating it, we should be able to erase this detour and find a more direct deriva-
tion of the conclusion without using the connective.

• Local completeness: we can eliminate a connective in a way which retains
sufficient information to reconstitute it by an introduction rule.

Both these properties require introduction and elimination rules to be "equally strong"
for we could restore the initial truths or the connective after eliminating it.

For clarity, define a logical conjunction. To do this, one must specify the rule
of introduction and the rule of elimination. From our intuition of logic we define
conjunction introduction rule as: the conjunction is true when both of the operands
are true. Thus the following introduction rule [23]:

A true B true ∧IA ∧ B true

Chapter 3. Formal Verification 9

This leads to two elimination rule, namely ∧EL for left elimination and ∧ER for
right:

A ∧ B true ∧ELA true

A ∧ B true ∧ERB true

Using these rules we can attest if local soundness and local completeness are
satisfied. If not these rules for conjunction cannot be accepted in natural deduction
system.

C
A true

D
B true ∧IA ∧ B true ∧ELA true

=⇒ R
C

A true

Analogously the inference of B in the context D can be achieved. Clearly, there is no
need to proceed with all these deductions to infer A true, thus the local soundness
holds.

As for local completeness we can use this deduction tree:

E
A ∧ B true

=⇒ R

E
A ∧ B true ∧ELA true

E
A ∧ B true ∧ERB true ∧IA ∧ B true

As a result, the rules of introduction and elimination that we have defined for
the conjunction are suitable for use in natural deduction. So we have the definition
of logical and. This simple mechanism allows one to determine all the logical con-
nections and quantifiers to work with intuitive logic. The transition to classical logic
requires the introduction of the rule of excluding the third, but there are some sub-
tleties that we will not cover in this paper [13]. We present in the Table 3.1 the rules
of introduction and elimination to determine other elements of Gentzen’s natural
deduction.

3.1.2 Lambda Calculus

In the early 20th century, Whitehead and Russell, in their remarkable "Principia
Mathematica" [22], showed that the methods of logic could serve to represent much
of the mathematical objects and judgments. This became the basis for many areas of
research. For example, in philosophy, this gave new impetus to logical positivism,
the philosophical school of epistemology, which relies on the methodology of math-
ematical and logical apparatus for the study of real-world phenomena [9].

The discoveries of Whitehead and Russell had a significant impact on the Ger-
man mathematician David Hilbert and the scientific school he founded. In math-
ematical discourse, Gilbert posed a new problem, Entscheidungsproblem (decision
problem), which consisted of proposing an "efficiently calculable" method for de-
termining the truth value of any logical proposition. The central mystery of the
Entscheidungsproblem was determining what is considered "efficient calculable" [20].

One of the attempts to define "efficiently calculable" is lambda calculus invented
by Alonzo Church at Princeton. The initial aim of the lambda calculus is to pro-
vide calculable system to encode and work with logical propositions. However, its
applications go beyond the scope of the original goal.

Chapter 3. Formal Verification 10

We can define the syntax of the lambda calculus using the Backus–Naur form
[16]:

<expression> ::= <name> | <function> | <application>
<function> ::= λ<name>.<expression>

<application> ::= <expression><expression>

FIGURE 3.1: Lambda calculus syntax grammar

where <name> is an element from the set V called names or more usually variables.
Functions are evaluated when there is an expression in which the first argument

is a function and the second is arbitrary expression. The result of evaluation is a
substitution of the expression in the place of the function’s name in functional ex-
pression. For instance, consider the expression produced by the grammar (Fig.3.1):

(λx.(λt.xtx))E1E2

Using substitution for evaluation of the lambda function we, firstly, apply function
(λx. . . .) to E1:

(λx.(λt.xtx))E1E2 ≡ (λt.E1tE1)E2

and then continue this process with another function acting on the expression E2:

