
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Mapping Materials to 3D Texture Field
using GANs

Author:
Markiian NOVOSAD

Supervisor:
Vladyslav ZAVADSKYI

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Markiian NOVOSAD, declare that this thesis titled, “Mapping Materials to 3D Tex-
ture Field using GANs” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“This is the real secret of life – to be completely engaged with what you are doing in the here
and now. And instead of calling it work, realize it’s a play”

Allan Watts

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Mapping Materials to 3D Texture Field using GANs

by Markiian NOVOSAD

Abstract

3D Texture Synthesis is a broad research field which lets content creators get visu-
ally satisfying look of the 3D object with minimal effort. However it is not so easy
to achieve satisfying result coupled with computational efficiency. Many of the pro-
posed methods are either computationally expensive and inefficient, or not capable
of generating realistic visual appearance. To address this issue, we propose a new
method – Mapping 2D Materials to 3D Texture Field using GANs. This method is
based on Neural Implicit Representation network, thus able to internally represent
a Texture Field without a need for storing additional information. This ability lets
our method to be computationally inexpensive, theoretically being able to render
the texture in real time. On the other hand, due to Generative Adversarial training
strategy, our method is able to achieve highly realistic, visually satisfying looks. In
this study we will describe our approach in detail.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
Firs of all, I would like to express my sincere respect and gratitude to the Armed
Forces of Ukraine, who in this trying times stay strong, keeping our homes safe. I
want to express my gratitude to my supervisor, Vladyslav Zavadskyi for guiding
me through my research and helping me to understand complex ideas better. I want
to thank whole ZibraAI team for inspiring me to do this research. Finally, I want to
thank my family.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1

2 3D Texture Synthesis and Mapping Problem 3
2.1 Solid Texture Synthesis . 3

2.1.1 Procedural Methods . 3
2.1.2 Statistical Feature-Matching Methods 3
2.1.3 Patch-based Method . 3
2.1.4 Markov Random Field-based Methods 4
2.1.5 Neural Network-based Methods 4

2.2 Implicit Texture Fields . 5
2.2.1 Reconstructing Geometry . 5
2.2.2 Scene Reconstruction . 5
2.2.3 Neural Texture Fields . 5

3 Related works 7
3.1 Solid Texture Synthesis . 7

3.1.1 GramGAN . 7
3.1.2 Solid Texture Synthesis using Generative Adversarial Networks 8

3.2 Periodic Implicit Generative Adversarial Networks 8
3.2.1 Sinusoidal Representation Networks 8
3.2.2 Feature-wise Linear Modulation 9

3.3 Generative Adversarial Networks . 9
3.3.1 Wasserstein GAN Training . 10

3.4 Unsupervised Representation Learning 10
3.4.1 Contrastive Learning . 11

4 Problem Formulation 12

5 Materials and Methods 14
5.1 Dataset . 14
5.2 SIREN-Based Texture Field . 14
5.3 ResNet-based Encoder network . 15

5.3.1 Encoder Architecture . 15
5.3.2 Contrastive Training . 16

5.4 Discriminator . 17
5.5 Objective . 17

5.5.1 Generator loss . 18
Cosine similarity . 18

vi

Histogram similarity . 18
5.5.2 Discriminator loss . 19

6 Experiments 20
6.1 Implementation details . 20
6.2 Training details . 20
6.3 Experiments with data . 20
6.4 Experiments with generator . 21
6.5 Experiments with discriminator . 21

7 Results 23

8 Conclusions and Future work 25
8.1 Conclusion . 25
8.2 Future work . 25

9 Conclusions and future work 26

Bibliography 27

vii

List of Figures

3.1 Coordinate Multilayer Perceptron-style architecture introduced in Gram-
GAN [31] . 7

3.2 Hierarchical architecture proposed in STS-GAN[37] 8

4.1 Render of the Stanford Bunny colored with texture, generated with
our method . 12

5.1 Building block of Residual Network[15] 16

6.1 Patches, sized 400 by 400 pixels, of same data sample: anti-aliasing
filter applied on the right, no filter on the left 20

6.2 Top row: input data samples, bottom row: synthesized texture. On
the left we have the results of experiment with application of anti-
aliasing, to the right are the results of experiment without any filter-
ing. One can clearly see, that with unwanted crispy grain removed,
generator learns to capture more high-level shapes, when, on the other
hand, without anti-aliasing generator eventually starts to synthesize
more and more crisp texture . 21

6.3 The results of our best model, trained in progressive setting. 22

viii

List of Tables

ix

To the bravest Nation in the World

1

Chapter 1

Introduction

3D content creation and editing is a cornerstone task in various huge industries,
including filmmaking, game development, architecture, and the now-rising Meta-
verse, to name a few. 3d modeling is a process of developing both geometric and
visual digital representations of an object, it can be done both from scratch or by us-
ing special software to create the foundation for the model from a real-world object
with help of cameras and depth sensors. 3d object is a digital representation of the
physical body’s geometric and visual properties. (More in-depth explanation will be
presented in chapter 2.)

Today, with film and game budgets rising, and mass popularizations of digital
metaverses, creators, take on more and more ambitious projects involving creating
enormous, sophisticated, immersive, and highly detailed digital worlds that can in-
clude millions or maybe billions of unique 3d objects. Each object requires special
attention from the artist to be natural, realistic, and attractive, which makes the cre-
ation of any project involving computer graphics costly and time-consuming.

3D modeling consists of three main stages: geometry modeling, drawing texture
materials, and animating an object. Every stage is complex and time-consuming as
they all demand attention to detail. This work will focus on the second stage of
3d modeling – creating the texture. In computer graphics, the texture represents
surface characteristics and the visual appearance of an object. Usually, textures are
represented in 2d space by UV map images and then mapped onto 3d objects using a
unique technique called Texture Mapping. The UV map is the format that represents
the 3d object’s surface by unwrapping it onto a 2d plane. After the object’s surface is
mapped to a UV map, the artist starts to draw a texture, using special software tools.

Because of the below-stated complexity, the popularity of automatic content cre-
ation instruments rises. In order to ease the process of texturing, a number of soft-
ware products and research were proposed. The most successful ready-to-use prod-
uct is ArtEngine which provides various AI-powered tools which tremendously ease
the process of working with computer graphics, especially generating textures. Such
tools as Unity and Blender offer instruments for procedurally generating textures.

Over the course of recent years, the use of AI to generate, represent, and ren-
der 3d content has seen a rise in popularity. Approaches like NeRF[26] can rep-
resent the whole scene as one black box using Neural Networks; Neural SDFs[27]
and NGLOD[33] offer efficiency in terms of memory by implicitly representing 3d
objects using Signed Distance Functions;

In this work we propose a method for generating 3d texture fields from a 2d
exemplar patch, using implicit periodic activation functions. We aim to generate
realistic textures for any object by creating a texture field, represented by an implicit
function.

