
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Mixup and Metric Learning in
Out-of-Distribution Detection

Author:
Oleksandra HUTOR

Supervisor:
Dr. Giorgos TOLIAS

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences and Information Technologies
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
https://cmp.felk.cvut.cz/~toliageo/
http://apps.ucu.edu.ua
http://apps.ucu.edu.ua

i

Declaration of Authorship
I, Oleksandra HUTOR, declare that this thesis titled, “Mixup and Metric Learning in
Out-of-Distribution Detection” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Mixup and Metric Learning in Out-of-Distribution Detection

by Oleksandra HUTOR

Abstract

In this work, we analyse the problem of out-of-distribution detection, which includes
inlier classification and outlier detection, and the use of two methods for it, i.e.,
Mixup and metric learning, as well as their combination. Inspired by the use of
Mixup between inliers and outliers in MixOE (Zhang et al., 2023), our first objective
is to identify the key ingredients of their method and to combine it with seven
other Mixup techniques. We also change the size and diversity of the auxiliary outlier
dataset, which is used for training. We find that in the fine-grained OoD setting, where
outliers come from the same domain as inliers, mixing only the label with the one that
comes from the uniform probability distribution without mixing the inlier and outlier
training samples has a similar performance as mixing both pairs of training samples
and labels. At the same time, in the coarse-grained settings, where outliers come from
a completely different domain than inliers, the more outliers are used for mixing,
the better the detection performance is. Our second objective is the investigation of
metric learning in the form of triplet loss for the same setup with different types of
triplet combinations, some of which are created using Mixup. In the coarse-grained
settings, the triplet combination with only inlier classes performs better than such
combinations with outliers, mixed or not. Finally, we combine MixOE and our metric
learning approach to show that, for some datasets, the detection performance in the
coarse-grained settings is comparably larger than the previous best result, MixOE.

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua

iii

Acknowledgements
I want to express extreme gratitude to my supervisor, Dr. Giorgos Tolias, for guiding
me through this thesis and my beginnings in academic research. This work would not
have been accomplished without his valuable advice and supervision. I also thank
the Center for Machine Perception at the Czech Technical University in Prague for
providing the computational resources.

I am grateful to the Faculty of Applied Sciences at the Ukrainian Catholic Univer-
sity, especially Oles Dobosevych, M.Sc. and Dr. Taras Firman, for encouraging me to
grow academically, personally and professionally at different times during these four
amazing but nonetheless challenging years. During the last year, none of that would
be possible without the Armed Forces of Ukraine defending our country and giving
me the ability to study, work and stay alive.

I feel deeply thankful that I could share this unforgettable four-year journey with
my friends offline and online.

Last but not least, I want to thank my parents and my sister for their indefinite
support of all of my endeavours.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Related work 3
2.1 Mixup . 3

2.1.1 Input Mixup and manifold intrusion 3
2.1.2 Manifold Mixup . 4
2.1.3 AlignMixup . 5
2.1.4 Local Mixup . 5
2.1.5 Mixup for metric learning . 6

Metrix . 6
Mixup for triplet loss . 6

2.2 Out-of-distribution detection . 7
2.2.1 Overview . 7

OoD, anomaly and novelty detection 7
Detection methods . 7
Outlier Exposure . 8

2.2.2 Out-of-distribution detection with metric learning 8
2.2.3 Out-of-distribution detection with Mixup 9

3 Problem formulation and Contribution 11
3.1 Formulation . 11
3.2 Contribution . 12

4 Method 14
4.1 MixOE analysis . 14

4.1.1 Auxiliary outlier dataset . 14
4.1.2 Mixup variants . 14

Mixup with K nearest neighbours 15
Mixup with Outlier Exposure . 15
Mixup with labels . 16
Mixup with noise . 16

4.2 Metric learning for out-of-distribution detection 16
4.2.1 Triplet loss . 16
4.2.2 Meaningful choice of the margin 17
4.2.3 Mixup in metric learning for out-of-distribution detection . . . 17

4.3 Evaluation metrics . 18
4.3.1 Confidence-based True Negative Rate 18

v

5 Experiments 19
5.1 Implementation and experimental details 19

5.1.1 Implementation and training details 19
5.1.2 Datasets . 19
5.1.3 Experimental details . 20

Mixup variants . 20
Changing outlier distribution . 22
Metric learning with and without Mixup for OoD detection . . 23

5.2 Results . 24
5.2.1 Impact of the size of auxiliary outlier dataset and Mixup with

labels . 24
5.2.2 Impact of the diversity of auxiliary outlier dataset 26
5.2.3 Impact of Mixup variants . 26

Input Mixup (Mixup with inliers) and Mixup with noise 26
Manifold MixOE and Align MixOE 26
MixOE with KNN . 26
MixOE with and without OE loss 26

5.2.4 Impact of metric learning . 26
Impact of (I1, I1, I2) triplet . 26
Impact of hyperparameter β for the triplet loss 28
Impact of an outlier in the triplet 28
Impact of MixOE with triplet loss 29
Choosing best-performing hyperparameters 29

6 Conclusion and Future Work 36
6.1 Conclusion . 36
6.2 Future Work . 37

Bibliography 38

vi

List of Figures

2.1 Illustration of Mixup. Orange and green colours indicate different
classes; blue colour indicates p(y = 1|x), where y is the class, and
x is a sample from one of the classes when standard Empirical Risk
Minimisation is used (left) and Mixup (right). Image is taken from
(Zhang et al., 2018). 4

2.2 Illustration of Manifold Mixup. The left image shows the embedding
space without using Manifold Mixup. The image on the right shows a
prominent decision boundary near two classes as a result of applying
Manifold Mixup. The wider the white boundary is, the less certain the
prediction is near it. Image is taken from (Verma et al., 2019). 4

3.1 Illustration of fine- and coarse-grained out-of-distribution examples
used for measuring detection performance. Image is taken from
(Zhang et al., 2023). 11

5.1 Classification comparison between MixOE (green), baseline (blue) and
Mixup with labels (red). Mean values are reported. Standard deviation
is reported in the form of error bars. 20

5.2 Detection comparison between MixOE (green), baseline (blue) and
Mixup with labels (red) using confidence-based metric. Fine-grained
on the right and coarse-grained on the left. 20

5.3 Coarse-grained comparison between MixOE, baseline, Mixup with
labels (label_mix) and Mixup with a different number of outliers
(mixoe_outl, green) or classes (mixoe_cls, blue) using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Aircraft
datasets. Every experiment for this and further plots is reported as
a mean value and standard deviation in the form of error bars. The
darker the green (blue) colour is, the more outliers (classes) are used
during training. 22

5.4 Fine-grained comparison between MixOE, baseline, Mixup with labels
(label_mix) and Mixup with a different number of outliers (mixoe_outl,
green) or classes (mixoe_cls, blue) using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
The darker the green (blue) colour is, the more outliers (classes) are
used during training. 23

5.5 Coarse-grained comparison between MixOE, baseline and four differ-
ent combinations of triplets according to Table 4.1 with (blue) and with-
out (green) MixOE using accuracy and confidence-based TNR@95TPR
on the Car, Bird, Butterfly and Aircraft datasets. Every experiment
for this and further plots is reported as a mean value and standard
deviation in the form of error bars. 24

vii

5.6 Fine-grained comparison between MixOE, baseline and four different
combinations of triplets according to Table 4.1 with (blue) and with-
out (green) MixOE using accuracy and confidence-based TNR@95TPR
based on best-performing hyperparameters for coarse-grained detec-
tion on the Car, Bird, Butterfly and Aircraft datasets. 25

5.7 Coarse-grained comparison between MixOE, baseline and (I1; I1; I2)
triplets with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Aircraft
datasets. Every experiment for this and further plots is reported as
a mean value and standard deviation in the form of error bars. The
darker the colour, the larger the margin. Different markers correspond
to β ∈ {0.1; 0.3; 0.5} . 27

5.8 Fine-grained comparison between MixOE, baseline and (I1; I1; I2)
triplets with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the colour, the larger the margin. Different
markers correspond to β ∈ {0.1; 0.3; 0.5} 28

5.9 Coarse-grained comparison between MixOE, baseline and (I1; I1; O)
triplets with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the colour, the larger the margin. Different
markers correspond to β ∈ {0.1; 0.3; 0.5} 30

5.10 Fine-grained comparison between MixOE, baseline and (I1; I1; O)
triplets with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the colour, the larger the margin. Different
markers correspond to β ∈ {0.1; 0.3; 0.5} 31

5.11 Coarse-grained comparison between MixOE, baseline and random
selection between (I1,O; I1; O) and (I1; I1,O; O) during each iteration
with (blue) and without (green) MixOE using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
The darker the colour, the larger the margin. Different markers corre-
spond to β ∈ {0.1; 0.3; 0.5} . 32