(λx.(λt.xtx))E1E2 ≡ (λt.E1tE1)E2 ≡ E1E2E1

Another interesting application of lambda functions, besides logical proposition en-
coding, is arithmetic formalization [16]. There is a way to represent non-negative
integers using the lambdas. Let us write λx.(λy.E) as λxy.E. In the sense of com-
putation these two notions are absolutely equivalent. Therefore, we can define 0
as:

0 := λsz.z

and all the successive numbers are defined as a number of applications of s to z:

N := λsz.s(s(. . . s(z) . . .))︸ ︷︷ ︸
N times

Now we can define lambda function S representing the successive number to the
given:

S := λwyx.y(wyx)

When one tries to compute S0 he or she gets 1 as expected:

S0 ≡ (λwyx.y(wyx))(λsz.z)
≡ λyx.y((λsz.z)yx)
≡ λyx.y((λz.z)x)
≡ λyx.y(x) ≡ 1

Chapter 3. Formal Verification 11

One can you induction to show that for any N defined using the lambda functions
the following expression is true:

SN ≡ N + 1

3.1.3 Type Theory

Type theory arises from the paradox of set theory, which was considered a can-
didate for the position of the fundamental theory of mathematics discovered by
Bertrand Russell. The paradox arises in a situation where the predicate can be ap-
plied to itself, such as in the statement "a set that contains all sets but not itself."
Written in the set-theoretic style:

R = {x | x /∈ x}

If we suppose that R ∈ R then by the definition of R it should not be an element
of itself. Still, on the other hand, if R /∈ R then it must belong to itself, namely
R /∈ R =⇒ R ∈ R. To avoid this paradox Russel proposed a type theory.

If the set theory has a dual structure, namely sets and language, that allows them
to operate, then type theory operates only with types. Another difference is that the
set is uniquely characterized by the elements that inhabit it, while the type does not
have such a property. In type theory, each element has its type, outside of which it
does not exist [7]. By convention, this is written as a : A meaning that element a has
a type A.

Types as such also have their types. Types of types inhabit the universe, which is
strictly ordered.

U0 : U1 : U2 : . . .

The structure of types is cumulative, i.e. the object that is of a type Ui is also of a type
Ui+n for arbitrary non-negative integers i, n.

This hierarchy is precisely the means to avoid Russell’s set paradox, because all
mathematical objects are assigned a type and being on the one level of this order
object cannot operate on the higher.

3.1.4 Curry-Howard Isomorphism

One of the most important results of mathematical logic for formal verification
is the Curry-Howard correspondence, which finds a fundamental connection between
logical statements, types, and lambda calculus. Usually this isomorphism is de-
scribed by the following statements:

• Propositions as types: meaning that for every logical proposition there is a
type that corresponds to it.

• Proofs as programs: states that to provide a proof for a certain logical propo-
sition it is enough to provide a program of that type. We work with lambda
calculus to write programs, hence every lambda function as its type.

• Simplification of proofs as evaluation of programs: to evaluate a program in
some sense means to simplify a logical proof and vice versa.

As an example of application of Curry-Howard isomorphism we will provide a
proof of the following proposition of intuitionistic logic A ∧ (A ∧ A → B) → B.

Chapter 3. Formal Verification 12

Using the means of natural deduction and the corresponding introduction and elim-
ination rules for the connectives and quantifiers we can prove a proof [15]:

u
A ∧ (A ∧ A → B)

∧ER
A ∧ A → B

w
A

w
A

∧I
A ∧ A

→ E
B

→ Iw

A → B

u
A ∧ (A ∧ A → B)

∧EL
A

→ E
B

→ Iu

A ∧ (A ∧ A → B) → B

Now, having the proof of the proposition we can use deduction rules (Fig.3.2) de-
scribed in [15] to get the corresponding program in lambda calculus. By the Curry-
Howard correspondence that program will be equivalent to the derivation above.

FIGURE 3.2: Natural deduction annotated with proof terms.

Moreover, this program will be of a type A ∧ (A ∧ A → B) → B and its proof. In
Fig.3.3 we provide the deduction of such lambda function.

