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“Perfect is the enemy of good”

Voltaire, Questions sur l’Encyclopédie

“He gets all applause who has mingled the useful with the pleasant”

Horace, Ars Poetica

“My speech is imperfect. I speak in images. With nothing else can I express the words from
the depth”

Jung, Red Book
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Abstract

Our objective is to construct a simple computation model of perception in order to
express a subjective comparison between two objects based on their extrinsic ability
to be perceived in the eyes of an observer and their effect on the observer’s world
perception. The basis of the comparison we’re interested in is often referred to as
beauty, salience, interestingness, or aesthetic preference, yet we concede the com-
pleteness with which these notions are tasked to deal in favor of a core, conceptual
formalism. We express perception’s end goal to be making short descriptions of
objects within some language and formalize this process with equality saturation.
We examine mechanisms aiding the improvement of language to keep descriptions
short and how it relates to perceived objects’ relative worthiness given an observer’s
language and history of experience.
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Chapter 1

Introduction

With the advent of ubiquitous deep generative models that have uncharted scal-
ing limits (Gwern, 2020b) and which, in principle, can generate almost anything, a
large subset of which attempts to create art specifically (visual (Ramesh et al., 2022),
music (Dhariwal et al., 2020), fiction (Gwern, 2020a)), a captious question arises: ar-
tistically speaking is any of it good? Or rather: can the artistic value be explained
formally, in the same or similar way as the artwork can be generated? Formal meth-
ods of judging artistic value are severely lagging behind those of generation, and
unlike any other technology which redefined the art and lowered the skill threshold
needed for its creation (camera, digital audio workstation), generative models, un-
less constrained, are destined for a complete informational flood with their artistry
without requiring any human input whatsoever. There is already a surplus of the
creative content of various quality, some of it already generated, and by the sheer
amount, natural discoverability becomes pointless. Recommendation engines and
algorithmic feeds only partially solve the problem (or maybe exacerbate, given the
tendency of over-reliance on and even anthropomorphization of the algorithm itself
(Freeman, Gibbs, and Nansen, 2022)), since they operate on tangential metrics such
as engagement, gaming which has turned into an industry of its own.

But that’s only a tiny sliver of the problem, or rather something taken from the
zeitgeist, yet we’re interested in far detached questions: what are things really, and
what is their worth? How do we attribute the concept of beauty to some specific ob-
jects? How can the very same objects be seemingly inconspicuous or even debased
in the eyes of a different observer? These questions were tried for centuries and
given their monumentally, only with partial success. We will also take our chance
at attempting to address those. However, our methodology will, by design, be too
elementary to grapple with them in their entirety, nor will it surpass any of the ex-
isting philosophical treatment, and it will also lack the empirical evidence justifying
itself. Despite that, we hope it will offer a straightforward and uncomplicated model
formalizing the artistic value by relying upon as little as possible.

Concretely our objective is to construct a mapping from any object (either tan-
gible or abstract) to a real value, which we call the subjective goodness that will
serve as a proxy for a measure of beauty, aesthetic, or artistic value, but we leave
the tightening of this connection, perhaps with real-world experiments, for the fu-
ture work. There already has been convincing and also theoretical research in con-
necting beauty with simplicity framed in terms of algorithmic complexity (Section
2.1). However, we think that the generality in its formulation (it operates on opaque
terms) and in its result (it’s way too generous) is incomplete. Here, we want to sac-
rifice a level of generality to gain a closer look at possible mechanism of how an
observer might judge the artistic value of objects based on how he makes descrip-
tions of them. While the process of describing is often associated purely with com-
munication, we equate perception as making descriptions for one-self, perhaps in
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a language that has no requirement of being understandable by others or being ut-
terable at all. We make descriptions in the form of programs using lambda-calculus
(Section 3.1), which upon execution, reproduce an object losslessly. Then we give
motivation as to what is a prerequisite for a system that makes such descriptions,
which we call a language (Section 4.1), and how we can extend it in order to render
it to be more efficient, which we call abstraction (Section 4.2). Then we describe a
procedure for making and storing multiple descriptions with e-graphs (Section 4.3)
and then explain what we think the object’s worthiness is (Section 4.4). After we
give preliminary examples both in a trivial domain (Section 5.1) and music domain
(Section 5.2) of what we mean by descriptions and abstractions and give an example
of our objective, a subjective goodness mapping, in action.
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Chapter 2