5.12 Fine-grained comparison between MixOE, baseline and random se-
lection between (I1,O; I1; O) and (I1; I1,O; O) during each iteration
with (blue) and without (green) MixOE using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
The darker the colour, the larger the margin. Different markers corre-
spond to β ∈ {0.1; 0.3; 0.5} . 33

5.13 Coarse-grained comparison between MixOE, baseline and random
selection between (I1,O; I1; I2) and (I1; I1,O; I2) during each iteration
with (blue) and without (green) MixOE using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
The darker the colour, the larger the margin. Different markers corre-
spond to β ∈ {0.1; 0.3; 0.5} . 34

5.14 Fine-grained comparison between MixOE, baseline and random se-
lection between (I1,O; I1; I2) and (I1; I1,O; I2) during each iteration
with (blue) and without (green) MixOE using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
The darker the colour, the larger the margin. Different markers corre-
spond to β ∈ {0.1; 0.3; 0.5} . 35

viii

List of Tables

4.1 Table of possible triplet combinations. 17

5.1 Detection comparison of Mixup variants in a coarse-grained setting
using TNR@TPR95. 21

5.2 Detection comparison of Mixup variants in a fine-grained setting using
TNR@TPR95. 21

5.3 Classification comparison of Mixup variants using accuracy. 21

ix

List of Abbreviations

OoD Out-of-Distribution
ID In Distribution
OE Outlier Exposure
ODM Out-of-Distribution Mining
TNR@95TPR True Negative Rate At 95% of True Positive Rate

x

List of Symbols

m Margin for metric learning losses
xi, xj A random example from a training distribution
xin A random in-distribution example
xout A random out-of-distribution example
d A distance function
a, p, n Anchor, a positive example and a negative example for the triplet loss
ng Gaussian noise image
x̂, â, p̂ Mixed examples
Lce Cross-Entropy loss
Loe Outlier Exposure loss
Ltrip Triplet loss

α Parameter of the shape of Beta distribution
λ An interpolation factor
β A weighting factor for the losses

xi

Dedicated to the Armed Forces of Ukraine

1

Chapter 1

Introduction

During classification, neural networks provide a class label and a class probability
(confidence). When an example belongs to the domain of classes the network can
recognise, the confidence should be high for the targeted class. When such an
input example is not from the training distribution of examples, that is, an out-of-
distribution example, its confidence should be low for every class (Hendrycks and
Gimpel, 2016).

Out-of-distribution (OoD, outlier) detection is a vast and ongoing research do-
main that is relevant across multiple disciplines, including medical diagnosis (Li,
Desrosiers, and Liu, 2022), segmentation (Cen et al., 2021), and network security
(Aliakbarisani, Ghasemi, and Wu, 2019), to name a few. Out-of-distribution detection
encompasses the detection of OoD examples and the classification of ID examples.
This thesis focuses on neural network performance when given out-of-distribution
images during inference. The goal is to prevent overconfident predictions of OoD
examples. We analyse the impact of Mixup, a data augmentation technique, during
training as it is used in the MixOE approach (Zhang et al., 2023). We also investigate
the use of metric learning for out-of-distribution detection.1

Since the performance of a neural network in its majority depends on the data it
is trained on, it is known to output an overconfident class when making predictions
on examples utterly different from the ones it is trained on (Hein, Andriushchenko,
and Bitterwolf, 2019). Thus, such behaviour results in performance degradation. By
making models more robust to outliers, confidence-based or other detection methods
more effectively discard the examples that cannot be classified within the domain of
available classes instead of falsely predicting the wrong class with large confidence.

Mixup (Zhang et al., 2018) is known to boost the regularisation of neural networks
(Carratino et al., 2020). It is applied to increase performance while being implemented
with a few lines of code. Mixup is also used in metric learning and out-of-distribution
detection domains (Venkataramanan et al., 2022b; Zhang et al., 2023), which benefit
from one of the advantages of Mixup to decrease the confidence around the decision
boundary. We first analyse how Mixup is used between inliers and outliers in MixOE
(Zhang et al., 2023), whose model and dataset setup we use in our experiments.2 We
explore how the size and diversity of an auxiliary outlier dataset affect training. We
also apply other Mixup variants to understand which components of Mixup help to
improve the performance.

The hypothesis proposed in previous work (Koner et al., 2021; Masana et al., 2018;
Venkataramanan et al., 2022b) states that a success of an out-of-distribution detection
and classification generally lies in the network’s ability to learn an embedding space
in a specific way. Embeddings of in-distribution (ID, inlier) examples should be

1The code for this thesis can be found via Github: https://github.com/Oleksandra2020/metric_mix_oe.
2The code for MixOE can be found via GitHub: https://github.com/zjysteven/MixOE.

https://github.com/Oleksandra2020/metric_mix_oe
https://github.com/zjysteven/MixOE

Chapter 1. Introduction 2

compact within the cluster of embeddings from the same class. At the same time, em-
beddings from different classes should be far from each other. Ruled by this statement,
we analyse the literature on metric learning applied to out-of-distribution detection.
Most contingent work to ours use contrastive learning between in-distribution sam-
ples for detecting outlier examples. However, to our knowledge, metric learning
with OoD examples for out-of-distribution detection is an underexplored area of
research. Out-of-Distribution Mining (ODM) (Masana et al., 2018) uses contrastive
loss between ID and OoD examples, but the authors do not tune the hyperparameters
for contrastive loss and do not investigate the use of triplet loss. The authors of (Yang
et al., 2020) use Triplet Network, but do not use an auxiliary outlier dataset. In our
work, we provide possible combinations of triplets (with and without outliers) for
triplet loss for the problem of OoD detection and analyse meaningful values of the
margin. Inspired by the work on Mixup in metric learning (Venkataramanan et al.,
2022b; Lee and Kim, 2022), we use Mixup to create anchors and positive examples
resulting in new triplet combinations. We aim to show an approach and results that
will hopefully provide more understanding about the topics of Mixup and metric
learning in out-of-distribution detection.

Chapter 2 reviews related work on Mixup and out-of-distribution detection,
including the impact of Mixup and metric learning for OoD detection. Chapter 3
formulates the problem this thesis considers. Chapter 4 suggests the methodology
for out-of-distribution detection, specifically Mixup and metric learning. Chapter
5 presents executed experiments and current results, and Chapter 6 concludes the
thesis.

3

Chapter 2

Related work

2.1 Mixup

Throughout the years, there has been massive research done on different variants
of Mixup, including Manifold Mixup (Verma et al., 2019), CutMix (Yun et al., 2019),
Local Mixup (Baena, Drumetz, and Gripon, 2022), AlignMixup (Venkataramanan
et al., 2022b), and many more. Mixup is observed to smooth the confidence around
the decision boundary (Zhang et al., 2018) and is applied to input samples (Zhang
et al., 2018) as well as to embeddings (Verma et al., 2019). When applied to the latter,
(Venkataramanan et al., 2022a) observed that such models need longer training to
show better performance.

2.1.1 Input Mixup and manifold intrusion

Mixup (Zhang et al., 2018) is a data augmentation technique used to create a convex
combination of two samples and their labels from a training batch resulting in a new
example with a new label. It can be implemented in a few lines of code and is usually
used between random pairs of samples inside a single batch:

x̂ = λxi + (1 − λ)xj, ŷ = λyi + (1 − λ)yj, (2.1)

where xi, xj are training examples, yi, yj are their one-hot encoded labels respec-
tively, and λ ∈ [0, 1], which is a mixing factor, usually drawn from a Beta distribution
Beta(α, α) with a set hyperparameter α.

Thus, the authors suggest using Vicinal Risk Minimization (VRM) principle, which
defines a vicinity distribution v in the area around the given training examples (xi, yi),
creating a virtual pair (x̂, ŷ) (Chapelle et al., 2000):

Pv(x̂, ŷ) =
1
n

n

∑
i=1

v(x̂, ŷ|xi, yi) (2.2)

Sampling from a new dataset D = {(xi, yi)}m
i=1, we can minimize empirical vicinal

risk:

Rv =
1
m

m

∑
i=1

l(f (x̂i), ŷi), (2.3)

where l is the loss function, a standard cross-entropy, in our case. The formulations
defined above are taken from (Zhang et al., 2018).

Figure 2.1 shows how Mixup can create samples between the classes and help
reduce the certainty near the decision boundary. This is an essential advantage of
Mixup that some out-of-distribution work benefit from.

Chapter 2. Related work 4

FIGURE 2.1: Illustration of Mixup. Orange and green colours indicate
different classes; blue colour indicates p(y = 1|x), where y is the class,
and x is a sample from one of the classes when standard Empirical
Risk Minimisation is used (left) and Mixup (right). Image is taken

from (Zhang et al., 2018).