In chapter 2, we provide the overview of the methodes which were used during
our study and neural rendering approaches, related to our research. In Chapter 3,

Chapter 1. Introduction 2

we define the problem of neural 3d-texture synthesis. In Chapter 4 we describe
our approach to solving this problem. in Chapter 5, we describe the experiments
conducted during our study, presenting visual examples. Finally, in Chapter 7, we
make the conclusion about the quality performance of our approach and discuss
future work.

3

Chapter 2

3D Texture Synthesis and Mapping
Problem

The problem of Texture Synthesis is usually posed as producing large texture from
given small exemplar. In 3D this problem is usually solved by creating large Texture
Solid Cube or, given a 3D object, by synthesising or modifying existing UV Maps. In
this chapter we will dive more deeply in covering different methods, which we will
divide into two groups: Explicit Texture Synthesis methods which synthesize ready-
to-use object, and Implicit Texture Fields, the methods to continiously represent a
texture.

2.1 Solid Texture Synthesis

2.1.1 Procedural Methods

Procedural methods synthesize textures as a function of pixel coordinates and a set
of manual tuning parameters. In Computer Graphics the most successful and widely
used procedural method is Perlin Noise [30]. Perlin’s Image Synthesizer[30] builds up
naturalistic visual complexity by composing smooth gradient noise function from
several non-linear functions, which is translation and rotation invariant, and band-
limited by frequency. By combining enough non-linearities the Image Synthesizer can
produce visually coherent pseudo-random patterns. The algorithm can be success-
fully used to synthesize clouds, fire and water waves to name a few, while being fast
and memory efficient.

2.1.2 Statistical Feature-Matching Methods

The main idea of this method is to extract statistical appearance features from given
exemplar and impose them on synthesized texture.

Heeger at al. [17] makes use of image representation called Image Pyramid, which
represents and image on different levels of resolutions, starting with high-level small
resolution at a top level, and progressively diving to more detail. Heeger’s algorithm
utilizes the pyramid by matching histogram features of target image with every level
of the pyramid, thus preserving texture’s appearance both on high and low level of
perception. This method is able to produce satisfying results on stochastic cases, but
struggles to keep up when the structure is added.

2.1.3 Patch-based Method

The Patch-based Texture Synthesis relies on idea of dividing the exemplar image
into small patches and infinitely rearranging them to create a new texture. The

Chapter 2. 3D Texture Synthesis and Mapping Problem 4

main problem-to-be-solved in this methods are finding the way to statistically match
patches that best fit with each other, and finding a method to seamlessly connect
them.

Efros and Freeman et al. [9] introduce the image quilting method, which utilizes
the overlap region between adjacent patches to make shure that they feat each other.
The algorithm minimizes the overlap error when step-by-step choosing new patches
to be inserted into the texture, then quilting them together by finding the minimum
cost path in overlap region.

Liang and others[25] utilize not only the overlap region information to match
patches, but making use of the whole patches to sample them according to a non-
parametric estimation of the local conditional Markov Random Field density function,
which prevents from mismatching patches.

Kwatra et al.[24] improves the methods by introducing new algorithm to opti-
mize the overlap error between patches using a graph-cut algorithm.

2.1.4 Markov Random Field-based Methods

These methods represent a texture as Markov Random Field (later MRF), where
each pixel, or voxel in 3D applications, in resulted texture depends on it’s neigh-
bours. Wei et al.[35] first used this method in texture synthesis by applying nearest
neighbourhood matching coupled with image pyramid optimization. Liang et al.
[25] also uses this technique in patch-based method.

Kopf et al.[23] used MRF as similarity metric combined with histogram matching
algorithm to synthesize a solid, where both high- and low-level statistics match with
target’s.

MRF-based algorithms show great performance in reproducing stochastic tex-
tures, but still lack ability of capturing high-level structure.

2.1.5 Neural Network-based Methods

Recently, number of neural network based methods where introduced to synthesize
solid textures. Gutierrez et al. [13] introduced a method to synthesize volumetric
textures using Convolutional Neural Networks (later CNN). The algorithm learns to
hierarchically generate solid on different levels to achieve both high- and low- level
detail coherency. The proposed method learns to synthesize a texture solid from a
set of multi-channel volumetric white noise. The white noise is passed on different
scale levels in order to achieve better visual coherency. Authors achieve fairly good
results in their experiments, yet still convolutional networks prove to be inefficient,
when applied in 3D domain.

Zhao et al. [37] takes further hierarchical framework and trains generator on
given texture in multi-scale adversarial-manner. By utilising adversarial training,
solid generator achieves great visual reconstruction which resembles visual prop-
ertiers of input texture on different scales and look realistic in general. Due to
multi-scale discrimination framework the algorithm can successfully reproduce both
global structure and fine details. The limitation of this framework is need for retrain-
ing for every given exemplar.

In general, CNN-based approaches are limited in terms of memory efficiency
and speed performance in 3D applications. Also these approaches need to operate
on same space they were trained on, which limits their fidelity.

Chapter 2. 3D Texture Synthesis and Mapping Problem 5

2.2 Implicit Texture Fields

Recently, the popularity of Neural Implicit representations has emerged. These
methods promise continuous and memory efficient representations of content.

In this section we will briefly describe several key works in this field to bet-
ter show advantages of Neural Representations applied in reconstructing Geometry,
Scenes and Textures, and how they they are applied to our problem.

2.2.1 Reconstructing Geometry

Park et al. [27] introduce method called Deep Signed Distance Functions. Signed
Distance Function (later SDF) is a method to represent a 3D object by mapping 3-
dimensional coordinate to signed distance to closest surface point of represented
object. The advantage of SDF representation is memory efficiency due to continuous
domain of the representation. Authors propose using Neural Network as a SDF, by
overfitting network’s weights on given object.

This approach was taken further by several works. Sitzmann et al.[32] proposed
using sinusoidal activation in network and showed that this method performs better
in terms of level of detail.

Takikawa et al.[33] solves two problems of existing DeepSDF approach – ability
to capture fine detail and computational efficiency by introducing Neural Geometric
Level of Detail [33]. The main idea of this method is encoding the shape of given
object in octree-based feature volume which can adaptively fits shapes with multi-
ple discrete levels of detail, thus using much smaller neural network. In result this
method can achieve much finer detail and capable of rendering objects in real time.