Related work

2.1 Formal Theory of Creativity

Formal Theory of Creativity (Schmidhuber, 2008; Schmidhuber, 2010) describes beauty
in the context of reinforcement learning (Kaelbling, Littman, and Moore, 1996) and
recurrent neural networks (Hochreiter and Schmidhuber, 1997). It asserts that a rein-
forcement learning agent’s (observer’s) main objective, subserving the objective put
up by the environment he is in, is to compress its history of observations or more
formally is to maximize an intrinsic reward signal rint as a function1 measuring the
rate of change in the efficiency of the observer’s compression algorithm applied on
agent’s observation history h(≤ t + 1).

rint(t + 1) = f (C(p(t), h(≤ t + 1)), C(p(t + 1), h(≤ t + 1)))

Using the observer’s computationally limited encoding model p(t), C(p(t), H(≤
t + 1)) is the number of bits needed to encode his history bounded from below
by Kolmogorov complexity K(h(≤ t + 1)) (Kolmogorov, 1965; Solomonoff, 1964;
Chaitin, 1966). Beauty B(D | O, t) of a piece of data D for an observer O at time t is
defined as a negative number of bits required to encode D given the observer’s state,
implying that the subjectively most beautiful is the one with the shortest description
length using the observer’s particular method of compression. Additionally, sub-
jective interestingness, surprise, or aesthetic value I(DO, t) is defined as the first
derivative of subjective beauty:

B(D | O, t) = −C(p(t), D)

I(D | O, t) =
∂B(D | O, t)

∂t

As a result, an observer wants to seek novel observations but still orderly enough
to be compressible on time, riddled with undiscovered patterns or symmetries, yield-
ing an improvement to the observer’s model of the world in the fastest way possi-
ble. Given its simplicity, the theory knowingly gives up on the notion that an ob-
ject might be beautiful because it reminds of or references something, but rather it
judges its form only. Nevertheless, there is also an inconsistency: in the example
given in (Schmidhuber, 2008; Schmidhuber, 2012), a pitch-black room viewed by a
vision-based agent has to be boring and not interesting, yet according to the theory,
it remains beautiful due to its almost non-existent complexity. And if we compare a
dimmed Louvre with the same empty dark room, the latter being far more compress-
ible no matter how much any observer can become acquainted with either, implying
that it is also far more beautiful is surely inadmissible. Instead, to confine beauty

1This definition is copied ad verbatim for consistency, however by f , f (a, b) = a− b is implied
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with more precision, we might have to investigate further intermediaries of the en-
coding process itself. Our approach described here will not deviate greatly, at least
ideologically, from this theory, in so far as we delegate all our philosophical line of
reasoning to it. And while it may be possible to frame it in the spirit of this work
instead, not devoid of the said spirit, we will try to delineate beauty using methods
that give concrete descriptions of objects using lambda calculus and equivalence
graphs.
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Chapter 3

Background

3.1 Lambda calculus

Lambda calculus (hereafter referred to as λ-calculus) is a simple formal system and a
notational tool discovered by Alonzo Church during the 1930s (Hindley and Seldin,
2008), which is capable of representing every computable function using an intu-
itively simple syntax: keywords "λ" and "." together with parenthesis "(", ")" and an
infinite alphabet to disambiguate the naming of variables are sufficient. An expres-
sion (also referred to as a λ-term) from λ-calculus is either a:

1. Variable a, where the symbol a is drawn from some infinite alphabet.

2. Application (ab), if a and b are λ-terms

3. Abstraction (λa.b), if a is a variable and b is a λ-term

Abstraction is the central idea in λ-calculus, it formalizes a function of one vari-
able, for example (λa.b) is akin to a function of variable a which if contained within
function’s body b would be bound to the argument supplied upon an application.
The function of multiple variables can be expressed as the chaining of abstractions
(λa.λb.λc.d) which is often shorthanded notationally to (λabc.d). To compute in
lambda calculus means to simplify the application of abstraction ((λa.b)c), which is
called a redex, and for that, we need a single rule called β-reduction:

((λa.b)c) −→β [a→ c]b

Where [a→ c] is an operation which replaces every occurrence of bounded vari-
able a with c. A term without redexes or equivalently a term in which β-reduction
is no longer applicable is said to be in the β-normal form and treated as a final re-
sult of a computation. Not every term has a β-normal form, but if the term has a
β-normal form, it has only a single one (up to renaming of binding variables, which
is called α-reduction). Because of λ-calculus pureness, to compute something use-
ful, we need to overlay special interpretations to certain terms, a process called the
Church encoding. For example, to compute something with numbers, we first need
to define what numbers are (Figure 3.1).

This particular encoding of numbers is not the only one possible similarly, as
there are numerous ways to interpret a collection of bits, few equivalent extension-
ally, there are plenty of ways of defining numbers together with operations on them
in λ-calculus. In most cases, it’s practical to extend λ-calculus to permit constants
without explicit encoding, assuming there always is one, leaving its meaning to be
interpreted during the reduction. To show an example of reduction, we define a suc-
cessor function S which takes a single number as an argument and increases it by 1
(Figure 3.2).



Chapter 3. Background 6

0←→ (λsz.z)
1←→ (λsz.(sz))
2←→ (λsz.(s(sz)))
...

n←→ (λsz.(snz))

FIGURE 3.1: Encoding known as Church numerals, arrow represents
encoding

S←→ (λnsz.(s((ns)z)))
(S 0)←→ ((λnsz.(s((ns)z)))(λsz.z))

−→β (λsz.(s(((λsz.z)s)z)))

−→β (λsz.(s((λz.z)z)))

−→β (λsz.(sz))

←→ 1

FIGURE 3.2: Successor function and an example of β-reduction

There is also exists an opposite operation to β-reduction — an inverse β-reduction,
also referred to as β-expansion or abstraction as a verb. The idea is to abstract away
from the specifics of the term one step at a time:

(ab) −→Iβ ((λx.(xb))a)

(ab) −→Iβ ((λx.(ax))b)

Also, we want to extract the set of all possible abstractions from the exact λ-term,
using inverse β-reduction but while discarding the final application:

λ1(a) = {(λx.b) | ∃c ((λx.b)c) −→β a}

For example the expression 1 + 2, and the corresponding λ-term ((+ 1) 2), would
abstract in one step to an "add-1" abstraction f (x) = 1 + x, "add-2" abstraction
f (x) = x + 2 and the "binary-apply" abstraction f (g) = g(1, 2). These abstrac-
tions would form a set λ1(1 + 2), and to extract more abstract abstraction we repeat
the same process until the fixed-point is reached, that is λ2(a) = λ1(λ1(a)) and
λ(a) = λ∞(a). Lastly, and also most importantly, we need the length of λ-terms
which we define as:

|a| = 1 if a is a variable or constant
|(ab)| = |a|+ |b|
|(λa.b)| = |b|
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Chapter 4