(Guo, Mao, and Zhang, 2019) discovered an inherent problem that Mixup pro-
duces, called manifold intrusion. Manifold intrusion happens when a mixed example
resembles an existing example in the dataset but is assigned a label that differs from
the true one. According to the authors, such a condition produces under-fitting and
decreases the model’s performance.

2.1.2 Manifold Mixup

Manifold Mixup (Verma et al., 2019) interpolates hidden representation instead of
input examples. The authors state that this provides uncertainty around a decision
boundary on multiple representation layers:

ĝk = λgk(xi) + (1 − λ)gk(xj), (2.4)

where mixing factor λ and label ŷ are defined as in equation 2.1 and gk is a layer k
in a neural network before which Manifold Mixup is applied (Verma et al., 2019).

FIGURE 2.2: Illustration of Manifold Mixup. The left image shows
the embedding space without using Manifold Mixup. The image on
the right shows a prominent decision boundary near two classes as a
result of applying Manifold Mixup. The wider the white boundary is,
the less certain the prediction is near it. Image is taken from (Verma

et al., 2019).

Chapter 2. Related work 5

Figure 2.2 illustrates how Manifold Mixup affects the decision boundary in the
embedding space.

It is shown that Manifold Mixup learns class representations more compactly,
that is, with fewer directions of variance, which improve the network’s ability to
perform on slightly perturbed adversarial or novel examples (Verma et al., 2019). This
is because Manifold Mixup flattens representations per class by reducing the number
of principal components (Verma et al., 2019).

Interestingly, in the implementation provided along with the paper, Manifold
Mixup is never executed after the same layer of a neural network during each iteration.
The layer is randomly chosen between the first few layers per iteration.

2.1.3 AlignMixup

AlignMixup (Venkataramanan et al., 2022a) combines two images in a more meaning-
ful way than just interpolation. The authors take two images and align them such
that the pose of one image and the texture of the other are retained in a resulting
mixed image. The alignment is done between feature vectors and never on the input
samples.

The features of training samples xi and xj are obtained using an encoder network
F. These feature vectors are flattened to form matrices Ai and Aj, respectively, of size
r × r. The cost matrix is calculated to contain pairwise distances between the columns
of the flattened matrices.

Then, an optimal transport plan P∗ containing joint probabilities is derived using
Sinkhorn distance (Cuturi, 2013). Using P∗, a stochastic matrix R = rP∗ is obtained
and used for aligning feature matrices for the final mix:

Â1 = A2RT, Â2 = A1R (2.5)

The aligned feature matrices Â1 and Â2 are transformed back to their original
vector shape, and Mixup is performed between (A1, Â1) and (A2, Â2).

The advantages of such an approach are that the feature vector resolution is
low and the features closer to the classifier are small (Venkataramanan et al., 2022a).
The authors also state that their approach has a similar computational overhead to
existing Mixup variants when trained for the same number of epochs. They find that
AlignMixup, and Manifold Mixup, in general, benefit from longer training compared
to the input Mixup variants.

2.1.4 Local Mixup

The authors of Local Mixup (Baena, Drumetz, and Gripon, 2022) create weights
based on the distances between mixed examples when computing loss. They also
mention that they experiment with Mixup for K nearest neighbours (KNN), but it
does not give the best performance for their setup, which is standard classification.
In our experiments, we use Mixup with K nearest neighbours, but between different
distributions.

Chapter 2. Related work 6

2.1.5 Mixup for metric learning

Metrix

Mixup has also been investigated for metric learning in Metrix (Venkataramanan
et al., 2022b). Since metric learning operates on a few examples at a time, just like
Mixup, authors propose contrastive loss for mixed examples.

In Metrix (Venkataramanan et al., 2022b), input, feature and embedding Mixup
variants are randomly picked during each iteration to mix anchor-negative or positive-
negative examples. For input Mixup, three hardest negative examples are used, and
for other types of Mixup, all pairs are used. Here, Manifold Mixup is applied
randomly on one of the last layers per iteration. Input Mixup and Manifold Mixup
are defined in Equation 2.1 and Equation 2.4, respectively. Feature Mixup for training
samples (xi, xj) is defined as:

x̂ = fk(λgm(xi) + (1 − λ)gm(xj)), (2.6)

where gm and fk are mappings from the input layer to an intermediate layer and
from an intermediate layer to an embedding, respectively (Venkataramanan et al.,
2022b).

The authors only use contrastive loss along with its variants and do not use Mixup
for triplet loss. In the loss, there is either a mix between an anchor and a negative
example or between a positive and a negative example. In this case, positives are
examples from the same class, and negatives are examples from a different class
closest to the anchors. During training, the authors combine contrastive loss with
clean examples and contrastive loss with mixed examples, the latter weighted with a
factor w.

The authors state that the advantage of such an approach is the inclusion of sam-
ples during training not present in the training dataset. Thus, it has a higher chance of
learning representations similar to the ones from the testing classes (Venkataramanan
et al., 2022b). The authors discover that the best setting is the random combination of
all Mixup variants, but feature Mixup works best out of all of them regarding their
individual performances. The downside is that mixing features or embeddings takes
longer than an original input Mixup.

Mixup for triplet loss

(Lee and Kim, 2022) use Mixup for triplet loss for the task of human activity recogni-
tion. They create mixed positive and negative examples by mixing a positive example
with an anchor and a negative example with an anchor, respectively. They also define
an additional hyperparameter for the probability of mixing these pairs of examples:

p̂ = 1pmixup λa + (1 − 1pmixup λ)p, n̂ = 1pmixup λa + (1 − 1pmixup λ)n, (2.7)

where (a; p; n) are anchors, positive and negative examples, respectively. p̂ and
n̂ are mixed examples. 1pmixup is the indicator function that applies Mixup with
probability pmixup. The formulas are adapted from the formulations in the original
paper. In our approach, we either mix anchors with negative examples or positive
with negative examples.

Chapter 2. Related work 7

2.2 Out-of-distribution detection

2.2.1 Overview

OoD, anomaly and novelty detection

In the literature, the terms out-of-distribution (OoD) detection, anomaly detection,
and novelty detection have been used to define different but related problems. The
terminology described here has been prevalent across papers (Zhang et al., 2023;
Bodesheim et al., 2015; Jézéquel et al., 2022; Masana et al., 2018; Winkens et al., 2020;
Sun et al., 2022).

Anomaly and novelty detection deal only with the classification of the samples as
being from the same distribution as the training data or not, while out-of-distribution
detection also deals with the classification between in-distribution classes. We can
describe a novelty or anomaly detector G(xi):

G(xi) =
{ 0 if xi is OoD

1 if xi is ID
(2.8)

depending on whether sample xi is an inlier or outlier. On the other hand, OoD
classifier C(xi) first identifies the class of the sample. Certain scoring- or distance-
based detection methods are used to identify an outlier during inference.

While the definitions of these three detection areas are sometimes used inter-
changeably in publications, out-of-distribution detection is considered the most
general term, involving novelty and anomaly detection. Anomalies are the farthest
examples from the in-distribution ones; there is no resemblance between ID examples
and anomalies. For instance, if a classifier is trained to distinguish different classes of
bugs, the data with bugs are inside the distribution. Say, the data that comes for test-
ing are images of tigers. Such data are from a different distribution and are regarded
as an anomaly. Novelty detection is the hardest since such images may have similar
features to the ones from the training distribution. However, a slight difference in
the image makes it an out-of-distribution sample. Since the boundary between these
examples is so thin, some approaches, after detecting a novelty, incorporate it into
training as one of the classes or as a separate one (Bodesheim et al., 2015). In our work,
detected novelty is not included in the training but is considered out-of-distribution.
An example of a novelty is when the training distribution consists of different kinds
of butterflies but, during testing, is presented with a dragonfly, which is also a bug
and may be similar to a butterfly but is not one and, thus, must be regarded as an
out-of-distribution example.

The difference between anomalies and novelties is also accentuated in (Zhang
et al., 2023), where the authors divide OoD detection into fine- and coarse-grained.

Detection methods

There are typically score-based (Hendrycks and Gimpel, 2016; Liang, Li, and Srikant,
2017; Hsu et al., 2020; Techapanurak, Suganuma, and Okatani, 2019), distance-based
(Sun et al., 2022; Koner et al., 2021) and distribution-based (Winkens et al., 2020; Lee
et al., 2017) detection and training techniques.