Chapter 3. Formal Verification 13

u :A ∧ (A ∧ A → B)
∧ER

snd u :A ∧ A → B

w :A w :A
∧I

(w, w) :A ∧ A
→ E

snd u(w, w) :B
→ Iw

λw.snd u(w, w) :A → B

u :A ∧ (A ∧ A → B)
∧EL

fst u :A
→ E

(λw.snd u(w, w))fst u :B
→ Iu

λu.((λw.snd u(w, w))fst u) :A ∧ (A ∧ A → B) → B

FIGURE 3.3: Natural deduction of the lambda function that proves
A ∧ (A ∧ A → B) → B

Finally, the resulting lambda function is λu.((λw.snd u(w, w))fst u) that has
type of the initial proposition. It is worth noting that evaluation of this function on
the input data is equivalent to the simplification of the initial proof.

The general logic of the Curry-Howard isomorphism makes it possible to write
programs in various functional programming languages, such as Coq, instead of
proving theorems in mathematical logic, which greatly facilitates the creation of ap-
propriate formal verification environments. Thus, type theory, lambda calculus, and
natural deduction are the primary tools used by any FPMS system.

3.2 FPMS Coq

Coq is a software implementation of the formal proof management system (FPMS).
It consists of the Gallina functional programming language and the CoqIDE pro-
gramming environment. The Gallina language has a wide range of tools for work-
ing with mathematical objects of different levels. They are tactics, proofs, theorems,
lemmas, predicates, sets, etc. To ensure logical consistency, it is based on the typifi-
cation of objects. In general, the user has access to the types of these sorts - Prop, Set
and Type.

Gallina’s mechanism for proving a theorem or lemma is presented through the
use of tactics. These are the rules that the user uses to move from one goal to an-
other, eventually reaching the basics of the proposition. In the process of proof, sub-
goals are created that require processing. Thus, derivation in the Coq environment
presents itself as an inverse deduction system. The most commonly used tactics are
intro and destruct. They are analogous to the rules of introduction and elimination
from the natural deduction of Gentzen [3].

Chapter 3. Formal Verification 14

FIGURE 3.4: CoqIDE theorem proving environment.

Coq is endowed with a minimal system of ready-made types, but the structure of
the functional Gallina programming language allows for the flexible creation of new
types. In addition to a simple inductive definition through the keyword Inductive,
it is possible to add more complex types through typed classes, records, and in-
stances. The standard library already has some predefined types, such as natural
numbers, booleans, and well-known data structures, lists, hash tables, etc [14]. For
example, consider the definition of the inductive type nat, which represents the type
of natural numbers Fig.3.5.

Inductive nat : Type :=
| O
| S (n : nat).

Definition pred (n : nat) : nat :=
match n with
| O O
| S n’ n’
end.

FIGURE 3.5: Definition of the type of the natural numbers and func-
tion pred

The keyword Inductive indicates that it is necessary to define a new induc-
tive object named nat and with a colon and indicates that it is defined as a new type.
It contains two entities in Coq called constructs, namely O and the function S, which
takes as an input one argument n of type nat. So, all individuals of type nat have
the following form:

O, S(O), S(S(O)), . . .

Just as natural numbers are determined in lambda numbers, here we have a zero
element O, and all subsequent ones are constructed as successors to the previous
one, by applying the function S to the number.

Chapter 3. Formal Verification 15

The Definition keyword indicates that we want to define a new function. In
the given example, we have function pred, which accepts an input of an element of
inductive type nat and returns another element of type nat. This function represents
the previous natural number to the given, provided that the zero element has itself
as a predecessor. The implementation of such a function is possible through the
use of the match construct, which compares their given element with the proposed
templates. If the number has the form O, return O, as agreed. If it has the form
S n’ then return the number to which the function S has been applied. Since the
inductive definition of nat does not provide for other type formats, the function is
well defined.