Approach

4.1 Motivation

Before we can speak of comparing things, we must have a way of representing them
first. Since most of the art we consume nowadays comes primarily through digital
screens, we assume any art we’re interested in can be digitized and therefore can be
shaped into a representation that corresponds to universal computers, be it combi-
natory logic, λ-calculus, type system etc. (Morales, 2018). While it might be more
proper to focus on how human minds represent things, there is no consensus on
how exactly it is, and be it either in a language of thought (Fodor, 1975) or through
pure connectionism (Bechtel, 1991), we assume that at least same simplicity and la-
conisity which will be essential for our purposes must also be present in whichever
it is, since human mental capacity is limited. Yet our goal here is an accurate model
of human aesthetics, but something far more elementary, which is why the question
of exact representation for us is not crucial. Therefore by perceiving or representing
an object, we mean to compress its description from a crude sensory input to some
sparse coding. Despite an inevitable loss of information, those two descriptions can
remain equivalent in most contexts, with the benefit of one being much shorter. Such
distillation of information is done by compression algorithms, creation of which is a
challenging task in the most optimal sense since there exists an uncomputable limit,
approximating which is also a long-standing problem in a practical sense (Hutter,
2006), so challenging that the compression has been closely associated with both
comprehension (Chaitin, 2004) and intelligence (Hutter, 2009) itself. While there is
ongoing research as to through what exact schema compression manifests inside our
brains (Kwak and Curtis, 2022), we can at least see the impact of it in our daily lan-
guage: we use abbreviations, we invent new words to refer to specific events, in the
end, we imply things by using silence, all to not speak a single syllable more than
needed.1 We use this analogy to refer to a stateful part of the observer’s compression
algorithm as an observer’s language.

4.2 Language

Here we consider languages in which there is always at least a procedure to describe
objects in terms of bare primitives, albeit rather redundantly, and starting from this
primitive description we use the capacity of language to further compress it. More
precisely we define a language Λ to be a set of pairs of descriptions that can be used
interchangeably:

Λ = {λ} = {λℓ ←→ λr}
1Natural languages are still redundant character-wise, yet most of misinterpretations and inconsis-

tencies come primarily from being overly succinct
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With each side of such pair there is a corresponding length measure, here in place
of descriptions we use λ-terms, so the length of the description is the length of the
corresponding λ-term. Pairs of descriptions (which we call abstractions or equiva-
lences) don’t have to be non-overlapping or exclusive, which implies that there can
be multiple ways to describe the same thing. For an object x we notate xΛ to be
the set of all descriptions in the language Λ equivalent to the one made primitively
which is notated by xΛ

0 , while all other individual descriptions are notated by xΛ
k and

the shortest one is xΛ
∗ . Equivalences can be brought up either by a process of renam-

ing ("the Sun" ←→ "the star from the Solar System" or length-of-lists(ℓ) ←→ (map
len ℓ)) like in Dreamcoder (Ellis et al., 2021) where language is referred to as a library,
or by enumerating expressions finding ones semantically equivalent (|a|2 ←→ a2)
as in Ruler (Nandi et al., 2021) where language is referred to as rewrite rules. In
both of these systems, every new abstraction brings an exponential cost associated
with it, so the introduction of new ones has to be considered carefully. Moreover,
there exists a danger of unintentionally equating one too many things, rendering
the whole language to be totally inconsistent2. Here, similarly to a "crude" Minimal
Description Length objective (Grunwald, 2004) we aim to make short descriptions
while not complicating the language itself too much. Thus we define the helpfulness
or goodness of each abstraction so far as it helps in compressing a description of an
object, in the number of symbols saved when employing it versus when not, plus
the additional cost of the definition:

log κ(λ | xΛ
∗ , Λ) = |xΛ−λ

∗ | − |xΛ+λ
∗ |+ |λ| (4.1)

Where Λ − λ and Λ + λ are languages with or without an abstraction λ, and
the length of the definition of λ is the length of both its sides |λℓ| + |λr|. Hence
an observer must refine his language stripping it from archaic words and adding
new apt ones that use abstractions which are easy to define in terms of his current
language and help describe many things in the clearest way possible.