In (Hendrycks and Gimpel, 2016), the authors propose to derive the statistics
from softmax scores, namely the maximum softmax probability. These statistics
are taken from the predicted class on a test set, and then an outlier is identified.
The authors of (Liang, Li, and Srikant, 2017) use temperature scaling to compute
softmax and input processing that adds small perturbations to the input image. The

Chapter 2. Related work 8

detector preprocesses an image, calculates its temperature-scaled softmax score and
determines if it is an outlier or not using a defined threshold. The work of (Hsu et al.,
2020) is based on the previously discussed one, but the authors change the input
preprocessing and propose the approach of decomposed confidence. (Techapanurak,
Suganuma, and Okatani, 2019) propose changing the layer to use softmax of scaled
cosine similarity while still minimizing cross-entropy loss for the multi-class ID
classification task.

The authors of (Sun et al., 2022) are the first to use K nearest neighbours to estimate
whether an example is an outlier during inference. They do not require any OoD
samples during training or the change in activation functions. Instead, first, they
train a multi-class classification model on in-distribution data. Then, they compute
the distance between the embedding of a test example and the embeddings of every
training sample. They define a threshold, which satisfies a 95% True Positive Rate for
inliers, and, based on this threshold and the distance value to K-th nearest neighbour,
they determine if the test sample is OoD or not. In (Koner et al., 2021), the authors
use a transformer for training ID samples and compute the mean embedding for each
class. They use these values to calculate the distance to the test embedding. Then
they use a threshold for distance and confidence. The outlier is identified if either of
these thresholds is violated.

(Winkens et al., 2020) use contrastive learning for ID examples. During inference,
they fit a Gaussian distribution to the activations of the training data. It is used
to estimate an OoD score for each class using the highest class-conditional density
(Winkens et al., 2020). During training, (Lee et al., 2017) add a loss term to minimize
the Kullback-Leibler divergence to shift the distribution of OoD examples to the
Uniform one, ensuring less confident predictions for such examples.

Outlier Exposure

Outlier Exposure, or the inclusion of outliers during training (Hendrycks, Mazeika,
and Dietterich, 2019), while effective on its own, also enhances performance in tandem
with other methods (Zhang et al., 2023; Papadopoulos et al., 2021). Such a training
method requires the use of an auxiliary outlier dataset whose distribution is different
from an OoD testing set. The loss term is then:

Lce(f (xin), yin) + βLoe(f (xout), f (xin)), (2.9)

xin are the ID examples, xout are the OoD examples. Lce is a standard cross-entropy
loss, and Loe is the cross-entropy from f (xout) to the Uniform distribution, defined as
in (Hendrycks, Mazeika, and Dietterich, 2019).

2.2.2 Out-of-distribution detection with metric learning

The fundamental idea metric learning operates on is that embeddings from a penulti-
mate layer of a neural network and higher bear more information about the represen-
tation of the input sample (Mao et al., 2019). It aims to learn a distance metric such
that different classes are far from each other and same-class samples are close.

Specifically, the concepts of anchors and positive and negative examples are
introduced. An anchor is a sample regarding which the distance to other samples is
calculated. A positive example is usually a randomly chosen example from the same
class as an anchor, and a negative example is an example from a different class. A
hard negative example is the closest example to the anchor from a class different from
the anchor’s class. Contrastive loss (Hadsell, Chopra, and LeCun, 2006) and triplet

Chapter 2. Related work 9

loss (Wang et al., 2014) are classic examples of metric losses used during training. In
this thesis, we use the latter.

Extensive research has been done on contrastive learning for out-of-distribution
detection (Winkens et al., 2020; Koner et al., 2021; Tack et al., 2020; Cho, Seol, and
Lee, 2021). Contrastive learning takes in-distribution samples and their augmented
versions and, using contrastive loss or its variant, learns how to keep these samples
close in the embedding space. Regarding metric learning in out-of-distribution
detection, the most similar work to ours is (Masana et al., 2018; Yang et al., 2020). In
this case, embeddings are learned so that samples from different classes are pushed
apart and vice versa. Authors of ODM (Masana et al., 2018) use an auxiliary outlier
dataset during training, from which they sample negative examples for a modified
contrastive loss that only includes pairs that have either both in-distribution samples
or one of the samples is out-of-distribution:

l(xi, xj, y; W) =
1
2
(1 − y)zD2

W +
1
2

yz(max(0, m − DW))2, (2.10)

where xi, xj are two examples from the training set, y ∈ {0, 1} indicates if the
samples are from the same class or not, and z ∈ {0, 1} is 0 when both samples are OoD
and 1 otherwise, m is the margin and DW is the distance between the embeddings of xi
and xj. The authors provide anomaly and novelty detection results, where novelties
are classes from an in-distribution dataset excluded from the training, and anomalies
are samples from a different dataset. They discover that their approach works as
well as other state-of-the-art methods, improving performance on novelty detection
but harming classification accuracy. During training, they use a quarter of all pairs
consisting of one ID and one OoD sample every two batches. Their code suggests
that they test their approach based on a distance-based function to detect outliers. In
(Yang et al., 2020), the authors use Siamese and Triplet Networks, only in-distribution
data during training, and a confidence-based score function to detect outliers. Both
papers use a True Negative Rate at 95% True Positive Rate (TNR@95TPR), which we
also use to evaluate and compare our experiments.

(Mao et al., 2019) use metric learning to solve a similar problem to out-of-distribution
detection, which is adversarial robustness. They generate an adversarial example and
use triplet loss with cosine distance to bring the example closer to its original class.
They also include a loss term with the L2 norms of anchors, positive and negative
samples.

2.2.3 Out-of-distribution detection with Mixup

Models trained with Mixup show lower confidence and better calibration when tested
on out-of-distribution samples (Thulasidasan et al., 2019). (Ravikumar et al., 2020;
Chun et al., 2020) apply Mixup only for ID examples, (Ravikumar et al., 2020) also
considers Mixup between OoD examples and Gaussian noise; finally, (Zhang et al.,
2023) uses Mixup between ID and OoD examples.

In this thesis, we focus on the MixOE approach (Zhang et al., 2023) since, so
far, it has shown the most promising results in OoD detection. This approach uses
an auxiliary outlier dataset during training that is never used during inference in
combination with input Mixup between inliers and outliers. That is, in equation 2.1,
instead of xj, a random outlier xout is used, and instead of yj the label is drawn from
a uniform probability distribution U. This way, the label ensures the same confidence
for all outliers:

Chapter 2. Related work 10

x̂ = λxin + (1 − λ)xout, ŷ = λyin + (1 − λ)U (2.11)

The method of MixOE uses outliers during training. These outliers are taken
from WebVision 1.0 (Li et al., 2017) and are not used during testing. The loss term
consists of cross-entropy on ID examples and cross-entropy on mixed examples with
a weighting factor β:

Lce(f (xin), yin) + βLce(f (x̂), ŷ), (2.12)

where (xin, yin) is a training ID example, (x̂, ŷ) is a mixed example, f is a mapping
of input examples to embeddings, and Lce is a standard cross-entropy loss. The
formulas are taken from the original paper (Zhang et al., 2023). It is important to note
that the authors do not mix inliers with each other and do not use outliers without
mixing during training. The authors state that applying both Mixup between ID and
OoD examples and Outlier Exposure (Hendrycks, Mazeika, and Dietterich, 2019)
results in manifold intrusion (Guo, Mao, and Zhang, 2019).

In MixOE, both fine- and coarse-grained OoD detection metrics are improved.
They correspond to whether the examples are from the same domain as inliers or not.
However, the detection performance depends largely on the datasets and their splits,
based on the results from (Zhang et al., 2023).

11

Chapter 3

Problem formulation and
Contribution

3.1 Formulation

In this thesis, we tackle the problem of out-of-distribution detection for neural net-
works. We follow MixOE (Zhang et al., 2023) OoD detection setup, including datasets,
a model and metrics.

Out-of-distribution detection is a problem that is relevant in classification and re-
gression, various tasks like segmentation, medical diagnosis, etc. The goal is to make
a robust model that generalises well to the training distribution by outputting the
correct class with high class probability but which also provides small confidence for
examples from a different distribution. The problem of out-of-distribution detection
is especially difficult when it deals with examples very close to the in-distribution
ones (fine-grained examples) (Tack et al., 2020; Zhang et al., 2023).

OoD detection encompasses both the classification of ID examples and the detec-
tion of OoD examples (Zhang et al., 2023). Classification is measured by accuracy on
in-distribution data only. Detection deals with recognising an example from a differ-
ent distribution than the network is trained on. In this work, detection performance
is estimated via confidence that the neural network outputs along with the class label.

Detection is divided between fine-grained and coarse-grained OoD testing set-
tings (Zhang et al., 2023). The fine-grained dataset consists of classes from the same
dataset that the model is trained on but which were excluded from the training set.
Coarse-grained data contain other datasets that the model is not trained on. The
outlier data used during training comes from a different distribution, an auxiliary
outlier dataset, which is WebVision 1.0 (Li et al., 2017) in this case (Zhang et al., 2023).