These are just a few of the designs that Gallina provides for use. Since Coq uses
typing mechanisms, the possibilities of mathematical type theory are reflected in the
environment. The Table 3.2 shows the corresponding constructions in type theory
and their analogues with Gallina [8].

Chapter 3. Formal Verification 16

Introduction rule Elimination rule

A true B true ∧IA ∧ B true
A ∧ B true ∧ELA true

A ∧ B true ∧ERB true

A true ∨ILA ∨ B true

B true ∨IRA ∨ B true
A ∨ B true

u
A true

...
C true

w
B true

...
C true Eu,w

C true

u
A true

...
B true → Iu

A → B true

A → B true A true → EB true

u
A true

...
p true

¬Iu,p
¬A true

A true ¬A true ¬EC true

⊤I⊤ true

-

-

⊥ true ⊥EC true

[a/x]A true
∀Ia

∀x.A true
∀x.A true ∀E
[t/x]A true

[t/x]A true
∃I∃x.A true

∃x.A true

u
[a/x]A true

...
C true ∃Ea,u

C true

TABLE 3.1: Gentzen’s natural deduction rules

Chapter 3. Formal Verification 17

Type theory expressions Gallina language
constructions

A A
A → A A -> A

Πx : A.B forall x : A, B
□ Type
⋆ Set Prop K : Type

(⋆ → ⋆)α (fun x : K => x -> x) A
x : A x : A

λx : A.x fun x : A => x
(λx : A.x)z (fun x : A => x) z

TABLE 3.2: Type theoretic notions representation in Gallina

18

Chapter 4

Related Works

In recent years, much research has been conducted in the field of formal verifi-
cation. The first steps in the technology of formal verification of the blockchain were
made in several scientific papers. We will consider some of them that, in our opin-
ion, have made significant progress in the field of research and the most significant
impact on our work.

In the work of Zakrzewski [24] they analyze the structure of the grammar of the
programming language for writing smart contracts Solidity, the principle of memory
and the execution of contract code. They are abstracted and represent the account in
the form of a triplet (b, p, s), where b is a balance of an account, p represents account
program and s is its internal storage. Program is represented by the pair (c, cde f s)
of contract name and the collection of account contract’s definitions. The type for
values is an integer type with an upper bound to simulate restricted character of
standard programming languages.

An important part is the representation of contract’s state and evaluation of its
program. In the work they model state as a tuple µ = (a, m, σ, l f , lm), where a is an
address of the current account, m - memory, σ models network, function local store is
l f and modifier local store lm. To better model the Solidity principle of operation they
introduce these two last functions to have a mapping from identifiers of variables to
their values. For l f , lm are a variable mappings of the currently executing function
and modifier respectively.

FIGURE 4.1: Evaluation judgments from [24]

Evaluation judgments (Fig.4.1) are the main principle of the whole system.
They show which parts of it change under what conditions. We see, for example, that
during a transaction, the network σ receives a message msg and changes its state to
σ′. The authors provide proofs of properties for such a model of Ethereum smart
contracts and show its drawbacks.

Another important work in the field [11] offers a structural model for describing
and modelling Ethereum smart contracts. Their model is very detailed and covers
the minor details of smart contracts. Their mathematical simulation method pro-
vides the ability to integrate blockchains with both depth-first and breadth-first. We
used the fragments and ideas from this work to implement our depth-first model.

The disadvantage of this work is that the authors did not implement the syntactic
grammar tree of Solidity source code parsing, as is often the case in similar projects.

Chapter 4. Related Works 19

This model is fully operational at the level of functional programming languages,
so it requires that a program is written in Solidity be integrated into the proposed
model in Gallina.