4.3 Confluent descriptions

To create and compactly represent each description, we use an e-graph (equivalence
graph) data structure (Nelson, 1980), which groups together equivalent descriptions
into disjointed sets called e-classes, enabling resharing common parts of them with-
out redundancy. Starting from the primitive description, to create new ones we use
equivalences from the language and e-matching algorithm from Simplify theorem
prover (Detlefs, Nelson, and Saxe, 2005), which scans an e-graph for the already
present one side of equivalence and instantiates and equates with it its other side,
given proper substitutions if any, while also making sure that any two descriptions
which include each of two sides of the newly found equivalence are also made
equivalent, in other words maintaining congruence relation a ≡ b =⇒ f (a) ≡
f (b). Emerging equivalences enable finding more equivalences, so e-matching pro-
ceeds indefinitely until a fixed point, when any subsequent appliance of e-matching
doesn’t change the e-graph in any way, at which point the e-graph is saturated. Af-
ter that, we may want to select a single representative description with the minimal
length or some other optimal description according to some cost function, using the
e-class analysis technique described in the egg library (e-graph good)(Willsey et al.,

2As does equating true with false, or λxy.x with λxy.y equivalently
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2021). Importantly, during the process of saturation, the information only accumu-
lates, allowing for us, in the end, to operate over both the initial description, the most
optimal one, and any descriptions in-between at the same time. Thus we can extend
the notion of the goodness of abstraction (Equation 4.1) over all possible descriptions
of an object discounted by their importance:

κ(λ | x, Λ) =
|xΛ|

∑
m

2|x
Λ
∗ |−|xΛ

m | κ(λ | xΛ
m, Λ) ≥ κ(λ | xΛ

∗ , Λ) (4.2)

We judge short descriptions to be more important than longer ones, whereas the
role of degeneratively long descriptions is nullified. It is done in a similar vein as
with algorithmic probability (Solomonoff, 1964), with the difference being that we
care only about the relative length in comparison with the shortest description. This
way, we don’t overlook inherently long descriptions by themselves, but the input of
each alternative description diminishes with its length, and if there is more than one
equally short description, each reusing the same abstraction, their contribution is, on
the contrary, compound. By different descriptions, we mean everything which can
be said about the object and just as objects or events with multiple interpretations,
yet each being drastically different or rooted in many contexts are not uncommon,
as they are foundational for making jokes, for example, here we’re treating them as
efficient storage of abstractions.

The reason we use e-graphs for the production of descriptions, instead of more
complete methods like enumeration search over the language, is that the former is
far more tractable, and we think it reflects how descriptions are made by us in our
languages since every description produced in this way will relate to our data un-
like in the case of enumeration. Nevertheless, to create even shorter descriptions
we would need to resort to some form of enumeration in order to extend our lan-
guage with useful abstractions, and this is how we transition from measuring lone
abstractions’ goodness to the goodness of objects themselves.

4.4 Goodness

"A book or a speech for example is said to have a great deal in it, to be full of content
in proportion to the greater number of thoughts and general results to be found in
it" (Hegel, 1874). So far, we’ve examined the goodness of individual abstractions
(thoughts, results, propositions), but where from should they come? While making
descriptions of objects in immediacy doesn’t involve any modification of the lan-
guage, if an observer isn’t satisfied with the description he arrived at, he can spend
additional time looking for a better one while extending his language. In a way, to
describe an object optimally observer inadvertently must arrive at certain abstrac-
tions, even if he had not possessed them before, and we say that these abstractions
are "in" an object. Also, we have to describe how difficult it is to arrive at them and
how good they are for each observer. Starting from the latter, as in (Section 2.1) we
also assume that observer’s main intent is to make the shortest description of his
history so that the usefulness of each abstraction is measured as far as it aids this
objective. As for derivability, we state that an object implies abstractions unequally
in proportion to their goodness (Equation 4.2). And since we only examine one facet
of extracting abstractions in a uniform order, from (Section 3.1), we also discount the
goodness of an object by their total amount present. Taken together, the goodness
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of a thing for an observer with a language Λ and a history H is proportional to the
availability of good abstractions in it discounted by their derivability:

κ(x | H, Λ) =
1

|λ(xΛ)| ∑
λ∈λ(xΛ)

κ(λ | x, Λ) κ(λ | H, Λ) (4.3)

Objects which yield a few but strong abstractions are in higher regard than those
with plenty but shallow ones. The more complex or "lengthy" is an object, the more
abstractions it would have by inevitability, hence we prefer things simple as possible
but not too simple. We also don’t regard any already known abstractions by an
observer condescendingly so that any cliches or banalities, unless they have some
utility, are treated as nothing more than dead weight. Also, we don’t care about the
origin or the creator of an object we consider, except when it’s due to constructing
a corresponding description using this information. In summary, to state anything
about an object’s goodness, we only need to examine how good are abstractions
present in their descriptions.