FIGURE 3.1: Illustration of fine- and coarse-grained out-of-distribution
examples used for measuring detection performance. Image is taken

from (Zhang et al., 2023).

Chapter 3. Problem formulation and Contribution 12

3.2 Contribution

There are numerous approaches to out-of-distribution detection, but we focus on the
use of two methods, Mixup and metric learning. We decompose Mixup between
inliers and outliers as proposed in MixOE (Zhang et al., 2023) by changing the size
and diversity of the auxiliary outlier dataset and adding other Mixup variants. We
use metric learning, specifically triplet loss and investigate its impact on the problem
of OoD detection using different combinations of triplets, some of which are created
using Mixup. Finally, we combine MixOE and metric learning to investigate if
together they provide an improvement to the problem of OoD detection as they do
separately.

The contributions of this work are:

1. Mixup for OoD detection, based on MixOE (Zhang et al., 2023).

(a) Modeling auxiliary outlier dataset for Mixup between ID and OoD exam-
ples. Changing the size and diversity of the dataset. Findings:

• The large size of the auxiliary outlier dataset is more important for the
coarse-grained detection settings than for the fine-grained settings.

• Diversity of the auxiliary outlier dataset. When as few as ten classes
are used, the same performance is achieved as when all 1000 classes
are used for the coarse-grained settings.

(b) Comparison and implementation of Mixup variants applied between ID
and OoD examples to investigate the most impactful components of Mixup.
Findings:

• Mixing labels alone without mixing ID and OoD training samples is
almost as effective as a full Mixup for the fine-grained settings.

• Most Mixup variants between inliers and outliers we used are as
effective as the input Mixup.

2. Metric learning for OoD detection.

(a) Development and implementation of triplet loss with different triplet
combinations. Findings:

• Triplet combination with only inliers performs better than or similar
to the triplets with outliers for both settings.

• For the coarse-grained settings, a triplet combination with only inliers
performs significantly better than the baseline. In contrast, triplet
combinations with outliers as negative examples have marginally the
same or significantly lower performance than the baseline.

• Combination of MixOE and metric learning having inconclusive re-
sults. It either has marginal improvement over MixOE or significantly
improves the detection performance for the coarse-grained setting.
For the fine-grained settings, triplet combinations involving outliers
perform similarly to the baseline or worse.

(b) Analysis of the triplet loss margin and its effect on coarse- and fine-grained
detection performance. Findings:

• A trade-off between fine- and coarse-grained detection depending on
the size of the margin for triplet combination involving only inliers.

3. Mixup with metric learning for OoD detection

Chapter 3. Problem formulation and Contribution 13

(a) Creating combinations of triplets with Mixup between an anchor and
negative example or between positive and negative examples. Findings:

• When combined with MixOE, the coarse-grained detection perfor-
mance improvement over MixOE compromises classification accuracy
for all datasets.

• Marginal or no improvement over the baseline for the fine-grained
detection.

14

Chapter 4

Method

4.1 MixOE analysis

As was mentioned before, we first analyse MixOE (Zhang et al., 2023) and follow their
model and datasets setup for further experiments. We propose ways to disassemble
its components to see which ones are contributing the most to the performance boost.

MixOE uses outliers in the form of the auxiliary outlier dataset discussed in
Section 2.2.3. It enables us to mix outliers and inliers during training (Equation 2.11).

We focus on different Mixup variants (the layer where Mixup is applied, which
samples are mixed (e.g., mixing neighbouring samples), the loss term and the label of
an outlier) and the configuration of the auxiliary outlier dataset.

In Chapter 5, we provide experiments on how the number of outliers and outlier
classes during training affects the results (Figures 5.4 and 5.3). The results for the
Mixup variants are in Tables 5.1-5.3 and Figures 5.1 and 5.2.

4.1.1 Auxiliary outlier dataset

Auxiliary outlier dataset is used only during training and is not used in a testing stage,
according to the original MixOE work. By removing examples from the auxiliary
outlier dataset, we also control the outlier distribution that the model is exposed to.
Our goal is to determine if both coarse- and fine-grained detection are affected by the
number of outliers that the model is presented with or if other components are more
significant.

Specifically, we target:

• the size of the outlier dataset (random choice of N outliers from the auxiliary
outlier dataset, WebVision)

• the diversity of the outlier dataset (random choice of K outlier classes from the
auxiliary outlier dataset, WebVision)

4.1.2 Mixup variants

We use these Mixup variants between ID and OoD samples when applicable:

1. Input Mixup on inliers as in (Zhang et al., 2018). Referred in Chapter 5 as Mixup
with inliers.

2. Manifold MixOE, based on Manifold Mixup (Verma et al., 2019) and MixOE
(Zhang et al., 2023).

3. Align MixOE, based on Align Mixup (Venkataramanan et al., 2022a) and MixOE
(Zhang et al., 2023).

Chapter 4. Method 15

4. MixOE with Outlier Exposure on minimum confidence outliers. We add
Outlier Exposure (Hendrycks, Mazeika, and Dietterich, 2019) loss term in our
training and include only minimum confidence outliers for mixing.

5. MixOE with K nearest neighbours, MixOE with KNN, inspired by (Baena,
Drumetz, and Gripon, 2022).

6. Mixup with labels.

7. Mixup with noise.

Mixup with K nearest neighbours

Inspired by Local Mixup (Baena, Drumetz, and Gripon, 2022), who experiment with
Mixup with KNN for classification, we use a different setting and mix between
samples from different distributions. For every sample in the ID training batch, we
draw K nearest neighbours from the auxiliary outlier dataset. In our experiments,
we use K=10 and draw one random example from these K examples for each inlier
per iteration before performing Mixup. We create pairs of examples that are near
each other in the embedding space but come from different distributions. Since
these examples are from different distributions and are close to each other in the
embedding space, it means that they are close to the decision boundary. This is why
we investigate how the KNN approach works in this situation since Mixup induces
less confident predictions near the decision boundary (Zhang et al., 2018).

We do this by first extracting the embeddings of all samples in WebVision 1.0 (Li
et al., 2017). We normalise the embeddings, and then we use Euclidean distance to
find the nearest neighbours for every inlier. We save these examples and later use
them for input Mixup during training.

Mixup with Outlier Exposure

Mixup between inliers and outliers in combination with Outlier Exposure in the form
of OE loss does not show promising results in (Zhang et al., 2023), that is, adding
outliers separately in the loss, and not only for mixing. However, we investigate a
situation when we include outliers, but only those that have the smallest confidence
already. (Chen et al., 2021), an OoD detection work for mining the outliers, uses
Outlier Exposure to choose between perturbations of the same outlier example to
maximise cross-entropy. Inspired by their approach, our hypothesis is that outlier
examples with minimum confidence result in high entropy and can help the model
learn the outlier distribution better. Following Equations 2.9 and 2.12, the loss term is
then:

Lce(f (xin), yin) + βLoe(f (xout), f (xin)) + β1Lce(f (x̂), ŷ), (4.1)

xin are the ID examples, xout are five outlier examples with the lowest confidence
from the current batch, x̂, ŷ are mixed examples and labels, respectively. Lce is a
standard cross-entropy loss and Loe is defined as in Equation 2.9. Every ID example
from the batch is randomly mixed with one of these five outliers.

In Chapter 5, we show two experiments:

• Mixup with minimum confidence outliers (referred to as MixOE (min)).

• Mixup with minimum confidence outliers with Outlier Exposure (referred to as
MixOE (min) with OE loss, which is a second term in Equation 4.1).

Chapter 4. Method 16

Mixup with labels

The outlier sample always has a label drawn from a uniform distribution, so we
investigate how mixing only labels between ID and OoD examples affects the training,
namely:

x̂ = xin, ŷ = λyin + (1 − λ)U, (4.2)

where (xi, yi) is a training example. It was shown that Mixup improves regulari-
sation not only due to the mixing of examples but also one-hot encoded labels (Zhang
et al., 2018; Carratino et al., 2020) and calibrates the confidence (Thulasidasan et al.,
2019). Thus, by mixing one hot encoded label with a label that comes from a uniform
distribution (uniform label), we induce less confidence in the labels of the training ID
examples, leaving the example itself untouched.

Mixup with noise

Since Gaussian noise is often used for implementing adversarial attacks (Liu et al.,
2021) and is also used to mix with the outlier examples during training for OoD
detection (Ravikumar et al., 2020), we experiment with Gaussian noise by mixing an
input image with a Gaussian noise image which has a uniform label. That is,

x̂ = λxin + (1 − λ)ng, ŷ = λyin + (1 − λ)U, (4.3)

where every pixel of image ng is a Gaussian noise image.