2.2.2 Scene Reconstruction

Inspired by success of Deep SDF, Mildenhall and others[26] introduced a novel
method for synthesizing novel views of complex static scenes – Neural Radiance Fields
(later NeRF). The method’s main concept is representing a scene by optimizing and
underlying continuous volumetric scene function using a sparse set of input views.
NeRF is built on Fully-Connected Multi Layer Perceptron, which maps 5-D input
(spatial location (x,y,z) and viewing direction (θ, ϕ)).

This method achieves great level of detail and color when representing even very
complex scenes. The main disadvantage of this method is need for optimizing net-
work for each scene individually which takes a long time. There exist numerous
methods which derive from original NeRF and introduce improvements in different
areas.

2.2.3 Neural Texture Fields

Neural Texture Field is a method to represent texture solid on continuous domain
using neural network, which given spatial input (x, y, z) and/or 2-D image exemplar
produce rgb value. The advantage of this type of methods over classic Solid Texture
Synthesis algorithms is computational and memory efficiency, and improved level
of detail due to absence of resolution limitations of information to be presented.

Henzler et al. [18] introduced generative model of natural textures which takes
advantage of noise fields, by learning Translator model , which learns to map latent
code z to a tuple of noise fields and transformation matrices, which are then fed to

Chapter 2. 3D Texture Synthesis and Mapping Problem 6

Multi Layer Perceptron which produces the resulting color. This method’s advan-
tage is computational efficiency and infinite continuous domain. Due to simple re-
construction training method, this algorithm struggles to capture hierarchical details
at different scales and fails at reconstructing high-level structure.

GramGAN framework[31] takes this method further and by extending it with
methods from style transfer and generative adversarial training. This method man-
ages to improve previous algorithm, it still cannot solve the problem of hierarchical
structure, also both these methods take long time to reproduce even single exemplar.

7

Chapter 3

Related works

In this chapter we will review the works which are in significant relevance to us,
particularly the Periodic Implicit Generative Adversarial Networks (π-GAN) [6], as
our work is mostly based on ideas used in this method.

3.1 Solid Texture Synthesis

3.1.1 GramGAN

Portenier et al. [31] presented a novel method for synthesizing infinite, high-quality
3D textures from 2D exemplars by combining ideas both from Generative Adversarial
Networks and Style Transfer frameworks. The method achieves great performance
in terms of realism of synthesized texture by utilizing Wasserstein-like Generative-
Adversarial training, combined with Gram matrix loss.

The authors upgrade the method, first introduced by Henlzer et al. [18], by in-
jecting noise directly into hidden layers, instead of feeding it through the whole
network, which results in each layer specializing on subset of noise frequencies as
shown in Figure 3.1

FIGURE 3.1: Coordinate Multilayer Perceptron-style architecture in-
troduced in GramGAN [31]

Although GramGAN method achieves great performance on single exemplars,
it lacks ability of capturing high-level structure when trained on set of arbitrary tex-
tures. Also, due to use of ReLU activations in hidden layers, architecture struggles
to capture fine detail in reasonable training time.

Chapter 3. Related works 8

3.1.2 Solid Texture Synthesis using Generative Adversarial Networks

Zhao et al. [37] revisits the idea of explicitly synthesizing Texture Solid and in-
troduces the STS-GAN (Solid Texture Synthesis using Generative Adversarial Net-
works). Authors propose using Hierarchical architecture (shown in Figure 3.2) to
train fully-convolutional generator and discriminator networks on multiple scales
of data that significantly improves framework’s performance in terms of capturing
hierarchical detail on multiple scales.

FIGURE 3.2: Hierarchical architecture proposed in STS-GAN[37]

Still, method relies on convolutional network in it’s core which show poor effi-
ciency in 3D applications and struggle to reproduce the texture beyond spatial do-
main they were trained on, which lays limitations in terms of resolution.

3.2 Periodic Implicit Generative Adversarial Networks

Chan and Monteiro et al. [6] take on 3D-aware image synthesis problem by utilising
Neural Implicit Representations. PI-GAN achieves state-of-the-art performance in
view synthesis and shows superiority of sinusoidal representation networks (SIREN)
[32] in 3D view synthesis task.

3.2.1 Sinusoidal Representation Networks

Sitzmann et al. [32] proposes using periodic activations in Coordinate-MLP net-
works. Authors show in their work that such networks can achieve significantly
better performance in terms of detail quality and robustness in fitting complicated
natural signals.

Most of previous work in field of neural implicit representation where built on
RELU (Rectified Linear Unit) based multilayer perceptrons, this study shows that
such type of architectures lack capacity to represent fine details in underlying sig-
nals. This can be explained by the fact that RELU is partially a linear function, it’s
first derivative is zero or one and it’s second derivative is always zero. In this study
authors propose using sine as an activation function for implicit representation net-
work instead of RELU to improve network’s ability to represent complex natural
signal. Due to the fact that sine is not a linear function it is able to model higher or-
der derivatives better as the derivative of a sine function is cosine, or phase-shifted
sine so the network is able to preserve non-linearity in it’s derivatives, which does
not hold up to other type of activation functions. This property can be very beneficial
in various problems.

Chapter 3. Related works 9

Authors show that With specific weight initialization the method can achieve
significantly faster convergence rates compared to other method’s, while being able
to capture much more fine details. For example, in simple task of fitting a 2D image,
the network is able to converge in couple hundreds of steps, taking few seconds on
modern GPU.

The SIREN method is able not only to learn one specific signal but is capable of
parametrizing the whole space of implicit function which will be more described in
next section.This property is in great interest to us, as we try to learn not only one
particular texture field, but to represent the whole space of different textures.

3.2.2 Feature-wise Linear Modulation

Feature-wise Linear Modulation, or FiLM is a general-purpose conditioning method
for neural network, introduced by Perez et al. [29]. FiLM layers influence neural
network computation via simple yet powerful feature-wise affine transformation
based on conditioning information.

In general, FiLM learns to adaptively influence a neural network by applying
feature-wise linear modulation to the network’s intermediate features, based on
some conditioning input. FiLM learns functions f and h which output γi,c and βi,c
as a function of input xi:

γi,c = fc(xi) βi,c = hc(xi)

where γi,c and βi,c modulate a neural network’s activations Fi,c, where i indicates the
ith layer and c input’s cth feature:

FiLM(Fi,c|γi,c, βi,c) = γi,cFi,c + βi,c

FiLM’s method of conditioning requires only two parameters per feature, which
makes it computationaly efficient and scalable. The f and h can be treated as one
function, as it can be beneficial to more efficient learning.

By various test, authors show great performance of method in such task as visual
reasoning by conditioning Convolutional Network with FiLM. In pi-GAN frame-
work [6] authors use this method to condition SIREN network which yields out-
standing results in terms of visual appearance. Due to periodic properties of sinu-
soidal implicit representation networks explained above, linear modulation further-
more empowers the network in representing the whole space of different signals.