20

Chapter 5

Model Structure

5.1 General Architecture

Our model is based on the representation of the blockchain, smart contracts,
and their implementation based on functional programming paradigms. We were
inspired by the model proposed in work [11] because it is general enough to cover
our requirements and does not use monads, leading to excessive programming com-
plexity. Instead of representing the constant state of the smart contract in functional
programming using monads, this model saves the state in the form of serialized data
that can be reproduced at runtime. This serialized data is also used as messages con-
taining transactions in Ethereum. In our approach, we have changed the principle
of serialization using third-party libraries. We have identified the main fragments
of this model, supplemented them with additional functionality and redesigned the
part that does not meet our needs.

Environment

Blockchain
Information

Blockchain State

Transaction

Transaction
Content

Contract Execution
Context

Contract Execution
Context

Contract Execution
Context

FIGURE 5.1: Model of the blockchain smart contracts

Consider the main components of the model:

• Blockchain State: a class that defines the requirements for basic objects in the
system, such as addresses, their countability, verification that the address be-
longs to a person or the contract itself.

Chapter 5. Model Structure 21

• Blockchain Information: a class that allows you to get information about the
account in the network, its address, information about its type (whether it is a
user account or a smart contract). Basic class for working with a model.

• Environment: a controlling record that contains the Blockchain Information
and Blockchain State classes and allows you to interact with accounts, get
information about them for smart cats when executing their code. In other
words, it is an interface for the interaction of system elements.

• Transaction: a wrapper record that isolates information about the sender of the
transaction. Contains the sender’s address and the contents of the transaction
itself.

• Transaction Content: the content of a transaction is defined as an inductive
type that has the following constructors: a function that determines the ad-
dress to which the transaction is sent and the amount of internal currency (bit-
coin, ether, gas, etc.) that is laid for this transaction. Function to perform the
same action as the previous one, but with a serialized message. Required for
creating new contracts and transmitting input to execute their internal pro-
gram code. Additionally contains functionality to create a smart contract. To
do this, the contractors will have to communicate with the blockchain in order
to initiate a new contract.

• Contract: receives information about the input data and its status during the
transaction. Conceptually, the smart contract in our model is a finite state ma-
chine, in which the state changes depending on the input data. Software im-
plementation requires that contract functions provide its serialized state and
the input from which it will return another state to the network. Importantly,
the contract can return a list of other transactions that you must first complete
before returning your status. These are the functions and methods that require
external interaction with the blockchain network. Only after such a consistent
execution of all transactions will our current contract return to its status and
the transaction will be considered completed.

Record BlockchainInfo := build_bc_info
{
bc_height : nat;
bc_slot : nat;
bc_total_height : nat;
account_balance : Address -> Amount;

}.

FIGURE 5.2: Coq implementation of the BlockchainInfo record type-
class that represents blockchain status that is accessible for smart con-

tracts.

Fig.5.2 shows the part of the model designed for Gallina. The BlockchainInfo
record contains information about the blockchain, namely its height, available slot
and overall height taking into account the free slots in the chain. These three values
are of type nat, which is predefined by the Coq medium. The account balance func-
tion is of type Address -> Amount and is a model for obtaining an account balance
at its address.

Chapter 5. Model Structure 22

5.2 Computational Reflection

An important aspect that should be taken into account when designing such
systems is the need to implement the principle of computational reflection [1].

Since Coq is based on the principles of intuitionistic logic and natural deduction,
in the Gallina programming language, the bool and Prop types have completely dif-
ferent implementations and by default have no connection between them. Therefore,
in order to conveniently prove the theorems, for example, in a situation where it is
necessary to analyze the specific values of the truth of statements, it is important to
create a mechanism for interchangeable use of these types. This principle is called
computational reflection.

Computational reflection is an approach in which the values of one type are re-
flected on the type of statements that are fundamental to the system. This approach
is often used in mathematics and logic. One of the best-known examples is Godel’s
numbering, in which statements are mapped to integer values.

Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT : P -> reflect P true
| ReflectF : ~ P -> reflect P false.

FIGURE 5.3: Bool.Reflect type in Coq

The system already has an inductive type, which is used as a common frame-
work to unify the use of computational reflection. As can be seen from the meaning
in Fig.5.3, the beginnings of the truth of the statement are reflected in the Boolean
type, which corresponds to the intuitive understanding.