11

Chapter 5

Proof of concept

5.1 Number-list language

As a preliminary example, consider a trivial language describing lists of natural
numbers. Numbers are encoded using Church numerals and lists, by a function that
takes an element and a list (starting with an empty one) and prepends an element to
it.

TABLE 5.1: Primitives from the number-list language

name description λ-term
0 zero (λsz.z)
S successor function (λnsz.(s((ns)z)))
ø empty list (λx.x)
. list constructor (λht f .(( f h)t))

Here λ-terms are shown for demonstrative purposes, in the implementation prim-
itives are assigned constants. Using this language, so far, there’s only one way to
describe lists which is the primitive one as shown in (Table 5.1). Given this partic-
ular list x, using (Equation 4.2), we can measure the goodness of abstractions taken
from λ(xΛ), a handful of which are shown in (Figure 5.2), where brackets denote
free variables with number and list types. Despite that, it’s evident that defining
shorthands for numbers is first-most expedient, we ignore this suggestion and, for
illustrative purposes, select two different abstractions (Figure 5.3), give them appro-
priate names, and include them in our language. As a result, it’s now possible to
describe x in a few more ways, one of which is the shortest (Figure 5.4).

x = [1, 2, 3]

xΛ
0 = (. (S 0) (. (S (S 0) (. (S (S (S 0))) ø)))

FIGURE 5.1: The primitive description from the number-list language



Chapter 5. Proof of concept 12

FIGURE 5.2: Relative goodness of abstractions

starts-with-1-and-2←→ (λx.(. (S 0) (. (S (S 0) x)))
ends-with-3←→ (. (S (S (S 0)) ø)

FIGURE 5.3: Additional abstractions for the number-list language

xΛ
1 = (starts-with-1-and-2 (. (S (S (S 0)) ø))

xΛ
2 = (. (S 0) (. (S (S 0)) ends-with-3)

xΛ
∗ = xΛ

3 = (starts-with-1-and-2 ends-with-3)

FIGURE 5.4: Descriptions using abstractions from the number-list
language
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5.2 Scales language

As for a more involved example, we will make descriptions of jazz licks, which are
short but informationally very dense pieces of monophonic music. We choose this
domain due to the simplicity and the compressibility of musical phrases, which are
not unindicative of their inherent expressivity. What follows is a little introduction
to music theory upon which we build our language for descriptions.

5.2.1 Brief music theory introduction

For simplicity, we’ll be only considering the frequency domain, in so far as we’re
interested only in the frequencies of each musical note. The most fundamental prin-
ciple in music is the concept of octave equivalence or octave circularity, where an
octave is a difference between two frequencies, one of which is twice the frequency
of the other. The human ear perceives two such pitches (where the pitch is a per-
ceived frequency) as nearly the same, and this effect also occurs in other mammals
(Wright et al., 2000). With this in mind, musicians use tuning systems that quantize
a range within an octave into some number of pitches, treating the rest of the fre-
quency space as a continuation of the same pattern. Equal temperament, the most
widespread tuning system in the Western world, divides an octave into 12 pitches,
each equally spaced within the range by a multiple of 12

√
2 of the frequency of their

predecessors. With this quantization, we only need to think about twelve unique
pitches, and to each, we can assign a natural number. It’s common to group pitches
to form a scale, which is a list of strictly ascending (modulo 12) unique numbers. The
most primitive scale is called chromatic, which has all 12 pitches within the octave,
while other popular ones like major scale or pentatonic scale have 7 or 5 total. There
are twelve different variations of each scale, each equivalent up to a shift of all its
pitches by another pitch, called a key. We use scales to construct a more narrow view
of the notes, and for that, we need a concept of indexing a scale which is the same
thing as indexing an array. Often with pop music, the whole song is written in one
scale and one the key, yet the same doesn’t hold for jazz, where both are subject to
frequent changes.