3.3 Generative Adversarial Networks

Goodfellow et al.[11] proposed a new fundamental framework called Generative Ad-
versarial Networks (later GANs) for training generative models. The idea of the frame-
work is simple yet very powerful: authors propose to train model via adversarial
process, in which two models are simultaneosly trained – a generative model G,
or Generator, that captures data distribution, and a discriminative or critic model D
which has a goal of estimating that a sample came from real data distribution rather
than from Generator. In this process, the goal of the Generator is to maximize a prob-
ability of Discriminator making a mistake.

By training a generative model in such a manner, one is able to get a model that
can reproduce a real data distribution in unique manner, with no need of labeled

Chapter 3. Related works 10

dataset. This framework becomes really handful in tasks when real ground truth for
a specific point in data distribution can not be obtained.

After introduction of this method, in coming years it found unique applications
and upgrades which led to tremendous results in such domains as image-to-image
generation, style-transfer, text-to-image generation, image editing to name a few.

Yet, this method has a number of problems, one of which is training instabilities
in a number of cases, which lead to failure of a training process or poor training
results. Another problem of an original method, when dealing with complex data
distributions, generative network fails to capture desired distribution, instead being
misled by a discriminator network.

In following subsection we will briefly describe methods which intend to solving
this problem.

3.3.1 Wasserstein GAN Training

Arjovsky et al. [2] tackles a problem of instabilities of an original GAN method [11].
The authors question the fundamentals of the framework and aim to solve the main
problem – instability during training.

In this study authors show the fundamental property of GAN framework: in
ideal case scenario both generator and discriminator network keep up with one an-
other and discriminator produces gradients that are able to guide generator to grad-
ually improve it’s results. But in practice we often get to the case, whem discrimi-
nator outperforms it’s rival thus not providing any usefull information to the gen-
erator, which leads to diminishing of the gradients. To fix this problem, authors
propose constraining the discriminator network with 1-Lipshitz constraint. The aim
of K-Lipshitz constraint is to control how fast some function is growing by bounding
function’s gradients. Authors argue that by maintaining 1-Lipshitz constraint dras-
tically improves balance between generator and discriminator networks which results
in more stable training and better results. Authors mathematically prove that such
K-Lipshitz continuity can be achieved by optimizing Wassertein distance between real
and generated data distributions. Also, to enforce the 1-Lipshitz constraint, authors
propose clipping weights of the discriminator to lie within a compact space [−c : c].

Yet still, the original method proposed in [2] does not solve the problem com-
pletely, in fact still causing training instabilities in some cases. Gulrajani et al. [12]
takes this method further, by proposing gradient penalty and demonstrate perfor-
mance improvements, compared to the original method.

Authors at [12] propose directly constraining the gradient norm of the discrimina-
tor’s output with respect to it’s input. Authors prove, that the optimal discriminator
contains straight lines with gradient norm 1 connecting coupled points from real and
fake distributions [12], thus they propose sampling datapoints on those straight lines
and constraining the gradient norm to 1 for the distribution of these datapoints.

3.4 Unsupervised Representation Learning

Fundamentaly Machine Learning task can be divided into two categories: Supervised
and Unsupervised learning. In Supervised learning trained model is "supervised" by
the training algorithm with labeled ground truth data. In Unsupervised learning tasks,
the model is objected to build it’s own internal patterns and learn to complete the
task without being "supervised", thus not using labeled data.

Chapter 3. Related works 11

During the recent years we’ve seen volumes of datasets used in for machine
learning tasks grow to huge numbers, thus making it more and more complicated
to produce labeles to such big datasets. Due to this fact unsupervised methods re-
ceived much more research interest in past years as they can achieve great results
without any labeled data needed.

Such methods are in particular interest to us as we use the unlabeled dataset for
our research.

Self-supervised representation learning method can be defined as machine learn-
ing method that aims to provide deep feature representations of given data distri-
bution. The main idea of such methods is to maximize representation agreement
between different views of the same image. These methods can be divided into two
approaches: contrastive methods and informatin maximization methods. In this work
we rely on contrastive method as it gives us the result of satisfying quality.

3.4.1 Contrastive Learning

The main idea of contrastive self-supervised learning methods is to bring the rep-
resentations of different views of the same image as close as possible while push-
ing views of different images as far apart as possible. The method is often used
with Siamese network architectures [4], in which two identical networks with shared
weights and are trained to produce representations [38] [5] [7] [19] [16]. Such meth-
ods when applied to large enough datasets yield great results, with the only down-
fall being enormous computational and memory costs, as these methods require
large batch sizes in order to learn accurate representations.

12

Chapter 4

Problem Formulation

FIGURE 4.1: Render of the Stanford Bunny colored with texture, gen-
erated with our method

As stated in the introduction before, the task of creating a texture for an object can
be very time-consuming. One of the both most relevant and challenging objectives
is creating a realistic texture. Even when synthesizing texture with a pattern, like
marble, procedural approaches struggle to achieve a realistic look, the texture can
look natural on a 2d plane, but can lose its realism when wrapped around a 3d
object.

Recently, deep learning is widely used to accomplish a similar task – 2d image
generation. Generative adversarial networks [11] show high performance in terms
of realism and robustness of a model. In pair with deep learning approaches, classic
2d texture-synthesis algorithms [30] [9] [17] achieve good performance on 2d planes
but look odd, when wrapped around 3d objects.

On the other hand, Neural Rendering approaches offer highly detailed scene
representations, such as NeRF [26], which can represent both geometry and color
information of an object via implicit radiance function, though they need to be over-
fitted on desired scene or object which takes a long time, which means long creation
time for every single scene.

In this work, we aim to create a framework, which given a single 2d exemplar,
can generate an infinite amount of highly realistic texture for an object, sampled

Chapter 4. Problem Formulation 13

directly in 3d space, with no need of using UV maps. In this study, we will use
Pi-GAN (which relies on FiLM-SIREN as sampling network) as a basis for our re-
search. We will try to modify and improve this work, to accomplish the task of
implicitly representing texture field defined in 3d space. For extracting the repre-
sentation from exemplars, we will experiment with existing unsupervised learning
approaches, as we do not have annotated dataset nor time to create our own. We will
experiment with using different losses to improve the visual quality of synthesized
textures and different Generative Adversarial aprroaches to training our network, in
order to achieve best performance

Summarazing, the main contribution of this work is, as far as we know, the first
Implicit Representation-based method for efficient synthesis of realistic 3D texture
fields in one-shot manner (Figure ??).

14

Chapter 5

Materials and Methods

In this chapter we will present our proposed method and describe data, used for
training.