Lemma bc_address_eq_refl ‘{BlockchainState} x :
address_eqb x x = true.

Proof.
destruct (address_eqb_spec x x).
auto.
congruence.
Qed.

FIGURE 5.4: BlockchainState proof of address equality using com-
putational reflection

One of the uses of computational reflection is to map the statements about the
equality of addresses in the blockchain to boolean values. This allows one to eas-
ily prove the lemmas on compliance with boolean values. In Fig.5.4 the function
address_eqb_spec of type Address -> Address -> bool after reflection is easily in-
tegrated into work with boolean values and proofs.

5.3 External Instruments

The standard Coq comes with a minimum number of types and tools to work
with, so we used two external libraries that provide functionality.

• stdpp: provides a great number of definitions and lemmas for common data
structures such as lists, finite maps, finite sets, and finite multisets. It uses type

Chapter 5. Model Structure 23

classes to keep track of common properties of types, like it having decidable
equality or being countable or finite [18].

• Coq-Ceres: library which is used to encode messages that are used in trans-
actions and smart contract state encoding. S-expressions are uniform repre-
sentations of structured data. They are an alternative to plain strings as used
by Show in Haskell and Debug in Rust for example. S-expressions are more
amenable to programmatic consumption, avoiding custom parsers and en-
abling flexible formatting strategies [2].

5.4 Safe Remote Purchase Contract

One of the goals of our work is to test hypotheses about existing known types
of Solidity smart contracts. One of these is Safe Remote Purchase Contract or SRPC.

This contract is used for online purchase where both the seller and the buyer
deposit ethers twice the value of the goods into the contract and can only get their
de- posits back when the buyer confirms receipt of the goods. The seller is disincen-
tivized from withhold- ing the goods (not shipping them), and the buyer is disin-
centivized from not confirming receipt, because in doing so they will lose more than
the value of the goods.

24

Chapter 6

Results and Conclusion

As a result, we have a system that still requires refinement, but already simulates
the basic functionality of the blockchain. The model is not complete, as it omits many
aspects of true blockchain systems, such as hashing and other levels that go beyond
the level of vionization and applications.

FIGURE 6.1: Lemma with proof of equivalence of blockchains

As an example, the code diagram shows a lemma that reflects the fact that if
the state changes in two blockchains by the same amount, their equivalence will
not change. This requires proof with additional ancillary lemmas, as well as the
rewriting mechanism that we implemented earlier.

This study required a verbal theoretical study of the sources, as well as fungal
practice with a system of proof of Coq’s theorems. We continue to work on this
work to complete it, but a wide layer of work in design, research and programming
has been done.

25

Bibliography

[1] Yves Bertot. Coq in a Hurry. 3rd cycle. 2016.

[2] Coq-Ceres documentation. github.com/Lysxia/coq-ceres.

[3] Coq documentation. coq.inria.fr/documentation.

[4] Edsger Wybe Dijkstra. A Discipline of Programming. 1st ed. Prentice-Hall, Inc.,
1976.

[5] Wolfgang Thomas H.-D. Ebbinghaus J. Flum. Mathematical logic. 1st ed. Springer
New York, 1996.

[6] John Harrison. Formal verification. Lecture notes from Marktoberdorf. 2010.

[7] Macor Jackson. A brief introduction to type theory and the univalence theorem.

[8] Vasyl Lenko. “Methods and tools for personal knowledge management in in-
telligent systems”. In: (2020).

[9] Jürgen Trinks Maria Fürst. Philosophie. 2nd ed. Dukh i litera, 2019.

[10] Pradhan Pattanayak Sanjeev Verma Vignesh Kalyanaraman Michael Crosby
Nachiappan. BlockChain Technology Beyond Bitcoin. Sutardja Center for Entrepreneur-
ship Technology Technical Report. 2015.