4.2 Metric learning for out-of-distribution detection

As was discussed earlier, the most common way to apply metric learning for OoD
detection is to use contrastive learning between ID examples and their augmented
or transformed versions. The work that explicitly targets metric learning using ID
and OoD classes for the loss do not tune the margin or use hard negatives. This is
why we propose to explore the use of triplet loss with different triplet setups and a
possible way to choose the margin.

4.2.1 Triplet loss

Unlike contrastive loss (Hadsell, Chopra, and LeCun, 2006), which separately draws
the same-class examples closer, and examples from different classes further apart,
triplet loss (Wang et al., 2014) takes into account the distance between an anchor and
a positive example and between the anchor and a negative example:

Ltrip(a, p, n; d, m) = max{d(ai, pi)− d(ai, ni) + m, 0}, (4.4)

where a, p, n are anchor, positive, and negative examples, respectively, d is a
distance function, typically Euclidean or cosine distance are used, and m is a margin.
In our case, we use cosine distance. Anchors are every inlier example from ID batch.
If the distance between the anchor and the negative example is smaller than the
distance between the anchor and the positive example, then there is a penalty applied
to ensure that negative examples are further from the anchor than positive ones.

The final loss includes standard cross-entropy and triplet loss:

Lce(f (xin), yin) + βLtrip(a, p, n), (4.5)

Chapter 4. Method 17

where (xin, yin) are ID training examples, Lce is a standard cross-entropy, f is
a mapping used for extracting a predicted class, (a; p; n) are anchors, positive and
negative examples, respectively, and Ltrip is a triplet loss defined in Equation 4.4.
(a; p; n) are embeddings extracted from the penultimate layer of the neural network.

anchor positive negative
I1 I1 I2
I1 I1 O
I1 I1,O O

I1,O I1 O
I1 I1,O I2

I1,O I1 I2

TABLE 4.1: Table of possible triplet combinations.

In the out-of-distribution setup with an auxiliary outlier dataset, there are different
ways to define triplets, which are written in Table 4.1. I1 is a random example drawn
from an in-distribution class 1, I2 is a random example drawn from an in-distribution
class 2, O is the closest example from the auxiliary outlier dataset to the anchor, and
(I1, O) is a mixed example, derived using Equation 2.1.

In this work, we investigate these triplets: (I1; I1; I2), (I1; I1; O) along with triplets
derived with Mixup. Following the work of (Yang et al., 2020), we use the triplet
(I1; I1; I2). Inspired by ODM (Masana et al., 2018), who use outliers in contrastive
loss, we create (I1; I1; O) triplet combination. Inspired by Metrix (Venkataramanan
et al., 2022b), we target Mixup for (a, n) and (p, n) by randomly selecting between
(I1; I1, O; I2) and (I1, O; I1, I2) at each training iteration. We do analogously for
(I1; I1, O; O) and (I1, O; I1; O). Initial experiments show that random selection works
better than always mixing the same triplet type, so we show the results in Chapter 5
only for random selection. When we further write (I1; I1, O; I2) or (I1; I1, O; O), we
refer to the random choice between mixed anchor or positive examples.

We also combine metric learning with MixOE. In this case, the loss is:

Lce(f (xin), yin) + βLtrip(a, p, n) + β1Lce(f (x̂), ŷ), (4.6)

where (x, y) is a training example, (x̂, ŷ) is a mixed example, f is a mapping of
input examples to embeddings, and Lce is a standard cross-entropy loss.

4.2.2 Meaningful choice of the margin

In this work, embeddings for the triplet loss are in the range of [0, 1] since they are
extracted from the layer just before the fully connected layer, which is ReLU. The
embeddings are then normalised. Thus, to penalize those negative examples that
are closer to the anchor than the positive examples with a margin m, the margin m is
chosen in the range of [0, 1].

If we choose m > 1, then the loss will always penalize examples, even where
d(a, pi) < d(a, ni), and the margin becomes meaningless, which we do not aim to do.
In our work, we experiment with a few different margins and see if there is a pattern
in performance depending on the coarse- or fine-grained detection.

4.2.3 Mixup in metric learning for out-of-distribution detection

Mixup in metric learning has already shown prominent results for deep metric
learning benchmarks (Venkataramanan et al., 2022b). As was mentioned earlier,

Chapter 4. Method 18

Mixup produces virtual examples that can help explore the vicinal distribution. Thus,
it is important to investigate the impact of this combination on the OoD detection
setup since, during inference, the model is presented with examples that may lie in
the vicinity of training distribution.

We experiment with different mixing options for our triplet loss setup. In Metrix
(Venkataramanan et al., 2022b), contrastive loss and its variants are used, and either
anchors or positives are mixed with negatives. Inspired by their work, we pass both
mixed examples and the clean ones in the loss. The mixed anchors and positive
examples can be written as:

â = λa + (1 − λ)n, p̂ = λp + (1 − λ)n (4.7)

We choose to mix embeddings just before feeding them to the triplet loss. We
create triplets by sampling the hardest negatives to the anchor and all positive
examples from the inlier batch with the same class as the anchor.

Thus, for the pair (I1, O; I1; O) or (I1; I1, O; I2), the loss will be:

Lce(f (xin), yin) + β(Ltrip(a, p, n) + Ltrip(â, p, n)) + β1Lce(f (x̂), ŷ) (4.8)

For the pair (I1, O; I1; O) or (I1; I1, O; I2), the loss will be:

Lce(f (xin), yin) + β(Ltrip(a, p, n) + Ltrip(a, p̂, n)) + β1Lce(f (x̂), ŷ) (4.9)

For triplets (I1; I1; I2), (I1; I1; O), Equation 4.5 is used for the loss.

4.3 Evaluation metrics

We use standard accuracy to evaluate classification for in-distribution classes. We use
the True Negative Rate at 95% of the True Positive Rate (TNR@95TPR, or TNR95 for
short) as our primary evaluation metric for detecting outliers. This metric is prevalent
across OoD work (Lee et al., 2017; Zhang et al., 2023; Masana et al., 2018).

Thus, TNR@95TPR is defined as:

TNR =
TN

FP + TN
(4.10)

when TPR = 95%:

TPR =
TP

FN + TP
, (4.11)

TN = True Negative, FN = False Negative, TP = True Positive, FP = False Positive.
With this metric, we assume that the model predicts 95% inliers correctly, and then
we measure the detection rate when outliers are correctly identified.

4.3.1 Confidence-based True Negative Rate

To calculate TNR@95TPR, we need to use the confidence score derived from the
maximum softmax score. True Positive Rate is defined such that 95% of inlier scores
are correctly identified. For that, a confidence-based threshold is estimated by sorting
these scores in increasing order. The window is used to find the threshold that reaches
a 95% TPR rate. Once this threshold is set, True Negative Rate is calculated as in
Equation 4.10. TNR@95TPR is defined and implemented as in (Lee et al., 2018) and
(Zhang et al., 2023).

19

Chapter 5

Experiments

5.1 Implementation and experimental details

5.1.1 Implementation and training details

Two NVIDIA Tesla V100 GPU cards are used to execute the experiments. The batch
size is 32, SGD optimiser (Ruder, 2016) and a step scheduler with cosine annealing
for learning rate are used.

The implementation is based on the MixOE (Zhang et al., 2023), which includes
the datasets, model as well as codes for setting them up. Their codes for confidence-
based TNR95@TPR metric calculation are also used since they are the same across
multiple research work (Lee et al., 2017). The model used is ResNet50 (He et al., 2016).
The implementation is based on PyTorch (Paszke et al., 2019) and NumPy (Harris
et al., 2020) for model training and data processing. Matplotlib (Hunter, 2007) is used
for visualisations.

All experiments are trained on top of the baseline for ten epochs, following MixOE
conventions. The model, which is ResNet50, is trained for 90 epochs separately for
each ID split of each dataset using standard cross-entropy loss with no outliers in
training and is considered a baseline. The model is not pre-trained. In the original
paper, the results are reported separately for every split. In our work, we report the
averaged result across all three splits. For each split, the experiments are executed 5
times. We report the mean value and standard deviation for every dataset across 15
runs, five runs per split. For every run, a random set of outliers is used out of the
auxiliary outlier dataset, that is, WebVision 1.0 (Li et al., 2017).

We compare detection (TNR@95TPR) and classification (accuracy) performance
metrics of the MixOE approach and the baseline for each dataset with our experi-
ments.

5.1.2 Datasets

The dataset setup is taken from MixOE (Zhang et al., 2023). The setup includes three
different splits of four datasets, namely, Car (Krause et al., 2013), Bird (Van Horn
et al., 2015), Butterfly (Chen et al., 2018) and Aircraft (Maji et al., 2013).