Our method is a generative approach to learning texture field representations
from unlabeled 2D images. The goal is to synthesize high-quality visually satisfy-
ing 3D textures given 2D image as an input. Our approach is based on the follow-
ing components: convolutional residual Encoder network, SIREN-based coordinate
multilayer perceptron decoder network and progressive-growing Discriminator net-
work. We try different generative adversarial strategies, experiment with various
loss functions and generator network architecture variations in order to improve
visual performance of our framework.

In this chapter we will go through every essential component of our framework,
describe training and pre-training methods, present details of neural network archi-
tecture and reason about loss functions used in this method. Also in this chapter we
will present the material dataset used for traininng of our framework.

5.1 Dataset

For this work we used a manually scrapped dataset consisting of over a thousand
of 8192 × 8192 large scale material renders (Figure ??). During this study, the exper-
iments were conducted on a subset of data consisting from marble materials due to
more simplistic nature of marble, compared to other materials.

Firstly, training data was preprocessed as follows: data samples were resized to
the dimension of 1200 × 1200 using anti-aliasing resize, during the experiments we
observed that not using an anti-aliasing filter misled our model to producing noisy
and grainy views.

5.2 SIREN-Based Texture Field

We proposed representing 3D Texture Solid as an infinite Implicit Texture Field. As
a representation backbone of our framework we proposed using FiLM conditioned
SIREN, due to great capabilities of this method shown by authors in pi-GAN [6].
Instead of using classic Radiance Field [26], we use simpler network, which maps
spatial coordinate to it’s color.

Our 3D Texture Solids are represented implicitly with neural texture field, which
is parameterized as multilayer perceptron (MLP) that maps a spatial coordinate
x = (x, y, z) to view-independent color value (r, g, b) = c(x) : R3 → R3. We use
StyleGAN-based mapping network, to condition our implicit representation net-
work on latent vector z through FiLM conditioning [29] as proposed by authors
in [6].

Chapter 5. Materials and Methods 15

Our backbone representation network can be formalized as follows:

Φ(x) = ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ0(x), (5.2.1)

Where ϕ is defined as:

ϕi(xi) = sin(γi · (Wixi + bi) + βi), (5.2.2)

where ϕi : RMi 7→ RNi is the ith layer of an Multilayer Perceptron. It consists of
affine transform defined by weight matrix Wi ∈ RNi×Mi and biases bi ∈ RNi applied
to input xi ∈ RMi , then transformed by FiLM’s frequency γi ∈ RNi and phase shift
βi ∈ RNi followed by sine nonlinearity activation.

We use simple four-layer fully-connected ReLU MLP as mapping network, which
maps n-dimensional latent vector z to conditioning frequencies γi and phace shifts
βi: (γ, β) = M(z) : RL → R2×N×D, where L is latent vector dimension, N is num-
ber of layers in conditioned network and D is number of features in each layers,
following pi-GAN[6].

5.3 ResNet-based Encoder network

As stated above, our generative neural network’s output is conditioned on latent
vector z. We added the encoder network which can map given input image I to la-
tent representation representation space which carries insightful information mainly
to optimize network training and to receive visually correct results. In this section,
we will describe our Encoder network’s architecture and training methods in order
to achieve our goals.

5.3.1 Encoder Architecture

Our Encoder network can be defined as function E(I) = zI , with E : RH×W×3 → RL,
where H and W are height and width dimensions of input image respectively and
L is dimension of latent space. As an underlying architecture of our encoder we
decided to use Deep Residual Network, proposed by Kaiming et al. [15]. Authors
show that such network architecture is easier to optimize and gives better results
compared to other architectures while having lower complexity.

While the network can be formalized as a mapping function y = H(x), authors
propose learn instead a residual mapping of a form F (x) := H(x)− x (Figure 5.1).
Authors argue that this type of mapping is easier to optimize [15].

We propose to modify underlying architecture with substituting downsampling
layers with anti-aliasing BlurPool layers introduced by Zhang et al.[36] to further
push accuracy of the model’s representations. Zhang[36] and Karras et al. [20] argue,
that applying anti-aliasing filters when down- or upscaling is crucial for accuracy
of internal representation of natural signal processed by network. Authors show
that standard hierarchical convolutional network tend to depend on absolute pixel
locations in an unhealthy manner, thus propose a method to avoid that by not letting
unwanted information to leak into internal representations of network.

In studies [36] [20] propose using BlurPool layers instead of standard Strided
Convolution, Max Pooling or Average Pooling layers. The BlurPoolm,s operation
consists of anti-aliasing filter with kernel m × m, denoted as Blurm and subsampling

Chapter 5. Materials and Methods 16

FIGURE 5.1: Building block of Residual Network[15]

operation with stride s denoted as Subsamples:

BlurPoolm,s = Subsamples ◦ Blurm (5.3.1)

Therefore standard strided convolution operation with k × k kernel and s stride
denoted as StridedConvk,s now can be modified as follows:

ReLU ◦ StridedConvk,s −→ BlurPoolm,s ◦ ReLU ◦ Convk,1 (5.3.2)

We propose using 50-layer Deep Residual Convolutional Neural Network [15],
with blurred downsampling layers with additional linear fully-connected layer, to
reduce dimension produced by the network to 512. We find this architecture to op-
timal in terms of size and performance.

5.3.2 Contrastive Training

Learning Encoder to produce coherent representation when trained in generative
adversarial network can be a tricky task. Due this fact, we decided to pretrain our
Encoder network prior to training our whole framework and found it benefiting
models in faster convergence and network’s resulting visual coherency.

Due to the fact that our data is unlabeled, pretraining of the encoder network
becomes a classic Unsupervised Representation Learning task. Among methods that
solve this task we chose to use simple yet effective SimCLR framework, introduced
by Chen et al. [7].

The main idea of SimCLR framework is to learn representation by maximizing
representation agreement between two random augmentations of the same data ex-
ample via contrastive loss in the latent space. Authors propose four essential com-
ponents of the SimCLR framework[7]:

• Random data augmentation module, which given a single data sample as an
input, randomly transforms it into two correlated views of the input, thus pro-
ducing a positive pair x̃i and x̃j.

• Base Encoder network which produces latent vectors, particularly the network
we aim to train.

Chapter 5. Materials and Methods 17

• Small Projection Head network. The main purpose of this small network is
to project vector representations onto another space instead of applying con-
trastive loss directly on representation vectors. Authors argue [7], that apply-
ing the loss function in projected space can drastically improve both training
and resulting representations.

• Contrastive Loss function which is applied on vector projections. Given a set
of pairs of samples, the function aims to identify positive ones among negative.

Authors [7] define the contrastive loss function for a positive pair of data samples
(i, j) as follows:

li,j = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

(5.3.3)

where N is a number of data samples in a batch, 1[k ̸=i] ∈ 0, 1 is an indicator function
evaluating to 1 if k ̸= i and τ denotes temperature parameter.