[11] Jakob Botsch Nielsen and Bas Spitters. “Smart Contract Interactions in Coq”.
In: (2019). DOI: 10.48550/ARXIV.1911.04732. URL: https://arxiv.org/abs/
1911.04732.

[12] Sebastián E. Peyrott. An Introduction to Ethereum and Smart Contracts. Auth0
Inc. Version 0.1.0. 2017.

[13] Frank Pfenning. Automated Theorem Proving. Material for the course Automated
Theorem Proving at Carnegie Mellon University, Fall 1999, revised Spring
2004. This includes revised excerpts from the course notes on Linear Logic
(Spring 1998) and Computation and Deduction (Spring 1997). 2004.

[14] Benjamin C. Pierce et al. Software Foundations. Version 5.0. http://www.cis.upenn.edu/ bcpierce/sf.
Electronic textbook, 2017.

[15] Giselle Reis. Curry-Howard correspondence. Lecture 04, Constructive Logic (15-
317).

[16] Raul Rojas. A Tutorial Introduction to the Lambda Calculus. 2015. DOI: 10.48550/
ARXIV.1503.09060. URL: https://arxiv.org/abs/1503.09060.

[17] Solidity documentation. docs.soliditylang.org/en/v0.8.14/.

[18] Stdpp documentation. gitlab.mpi-sws.org/iris/stdpp.

[19] Nimesh Prakash Vivek Acharya Anand Eswararao Yerrapati. Oracle Blockchain
Quick Start Guide. A practical approach to implementing blockchain in your enter-
prise. 1st ed. Packt Publishing Ltd, 2019.

[20] Philip Wadler. “Propositions as Types”. In: Commun. ACM 58.12 (2015), 75–84.
ISSN: 0001-0782. DOI: 10.1145/2699407. URL: https://doi.org/10.1145/
2699407.

github.com/Lysxia/coq-ceres
coq.inria.fr/documentation
https://doi.org/10.48550/ARXIV.1911.04732
https://arxiv.org/abs/1911.04732
https://arxiv.org/abs/1911.04732
https://doi.org/10.48550/ARXIV.1503.09060
https://doi.org/10.48550/ARXIV.1503.09060
https://arxiv.org/abs/1503.09060
docs.soliditylang.org/en/v0.8.14/
gitlab.mpi-sws.org/iris/stdpp
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

Bibliography 26

[21] Wenbo Wang et al. “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks”. In: IEEE Access 7 (2019), pp. 22328–
22370. DOI: 10.1109/ACCESS.2019.2896108.

[22] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cam-
bridge University Press, 1925–1927.

[23] Puliutin E. Yershov U. Mathematical logic. 1st ed. Moskva "Nauka", 1979.

[24] Jakub Zakrzewski. “Towards Verification of Ethereum Smart Contracts: A For-
malization of Core of Solidity.” In: VSTTE. Ed. by Ruzica Piskac and Philipp
Rümmer. Vol. 11294. Lecture Notes in Computer Science. Springer, 2018, pp. 229–
247. ISBN: 978-3-030-03592-1. URL: http://dblp.uni-trier.de/db/conf/
vstte/vstte2018.html#Zakrzewski18.

https://doi.org/10.1109/ACCESS.2019.2896108
http://dblp.uni-trier.de/db/conf/vstte/vstte2018.html#Zakrzewski18
http://dblp.uni-trier.de/db/conf/vstte/vstte2018.html#Zakrzewski18

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	Proposed Solution

	Blockchain and Solidity Smart Contracts
	General overview
	Layered Blockchain Architecture
	Solidity Smart Contracts

	Formal Verification
	Propositions As Types
	Natural Deduction
	Lambda Calculus
	Type Theory
	Curry-Howard Isomorphism

	FPMS Coq

	Related Works
	Model Structure
	General Architecture
	Computational Reflection
	External Instruments
	Safe Remote Purchase Contract

	Results and Conclusion
	Bibliography