Each split of each dataset is divided into ID classes for training and OoD classes
for fine-grained OoD detection testing. These classes are never seen during training
and are only used to evaluate the efficiency of the methods. For coarse-grained testing
settings, other datasets different from the one the model is trained on are used. Each
ID split is divided into training, validation and testing sets. Classification accuracy is
calculated using this ID testing set. The detection metric TNR@TPR95 for testing is
derived from either OoD set from the split for the fine-grained setting or the other
three datasets for the coarse-grained setting.

Chapter 5. Experiments 20

The auxiliary outlier dataset used only for training is WebVision 1.0 (Li et al.,
2017). The classes of cars, birds, butterflies and aircraft vehicles are removed from
WebVision 1.0, resulting in 1948K images in total (Zhang et al., 2023).

5.1.3 Experimental details

Mixup variants

In the first part of our experiments, we consider seven Mixup variants that mix inliers
and outliers in a way different from the original MixOE technique mentioned in Sec-
tion 2.2.3. The codes for AlignMixup (Venkataramanan et al., 2022a), Manifold Mixup
(Verma et al., 2019) and Outlier Exposure (Hendrycks, Mazeika, and Dietterich, 2019)
were taken from corresponding implementations included with their manuscripts to
run these experiments.

Car Bird Butterfly Aircraft
Dataset

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

mixoe label_mix baseline

FIGURE 5.1: Classification comparison between MixOE (green), base-
line (blue) and Mixup with labels (red). Mean values are reported.

Standard deviation is reported in the form of error bars.

Car Bird Butterfly Aircraft
Dataset

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TN
R9

5

mixoe label_mix baseline

Car Bird Butterfly Aircraft
Dataset

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TN
R9

5

mixoe label_mix baseline

FIGURE 5.2: Detection comparison between MixOE (green), baseline
(blue) and Mixup with labels (red) using confidence-based metric.

Fine-grained on the right and coarse-grained on the left.

We now show the results for different Mixup variants, as discussed in Chapter 4 in
Tables 5.1-5.3. The baseline is the model trained for 90 epochs on ID data, and MixOE
with its variants are trained for ten epochs on top of the baseline. Manifold MixOE
and Align MixOE are implemented according to their original implementations, but
outliers are added for the mixing. Mixup with inliers is the original Input Mixup, as
discussed in 2.1.1. Mixup with a noise image and MixOE with KNN are implemented,

Chapter 5. Experiments 21

as discussed in 4.1.2. MixOE (min) involves sampling five outliers with the lowest
confidence per batch and mixing every inlier in the ID batch with a random outlier
out of these five. MixOE (min) with OE loss includes these five lowest confidence
outliers in the loss as in Equation 4.1. For all Mixup experiments, we use λ = 1.0,
which is an interpolation factor for Mixup, and β = 5.0, which is a weighting factor
for the cross-entropy loss used for MixOE.

Mixup variant Car Bird Butterfly Aircraft
Baseline 88.51 ± 5.51 66.38 ± 1.46 88.53 ± 0.54 70.27 ± 2.70
MixOE 99.30 ± 0.59 86.34 ± 1.94 95.17 ± 0.92 91.51 ± 2.13
Mixup with inliers 84.85 ± 8.34 68.46 ± 3.58 87.77 ± 2.62 80.50 ± 3.79
Mixup with a noise image 87.97 ± 7.89 74.48 ± 4.79 90.96 ± 1.48 76.92 ± 3.85
MixOE (min) 97.98 ± 1.10 80.41 ± 2.58 93.97 ± 0.68 88.39 ± 2.52
MixOE (min) with OE loss 87.48 ± 15.11 65.11 ± 12.69 78.26 ± 6.96 85.70 ± 10.05
MixOE with KNN 98.85 ± 0.70 84.76 ± 3.00 94.28 ± 0.86 43.62 ± 38.73
Manifold MixOE 99.51 ± 0.38 89.62 ± 2.52 94.93 ± 0.97 88.17 ± 3.73
Align MixOE 99.48 ± 0.24 87.39 ± 3.50 94.24 ± 2.37 92.95 ± 2.36

,

TABLE 5.1: Detection comparison of Mixup variants in a coarse-
grained setting using TNR@TPR95.

Mixup variant Car Bird Butterfly Aircraft
Baseline 53.24 ± 2.28 21.95 ± 0.54 31.98 ± 2.62 19.52 ± 8.18
MixOE 62.48 ± 3.24 25.36 ± 1.33 37.47 ± 2.99 25.83 ± 7.84
Mixup with inliers 61.09 ± 2.70 26.47 ± 1.32 34.25 ± 3.53 25.68 ± 6.29
Mixup with a noise image 55.69 ± 4.58 23.03 ± 2.06 34.58 ± 4.98 21.93 ± 6.96
MixOE (min) 56.94 ± 3.54 24.21 ± 1.32 36.99 ± 4.99 24.15 ± 7.78
MixOE (min) with OE loss 24.88 ± 8.09 13.79 ± 2.55 22.57 ± 3.73 8.36 ± 5.23
MixOE with KNN 61.56 ± 3.04 24.98 ± 1.09 35.47 ± 3.7 5.57 ± 2.96
Manifold MixOE 60.90 ± 3.73 24.92 ± 1.40 37.53 ± 4.52 26.26 ± 7.85
Align MixOE 55.66 ± 2.88 22.8 ± 1.44 35.83 ± 3.4 22.56 ± 7.11

,

TABLE 5.2: Detection comparison of Mixup variants in a fine-grained
setting using TNR@TPR95.

Mixup variant Car Bird Butterfly Aircraft
Baseline 91.09 ± 0.27 81.35 ± 0.81 88.66 ± 1.02 88.82 ± 0.27
MixOE 92.72 ± 0.36 82.91 ± 0.62 89.27 ± 1.01 90.07 ± 0.44
Mixup with inliers 92.62 ± 0.31 83.14 ± 0.74 89.27 ± 1.12 90.01 ± 0.32
Mixup with a noise image 91.36 ± 0.87 82.00 ± 1.49 88.61 ± 0.76 86.54 ± 2.88
MixOE (min) 91.76 ± 0.47 81.49 ± 1.18 88.58 ± 0.84 89.42 ± 0.45
MixOE (min) with OE loss 78.20 ± 3.99 69.07 ± 1.44 80.40 ± 1.48 71.44 ± 5.23
MixOE with KNN 92.41 ± 0.49 82.62 ± 0.65 88.77 ± 0.82 22.36 ± 19.51
Manifold MixOE 92.44 ± 0.48 82.95 ± 0.91 89.05 ± 1.09 89.63 ± 0.49
Align MixOE 91.77 ± 0.52 82.48 ± 0.73 88.45 ± 1.10 89.79 ± 0.47

,

TABLE 5.3: Classification comparison of Mixup variants using accu-
racy.

Chapter 5. Experiments 22

Changing outlier distribution

We conduct experiments for varying the number of classes and samples in the auxil-
iary outlier dataset. There are a total of 1000 classes or concepts.

Varying classes. Since we run each experiment per split five times, each time, dif-
ferent random N ∈ {1, 5, 10, 15, 50, 100, 500} classes from WebVision 1.0 are sampled.

Varying the number of outliers. We experiment with N ∈ {1, 5, 10, 15, 20, 50, 100,
250, 500, 1000, 10000, 20000} different outliers, which are randomly sampled for each
run.

91 92 93
Classification accuracy

80

82

84

86

88

90

92

94

96

98

100

TN
R9

5

car

81 82 83 84
Classification accuracy

64
66
68
70
72
74
76
78
80
82
84
86
88
90

TN
R9

5

bird

88 89 90
Classification accuracy

88

90

92

94

96

TN
R9

5

butterfly

89 90 91
Classification accuracy

68
70
72
74
76
78
80
82
84
86
88
90
92
94
96

TN
R9

5

aircraft

mixoe_outl=1
mixoe_outl=5
mixoe_outl=10
mixoe_outl=15
mixoe_outl=20

mixoe_outl=50
mixoe_outl=100
mixoe_outl=250
mixoe_outl=500
mixoe_outl=1000

mixoe_outl=10000
mixoe_outl=20000
mixoe_cls=1
mixoe_cls=5

mixoe_cls=10
mixoe_cls=15
mixoe_cls=50
mixoe_cls=100

mixoe_cls=500
b (baseline)
mx (mixoe)
label_mix

FIGURE 5.3: Coarse-grained comparison between MixOE, baseline,
Mixup with labels (label_mix) and Mixup with a different number of
outliers (mixoe_outl, green) or classes (mixoe_cls, blue) using accuracy
and confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. Every experiment for this and further plots is reported
as a mean value and standard deviation in the form of error bars. The
darker the green (blue) colour is, the more outliers (classes) are used

during training.