5.4 Discriminator

In this method, we treat given exemplar 2D image of texture as a slice of real gen-
erated texture solid, thus when training Discriminator it’s objective is to distinguish
2D slices from texture solid space, represented by our network and real slices – ran-
domly cropped parts from our input texture.

We decided to adopt discriminator architecture from the method introduced by
Zhao et al.[37], due to similarity of our problem to classic solid texture synthesis.
This architecture can drastically improve generator’s resulting performance in terms
of capturing both high- and low-level detail.

Having a generator which synthesizes textures at arbitrary absolute scale and res-
olution we need to make sure that at different levels of scale it maintains visual ap-
pearance of given input exemplar texture. Having this goal in mind, authors argue
that training generator with one discriminator on one specific scale can lead genera-
tor to failing to capture detail on other levels of scale[37]. Thus authors propose
training N separate discriminators each on it’s own specific scale, therefore guiding
generator to learn both global and more local appearance of textures. As our genera-
tor is, in general, a coordinate function, we do not need to do any workarounds or
modifications for such training method. For each absolute scale Sn we change the
coordinates, which we use to sample information from the generator

Therefore, to formalize our adversarial training strategy: having N manually
specified scales Sn, for each such scale we initialize discriminator network DSn , each
to be trained on specified scale of view.

As an underlying architecture, we choose discriminator DSn to be a simple con-
volutional feature-extractor followed by linear fully-connected classifying layer.

5.5 Objective

In this section, we will describe the parts of our objective, which we use to improve
performance of our framework.

Chapter 5. Materials and Methods 18

5.5.1 Generator loss

As described in previous section, we decide to use multiple discriminators, so our
discriminator loss function part will look different from standard: having N discrim-
inator networks, we take the average score from every network.

The discriminator part of generator’s objective can be denoted as

LG = − 1
N

N

∑
n=1

DSn(G(xSn)) (5.5.1)

where DSn is a discriminator network operating on nth scale Sn and N is a number
of such scales.

Using only the discriminator part proved to be not enough in order to achieve
satisfying visual result. To fix this and guide our generator network in right direction
we add to additional parts: cosine similarity and histogram similarity losses.

Cosine similarity

Having already pretrained encoder network, which gives accurate latent representa-
tions of images, lets us use it to estimate how similar the generated view is to the
data sample given as an input. We estimate the similarity of generated and real
data samples by applying cosine similarity function to latent vector projections of real
and fake data using our pretrained encoder and projection head networks. As argued
by authors of SimCLR framework [7], applying similarity in projected space yields
better results.

Thus, our cosine similarity loss part can be denoted as:

Lcos =
xreal · xfake

max(∥xreal∥2 · ∥xfake∥2, ϵ)
(5.5.2)

where xreal and xfake denote real and fake representation projections respectievly
and ϵ is small constant for numerical stability.

Adding this loss in our case result in huge benefit in form of generator reaching
satisfying visual faster and overall training stability.

Histogram similarity

In order to push our generator’s performance even further, we decided to employ
loss, proposed by Afifi et al. [1] – histogram similarity loss. As proposed in the
study, for each color channel of an image we compute a histogram projected into
log-chroma space as it is equally insightfull but more compact then standard 3D
histogram defined in RGB space.

Log-chroma space is defined by intensity of one channel, normalized by the other
two. Instead of selecting one particular color, we use all three variations as a h× h× 3
tensor, following the original study [1].

To obtain a histogram feature first we need to convert image I into log-chroma
space. This can be done as follows:

IuR(x) = log(
IR(x) + ϵ

IG(x) + ϵ
), IvR(x) = log(

IR(x) + ϵ

IB(x) + ϵ
) (5.5.3)

where R, G, B subscripts refer to color channels, x is a pixel index, ϵ is a small nu-
merical stability constant and (uR, vR) are uv coordinates in resulting image.

Chapter 5. Materials and Methods 19

The resulting histogram Hc can be computed as follows:

H(u, v, c) ∝ ∑
x

k(Iuc(x), Iuc(x), u, b)Iy(x), (5.5.4)

where c ∈ R, G, B, and k is the inverse-quadratic kernel and Iy(x) is contribution
of each pixel by intensity, denoted as:

Iy(x) =
√

I2
R(x), I2

G(x), I2
B(x) (5.5.5)

Further the histogram feature is normalized to sum to one.
Finally, having histogram features of real and fake data samples Hreal and Hfake

respectively, we can estimate the similarity by computing Hellinger distance as pro-
posed by authors [1], defined as:

Lhist = C(Hfake, Hreal) =
1√
2
∥H1/2

fake − H1/2
real∥2, (5.5.6)

where H1/2 is an element-vise square root of the histogram. This part of a final loss
helps to guide generator to preserve the color scheme of original input sample.

Having explained all the essential parts we can denote our generator loss func-
tion as follows:

LG = − 1
N

N

∑
n=1

DSn(G(xSn)) + λhist · Lhist − λcos · Lcos, (5.5.7)

where λcos and λhist are hyperparameters.

5.5.2 Discriminator loss

As stated above, we use multiple discriminator’s DSn operating each on it’s own
specific scale. Our main component of discriminator’s loss function is defined as:

LD =
1
N

N

∑
n=1

DSn(G(xSn))−
1
N

N

∑
n=1

DSn(Ireal) (5.5.8)

We propose use Wasserstein-GAN gradient penalty, proposed by Gulrajani et al.
[12], to improve training stability. The gradient penalty can be described as:

LGP =
1
N

N

∑
n=1

(∥∇uDSn(u)∥2 − 1)2 (5.5.9)

Where u denotes an interpolation between real and fake images.
In this chapter we described details of our data and method. In next chapter

we will show the results achieved with Mapping Materials to 3D Texture Field using
proposed GANs.

20

Chapter 6

Experiments

In this chapter we will give an overview to training details and experiments, that
were performed during this study.

6.1 Implementation details

The work, presented in this thesis is implemented using Python 3.9 [34] program-
ming languages, which one of the best suits for deep learning tasks. Our imple-
mentation is based on the pi-GAN[6] and SimCLR[7] implementations, both writ-
ten in PyTorch [28] framework. The whole training pipeline was written using
PyTorch-Lightning [10] framework. During training, visualization of the process
was done using Tensorboard. For image processing and additional visualization we
use NumPy[14] and OpenCV[3].

6.2 Training details

All the experiments were conducted on two NVIDIA RTX 3080TI GPU’s. We use
Adam optimizer [22] with learning rate set to 1e−5 and (β1, β2) parameters set to
(0, 0.9). The encoder was pretrained on the whole material dataset with batch size
128, using SGD optimization technique.