chromatic = [C, D♭, D, E♭, E, F, G♭, G, A♭, A, B♭, B]
= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

minor = [0, 2, 3, 5, 7, 8, 10]
C minor = 0 + minor = [0, 2, 3, 5, 7, 8, 10]

D♭ minor = 1 + minor = [1, 3, 4, 6, 8, 9, 11]
G♭ minor = 6 + minor = [6, 8, 9, 11, 1, 2, 4]

G♭ minor[1, 3, 5] = [6, 9, 1] = [G♭, A, D♭]

FIGURE 5.5: Pitch names, scales and scale indexing

5.2.2 Language

We reuse primitives from the number-list language to construct a new language,
where pitches correspond to numbers and scales and licks to doted pairs. Extra
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primitives (Table 5.2.2) and abstractions (Figure 5.6) come from music theory. Ab-
straction 1 defines scales as equivalences between different scale degrees. Abstrac-
tion 2 defines multi-indexing (indexing with multiple indices). Abstraction 3 defines
relative indexing with special primitives ↑, ↓, which indexes the next or the previous
scale degree from the indexed before. Abstractions 4 and 5 define the looping of
relative indices. In the implementation, we don’t enumerate rules for each special
case, but instead, we use wildcard variables and store and look up context infor-
mation in e-class analyses. So far, this language enables us to talk about scales and
runs through the scales, but surely it is not exhaustive: there are no concepts of ap-
proaches, enclosures, or even relative progression of chords, but for our purposes of
making slightly more high-level descriptions it is sufficient enough.

TABLE 5.2: Primitives from the scales language

N natural numbers (Church numerals)
minor, diminished, etc. scales
scale[N] indexing of the scale
N + scale[N] shift key of the scale (e.g. D♭ minor)
↑, ↓ next, previous index (+1, -1)
loop N ↑, ↓ repeat ↑, ↓N times

1. D♭ chromatic[1]←→ D♭ minor[1]←→ C locrian[2]←→ F minor[6] etc.

2. D♭ minor[1], D♭ minor[2]←→ D♭ minor[1, 2]

3. D♭ minor[1, 2]←→ D♭ minor[1, ↑]

4. D♭ minor[↑]←→ D♭ minor[loop 1 ↑]

5. D♭ minor[loop N ↑, ↑]←→ D♭ minor[loop N + 1 ↑]

FIGURE 5.6: Abstractions for the scales language

5.2.3 Descriptions

A jazz lick, being simply a collection of some pitches, can be primitively described
as a list of numbers, the same way as in the number-list language. Starting from this
primitive description embedded in e-graph we use previously defined language to
find more compressed representations, finishing with the one of the shortest length,
one which we visualize together with the sheet music representation as in (Figure
5.7).1 We use the example of the scales language to show that it’s possible to arrive at
a representation that will loosely resemble something coherent, or something which
can be seen as a result of some theory analysis, by principles we’ve examined in the
preceding sections. Next, we employ those descriptions to compare jazz licks among
themselves.

1The rest of jazz licks together with their descriptions, and their sources can be found in the ap-
pendix
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FIGURE 5.7: Description of a jazz lick in the scales language

5.2.4 Comparison

To measure subjective goodness, we need some language and some history of ob-
servations, both of which are strenuous to apprehend empirically. Nevertheless, we
make some concessions: we set the observer’s language to be the language we’ve
described so far and his history of experience to a seamless concatenation of jazz
licks in a randomized order. The subjective goodness measured in this way must
be skewed towards long licks since they constitute a larger portion of the observer’s
auditory experience and, by themselves, explain most of it. Due to that, we also plot
lengths of each lick (number of notes wise) and lengths of their minimal descriptions
in our scales language (Figure 5.9). Implementation-wise, to reduce the computation
time needed to measure the goodness of individual licks, we select abstractions from
each lick by using only one step of inverse β-reduction, plus we don’t integrate all of
the descriptions (given how our language is constructed there is a countless amount
of which), instead, we take the shortest description plus one thousand randomly
sampled ones, for both the history and licks.