6.3 Experiments with data

Initially, experiments where performed on data, resized without an anti-aliasing fil-
ter. We discovered that it was causing unwanted crisp grain. The difference can be
seen on side-to-side comparison on Figure 6.1

FIGURE 6.1: Patches, sized 400 by 400 pixels, of same data sample:
anti-aliasing filter applied on the right, no filter on the left

Chapter 6. Experiments 21

6.4 Experiments with generator

During the study many experiments where conducted on the architecture of encoder
network. We tested 18-, 34-, 50- and 101-layer settings of ResNet architecture [15].
The 50-layer setting was chosen due to producing better representations compared
to smaller models and 101-layer proved to be to large for this kind of task. Addition-
ally we conducted experiments with "blurring" encoder’s downsampling layers, as
described in Section 5.3. During ablation study of "blurring" encoder, we saw that
this technique helps the encoder recognize more high-level structure, therefore give
better representation.

FIGURE 6.2: Top row: input data samples, bottom row: synthesized
texture. On the left we have the results of experiment with applica-
tion of anti-aliasing, to the right are the results of experiment without
any filtering. One can clearly see, that with unwanted crispy grain
removed, generator learns to capture more high-level shapes, when,
on the other hand, without anti-aliasing generator eventually starts

to synthesize more and more crisp texture

Following the recent study by Chng et al. [8], we conducted several experiments
in which we implemented our version of Gaussian Activated MLP. We did a simple
experiment of fitting the network to represent single image, and as a result SIREN
proved to perform better in terms of convergence speed and image quality.

6.5 Experiments with discriminator

When conducting first experiments, we discovered that in every setting, generator
network couldn’t keep up with discriminator network, there discriminator quickly
learned to outperform the generator and didn’t give any useful information to gen-
erator. To tackle this problem, we experimented with number of different GAN
training strategies: first, we added the WGAN-GP [12] gradient penalty in order to
improve stability, secondly we tried out ProgressiveGAN [21], thirdly we used the
hierarchical strategy described in 5.4. The ProgressiveGAN’s main idea is to grad-
ually increase resolution of generated images and gradually training specific blocks

Chapter 6. Experiments 22

of discriminator network. We conducted numerous experiments, trying out differ-
ent settings and hyperparameters for this framework but were not able to achieve
satisfying results. We hypothesise that through first stages of progressive training
generator is not able to learn sufficient enough high-level structure representations,
therefore struggling later and being outperformed as a result (Figure 6.3).

FIGURE 6.3: The results of our best model, trained in progressive set-
ting.

We still continue conducting experiments with hierarchical setting as we didn’t
achieve best possible results, yet. The results of current best network will be shown
in next chapter.

23

Chapter 7

Results

As this research is still in ongoing active state, thus results are not final. During this
research, so far, we managed to achieve visually tolerable results on their own but
still our framework is not yet able to accurately reconstruct given 2D input.

Here we will show some of the renders of geometric objects, textured with our
texture field.

Chapter 7. Results 24

25

Chapter 8

Conclusions and Future work

8.1 Conclusion

In this work, we introduce a new method to implicitly represent and generate 3D
Texture Fields in zero-shot manner using sinusoidal representation networks.

So far, we focused on finding best adversarial strategy to train our generator
network and there still is work to be done.

We showed that sinusoidal representation networks [32] are capable of learning
prior for huge space of different images and able to synthesize satisfying visual rep-
resentations when conditioned on particular example.

8.2 Future work

We plan to continue this research to push the reconstruction abilities of the frame-
work even further. We want to explore, how the framework will behave on other
sets of date, not as simple as marble, for instance. We see two main directions for
future improvements: upgrade of adversarial training strategy and conditioning of
sampling network on 3D geometry data.

26

Chapter 9

Conclusions and future work

27

Bibliography

[1] Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown. HistoGAN: Con-
trolling Colors of GAN-Generated and Real Images via Color Histograms. 2020. eprint:
arXiv:2011.11731.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 2017.
DOI: 10.48550/ARXIV.1701.07875. URL: https://arxiv.org/abs/1701.
07875.

[3] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[4] Jane Bromley et al. “Signature Verification using a "Siamese" Time Delay Neu-
ral Network”. In: Advances in Neural Information Processing Systems. Ed. by J.
Cowan, G. Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann, 1993. URL:
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-
Paper.pdf.

[5] Jane Bromley et al. “Signature Verification using a "Siamese" Time Delay Neu-
ral Network”. In: Advances in Neural Information Processing Systems. Ed. by J.
Cowan, G. Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann, 1993. URL:
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-
Paper.pdf.

[6] Eric R. Chan et al. pi-GAN: Periodic Implicit Generative Adversarial Networks for
3D-Aware Image Synthesis. 2020. arXiv: 2012.00926.

[7] Ting Chen et al. A Simple Framework for Contrastive Learning of Visual Represen-
tations. 2020. eprint: arXiv:2002.05709.

[8] Shin-Fang Chng et al. GARF: Gaussian Activated Radiance Fields for High Fidelity
Reconstruction and Pose Estimation. 2022. arXiv: 2204.05735 [cs.CV].

[9] Alexei A. Efros and William T. Freeman. “Image Quilting for Texture Synthesis
and Transfer”. In: Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: Association
for Computing Machinery, 2001, 341–346. ISBN: 158113374X. DOI: 10.1145/
383259.383296. URL: https://doi.org/10.1145/383259.383296.

[10] William Falcon et al. “PyTorch Lightning”. In: GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning 3 (2019).

[11] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. eprint: arXiv:
1406.2661.

[12] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. 2017. eprint:
arXiv:1704.00028.

[13] J. Gutierrez et al. “On Demand Solid Texture Synthesis Using Deep 3D Net-
works”. In: Computer Graphics Forum (2020). ISSN: 1467-8659. DOI: 10.1111/
cgf.13889.

[14] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https:
//doi.org/10.1038/s41586-020-2649-2.

arXiv:2011.11731
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://arxiv.org/abs/2012.00926
arXiv:2002.05709
https://arxiv.org/abs/2204.05735
https://doi.org/10.1145/383259.383296
https://doi.org/10.1145/383259.383296
https://doi.org/10.1145/383259.383296
arXiv:1406.2661
arXiv:1406.2661
arXiv:1704.00028
https://doi.org/10.1111/cgf.13889
https://doi.org/10.1111/cgf.13889
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Bibliography 28

[15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. eprint:
arXiv:1512.03385.

[16] Kaiming He et al. Momentum Contrast for Unsupervised Visual Representation
Learning. 2019. DOI: 10.48550/ARXIV.1911.05722. URL: https://arxiv.org/
abs/1911.05722.

[17] David J. Heeger and James R. Bergen. “Pyramid-Based Texture Analysis/Synthesis”.
In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’95. New York, NY, USA: Association for Computing
Machinery, 1995, 229–238. ISBN: 0897917014. DOI: 10.1145/218380.218446.
URL: https://doi.org/10.1145/218380.218446.

[18] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Learning a Neural 3D Tex-
ture Space from 2D Exemplars. 2019. eprint: arXiv:1912.04158.

[19] R Devon Hjelm et al. Learning deep representations by mutual information estima-
tion and maximization. 2018. DOI: 10.48550/ARXIV.1808.06670. URL: https:
//arxiv.org/abs/1808.06670.

[20] Tero Karras et al. Alias-Free Generative Adversarial Networks. 2021. eprint: arXiv:
2106.12423.

[21] Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and
Variation. 2017. DOI: 10.48550/ARXIV.1710.10196. URL: https://arxiv.org/
abs/1710.10196.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.org/abs/1412.
6980.

[23] Johannes Kopf et al. “Solid Texture Synthesis from 2D Exemplars”. In: ACM
SIGGRAPH 2007 Papers. SIGGRAPH ’07. San Diego, California: Association
for Computing Machinery, 2007, 2–es. ISBN: 9781450378369. DOI: 10.1145/
1275808.1276380. URL: https://doi.org/10.1145/1275808.1276380.

[24] Vivek Kwatra et al. “Graphcut Textures: Image and Video Synthesis Using
Graph Cuts”. In: ACM Trans. Graph. 22.3 (2003), 277–286. ISSN: 0730-0301. DOI:
10.1145/882262.882264. URL: https://doi.org/10.1145/882262.882264.

[25] Lin Liang et al. “Real-Time Texture Synthesis by Patch-Based Sampling”. In:
ACM Trans. Graph. 20.3 (2001), 127–150. ISSN: 0730-0301. DOI: 10.1145/501786.
501787. URL: https://doi.org/10.1145/501786.501787.

[26] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis. 2020. DOI: 10.48550/ARXIV.2003.08934. URL: https://arxiv.org/
abs/2003.08934.

[27] Jeong Joon Park et al. DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation. 2019. DOI: 10.48550/ARXIV.1901.05103. URL: https:
//arxiv.org/abs/1901.05103.

[28] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

[29] Ethan Perez et al. FiLM: Visual Reasoning with a General Conditioning Layer. 2017.
arXiv: 1709.07871.

arXiv:1512.03385
https://doi.org/10.48550/ARXIV.1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://doi.org/10.1145/218380.218446
https://doi.org/10.1145/218380.218446
arXiv:1912.04158
https://doi.org/10.48550/ARXIV.1808.06670
https://arxiv.org/abs/1808.06670
https://arxiv.org/abs/1808.06670
arXiv:2106.12423
arXiv:2106.12423
https://doi.org/10.48550/ARXIV.1710.10196
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1275808.1276380
https://doi.org/10.1145/1275808.1276380
https://doi.org/10.1145/1275808.1276380
https://doi.org/10.1145/882262.882264
https://doi.org/10.1145/882262.882264
https://doi.org/10.1145/501786.501787
https://doi.org/10.1145/501786.501787
https://doi.org/10.1145/501786.501787
https://doi.org/10.48550/ARXIV.2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.48550/ARXIV.1901.05103
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1901.05103
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1709.07871

Bibliography 29

[30] Ken Perlin. “An image synthesizer”. In: SIGGRAPH ’85. 1985.

[31] Tiziano Portenier, Siavash Bigdeli, and Orcun Goksel. GramGAN: Deep 3D Tex-
ture Synthesis From 2D Exemplars. 2020. eprint: arXiv:2006.16112.

[32] Vincent Sitzmann et al. Implicit Neural Representations with Periodic Activation
Functions. 2020. arXiv: 2006.09661.

[33] Towaki Takikawa et al. Neural Geometric Level of Detail: Real-time Rendering with
Implicit 3D Shapes. 2021. DOI: 10 . 48550 / ARXIV . 2101 . 10994. URL: https :
//arxiv.org/abs/2101.10994.

[34] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. ISBN: 1441412697.

[35] Li-Yi Wei. “Texture Synthesis by Fixed Neighborhood Searching”. AAI3038169.
PhD thesis. Stanford, CA, USA, 2002. ISBN: 0493520031.

[36] Richard Zhang. “Making Convolutional Networks Shift-Invariant Again”. In:
Proceedings of the 36th International Conference on Machine Learning. Ed. by Ka-
malika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 7324–7334. URL: https://proceedings.
mlr.press/v97/zhang19a.html.

[37] Xin Zhao et al. Solid Texture Synthesis using Generative Adversarial Networks.
2021. eprint: arXiv:2102.03973.

[38] Bolei Zhou et al. “Learning Deep Features for Scene Recognition using Places
Database”. In: Advances in Neural Information Processing Systems. Ed. by Z. Ghahra-
mani et al. Vol. 27. Curran Associates, Inc., 2014. URL: https://proceedings.
neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.
pdf.

arXiv:2006.16112
https://arxiv.org/abs/2006.09661
https://doi.org/10.48550/ARXIV.2101.10994
https://arxiv.org/abs/2101.10994
https://arxiv.org/abs/2101.10994
https://proceedings.mlr.press/v97/zhang19a.html
https://proceedings.mlr.press/v97/zhang19a.html
arXiv:2102.03973
https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	3D Texture Synthesis and Mapping Problem
	Solid Texture Synthesis
	Procedural Methods
	Statistical Feature-Matching Methods
	Patch-based Method
	Markov Random Field-based Methods
	Neural Network-based Methods

	Implicit Texture Fields
	Reconstructing Geometry
	Scene Reconstruction
	Neural Texture Fields

	Related works
	Solid Texture Synthesis
	GramGAN
	Solid Texture Synthesis using Generative Adversarial Networks

	Periodic Implicit Generative Adversarial Networks
	Sinusoidal Representation Networks
	Feature-wise Linear Modulation

	Generative Adversarial Networks
	Wasserstein GAN Training

	Unsupervised Representation Learning
	Contrastive Learning

	Problem Formulation
	Materials and Methods
	Dataset
	SIREN-Based Texture Field
	ResNet-based Encoder network
	Encoder Architecture
	Contrastive Training

	Discriminator
	Objective
	Generator loss
	Cosine similarity
	Histogram similarity

	Discriminator loss

	Experiments
	Implementation details
	Training details
	Experiments with data
	Experiments with generator
	Experiments with discriminator

	Results
	Conclusions and Future work
	Conclusion
	Future work

	Conclusions and future work
	Bibliography