As for the final comparison (Figure 5.8), while we personally more or less agree
on the ranking given, we might do so for different reasons since we speak a bit
different language from the one shown here and our experiences are way unalike.

FIGURE 5.8: Subjective comparison of jazz licks
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It’s evident that there is some correlation between length and subjective good-
ness by construction, yet there is also an inverse relationship between subjective
goodness and simplicity of descriptions, which is something we contemplated in
(Section 2.1). And since it’s practically unfeasible to come up with a more justified
experiment, which wouldn’t make arbitrary assumptions just as we did, our goal
is more than fulfilled since what we were interested in was a procedure by which
posed in the very beginning questions could be answered, not as much in the exact
answer by itself.

FIGURE 5.9: Note wise and description wise lengths of jazz licks
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Chapter 6

Conclusion

We presented a simple model of perception and the possible way of distinguishing
between objects based on their subjective beauty. However, this approach remains
way too primitive and also desperate for experimental validation or some other form
of justifying it. At heart, what led up to here was an elementary strive at postulating
bare essential primitives that must play some part in determining the artistic value.
Yet it’s hard to delineate what actual little part of the appreciation of art takes ap-
preciation of the form only and not thinking of the higher-order, which even further
diminishes any formal attempt at addressing the question. Even with that in mind,
concepts of compression and multiple descriptions of which we spoke at length must
partake in whichever the actual answer is.

Most computer users nowadays are not aware of how rudimental compression
algorithms are in the inner workings of computers nor that they are constantly us-
ing a large pool of them. We draw an analogy further: we’re likewise unaware of
how much art influences our thinking and how important it is in shaping our vi-
sion of the world. We view art as the storage or sharing of compressed sensations
or compression algorithms. Further, we view any artwork as a puzzle piece, solving
(making sense of) which acquires a procedure that is helpful in solving similar puz-
zles. Solving an unseen puzzle is hard while solving a "seen" one is trivial. Solving a
puzzle set all at once (a process sure strange enough to be even considered) is much
more diffucult than solving each at a time and even more difficult than using solu-
tions already made by someone, which is why it’s easier to view one’s life in terms
of existing art and not be an artist oneself.

As far as the comparison between objects goes, we conclude that for a thing
having a short description is obviously good, but enabling an observer to enrich
his language with powerful abstractions, such that a lot of other things will become
far easier to comprehend, is so much better. The thesis of this work is that to define
goodness one only needs the notion of representation, since by virtue of making
sense of a good thing, that is by searching for short representations of it, one also
acquires abstractions that are helpful at representing things in general.
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Appendix A

Code is available at ogoremeni/revel written using Python 3.10. Implementation of
e-graphs is inspired by (Zucker, 2021) [Julia], by Metatheory.jl (Cheli, 2021) [Julia]
and by the egg library (Willsey et al., 2021) [Rust, pseudocode]. Implementation
of λ-calculus with de-Bruijn index is inspired by (Tsú-thuàn, 2020) [Racket]. Sheet
music visualization was done with the help of Musescore software1 and music21
library (Cuthbert and Ariza, 2010).

1https://musescore.org/en

https://github.com/ogoremeni/revel
https://musescore.org/en
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Appendix B

We describe eight jazz licks: each referred to after a jazz pianist who came up with it,
except for "The Lick", which is its own kind. Here they are listed in the order as in the
comparison from (Figure 5.8). Transcriptions used are from various sources.1, 2, 3, 4

1https://youtu.be/i5kR8Sn09CI
2https://youtu.be/JfnExW0iV_o
3https://musescore.com/user/34106726/scores/6515974
4https://musescore.com/user/3142241/scores/2298111

https://youtu.be/i5kR8Sn09CI
https://youtu.be/JfnExW0iV_o
https://musescore.com/user/34106726/scores/6515974
https://musescore.com/user/3142241/scores/2298111
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