Chapter 5. Experiments 23

91 92 93
Classification accuracy

51

53

55

57

59

61

63

65

67

TN
R9

5

car

81 82 83 84
Classification accuracy

23

25

27

TN
R9

5

bird

88 89 90
Classification accuracy

29

31

33

35

37

39

41

43

TN
R9

5

butterfly

89 90 91
Classification accuracy

11
13
15
17
19
21
23
25
27
29
31
33
35

TN
R9

5
aircraft

mixoe_outl=1
mixoe_outl=5
mixoe_outl=10
mixoe_outl=15
mixoe_outl=20

mixoe_outl=50
mixoe_outl=100
mixoe_outl=250
mixoe_outl=500
mixoe_outl=1000

mixoe_outl=10000
mixoe_outl=20000
mixoe_cls=1
mixoe_cls=5

mixoe_cls=10
mixoe_cls=15
mixoe_cls=50
mixoe_cls=100

mixoe_cls=500
b (baseline)
mx (mixoe)
label_mix

FIGURE 5.4: Fine-grained comparison between MixOE, baseline,
Mixup with labels (label_mix) and Mixup with a different number of
outliers (mixoe_outl, green) or classes (mixoe_cls, blue) using accuracy
and confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the green (blue) colour is, the more outliers

(classes) are used during training.

Metric learning with and without Mixup for OoD detection

We show the results of using the triplets mentioned in Table 4.1. We vary the weight-
ing factor β ∈ {0.1, 0.3, 0.5} and margin m ∈ {0.05, 0.1, 0.5, 1.0}, introduced in Equa-
tion 4.5. Anchors are ID examples from the inlier batch, positive examples have
the same class as the anchor in the batch, and negative examples, depending on the
triplet, are the farthest examples from the anchor from either the other ID class or an
outlier.

We provide Figures 5.5 and 5.6 for the coarse- and fine-grained settings based on
the hyperparameters that result in the best coarse-grained detection performance. We
describe results using the full plots with different values of these hyperparameters in
Figures 5.7-5.14.

Chapter 5. Experiments 24

87 88 89 90 91 92 93
Classification accuracy

84

86

88

90

92

94

96

98

100

TN
R9

5

car

78 79 80 81 82 83 84
Classification accuracy

64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

TN
R9

5

bird

87 88 89 90
Classification accuracy

84

86

88

90

92

94

96

98

TN
R9

5

butterfly

79 80 81 82 83 84 85 86 87 88 89 90 91
Classification accuracy

66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

TN
R9

5

aircraft

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

FIGURE 5.5: Coarse-grained comparison between MixOE, baseline
and four different combinations of triplets according to Table 4.1 with
(blue) and without (green) MixOE using accuracy and confidence-
based TNR@95TPR on the Car, Bird, Butterfly and Aircraft datasets.
Every experiment for this and further plots is reported as a mean value

and standard deviation in the form of error bars.

5.2 Results

5.2.1 Impact of the size of auxiliary outlier dataset and Mixup with labels

Given Figure 5.2 and Figures 5.3, 5.4, we can see three patterns:

• The number of outliers affects the TNR@95TPR for the coarse-grained setting in
Figure 5.3. The fewer inliers there are, the lower the detection performance and
vice versa.

• Mixing only labels without mixing inlier and outlier images performs almost as
well as full MixOE for the fine-grained settings in Figure 5.2.

Chapter 5. Experiments 25

87 88 89 90 91 92 93
Classification accuracy

29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67

TN
R9

5

car

78 79 80 81 82 83 84
Classification accuracy

9

11

13

15

17

19

21

23

25

27

TN
R9

5

bird

87 88 89 90
Classification accuracy

27

29

31

33

35

37

39

41

TN
R9

5

butterfly

79 80 81 82 83 84 85 86 87 88 89 90 91
Classification accuracy

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

TN
R9

5

aircraft

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)

b (baseline)
mx (mixoe)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)

mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)

b+triplet(i1_i1_o, m=0.05, =0.3)
b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

b+triplet(i1_i1_i2, m=1.0, =0.5)
b+mx+triplet(i1_i1_i2, m=1.0, =0.5)
b (baseline)
mx (mixoe)
b+triplet(i1_i1_o, m=0.05, =0.3)

b+mx+triplet(i1_i1_o, m=0.1, =0.5)
b+triplet(io_i1_i2, m=1.0, =0.5)
b+mx+triplet(io_i1_i2, m=1.0, =0.5)
b+triplet(io_i1_o, m=0.05, =0.1)
b+mx+triplet(io_i1_o, m=0.1, =0.3)

FIGURE 5.6: Fine-grained comparison between MixOE, baseline and
four different combinations of triplets according to Table 4.1 with (blue)
and without (green) MixOE using accuracy and confidence-based
TNR@95TPR based on best-performing hyperparameters for coarse-

grained detection on the Car, Bird, Butterfly and Aircraft datasets.

• The number of outliers has no relationship with accuracy or TNR@95TPR for
the fine-grained settings in Figure 5.4.

These findings suggest that:

1. If the problem is focused on detecting outliers that are similar to the training
distribution, then making the labels of training samples less confident without
using an additional auxiliary outlier dataset, which may be expensive to gather,
gives a close performance as to when the auxiliary outlier dataset was used.

2. When the problem is about the coarse-grained outlier detection, the inclusion
of outliers during training in the form of the auxiliary outlier dataset becomes
more beneficial as the size of such a dataset grows.

Chapter 5. Experiments 26

5.2.2 Impact of the diversity of auxiliary outlier dataset

After experimenting with the number of classes, Figures 5.3 and 5.4 suggest that
classification and detection metrics are already similar when as few as ten classes are
used compared to all 1000.

5.2.3 Impact of Mixup variants

The results are given in Tables 5.1-5.3.

Input Mixup (Mixup with inliers) and Mixup with noise

Classification and fine-grained detection performance are comparable with MixOE,
but Mixup with inliers generally works better than Mixup with noise. However,
MixOE significantly improves the coarse-grained detection setting.

Manifold MixOE and Align MixOE

Manifold MixOE and Align MixOE target Mixup in between the layers of the neural
network. Both variants perform similarly on classification and coarse-grained detec-
tion, except for Align MixOE for the fine-grained detection, which performs worse
than MixOE and Manifold MixOE. Manifold MixOE is as good as MixOE, or for some
datasets, gives a comparably better performance (Table 5.1).

MixOE with KNN

For three out of four datasets, the performance of MixOE with KNN is similar to
MixOE. For Aircraft, we find that the performance is much worse than the base-
line, and the standard deviation is high, meaning that for some runs in the splits,
the neighbours are detrimental to the training. As to why this happens, further
experimentation is needed, and no argumentative explanation can be provided.

MixOE with and without OE loss

In spite of our assumption that the five outliers with minimum confidence would
help the learning, both MixOE with and without the OE loss term perform worse
than MixOE. When the OE loss term is added only for these five outliers, we notice
even further detection and classification performance degradation, as is also shown
in the original MixOE work.

5.2.4 Impact of metric learning

The results are given in Figures 5.5-5.14. The mean value is reported. Standard
deviation is reported in the form of error bars.

Impact of (I1, I1, I2) triplet

When using triplet loss without outliers during training in Figures 5.7 and 5.8 (green
measurements), we see the division in the performance between fine- and coarse-
grained settings. The trade-off between the detection of coarse- and fine-grained
performance emerges. Specifically, as we increase the size of the margin, the detection
and classification performance of coarse-grained settings improves, while in the fine-
grained settings, they decrease. In this scenario, the performance improves over the

Chapter 5. Experiments 27

91 92 93
Classification accuracy

83

86

89

92

95

98

TN
R9

5
car

81 82 83 84
Classification accuracy

65

68

71

74

77

80

83

86

89

92

95

TN
R9

5

bird

87 88 89 90
Classification accuracy

89

92

95

TN
R9

5

butterfly

89 90
Classification accuracy

65

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.7: Coarse-grained comparison between MixOE, baseline
and (I1; I1; I2) triplets with (blue) and without (green) MixOE using
accuracy and confidence-based TNR@95TPR on the Car, Bird, Butterfly
and Aircraft datasets. Every experiment for this and further plots is
reported as a mean value and standard deviation in the form of error
bars. The darker the colour, the larger the margin. Different markers

correspond to β ∈ {0.1; 0.3; 0.5}

baseline, but the performance of MixOE is still noticeably better. When we train with
MixOE as in Equation 4.6 in Figures 5.7 (blue measurements), we see improvement in
three out of four datasets in coarse-grained settings, but there is no trade-off between
the margins. For the Car dataset, the detection metric is already around 99% for
MixOE, so there is little room for improvement.

This triplet is the only one out of those that (with the right set of hyperparameters)
gives improvement for the fine-grained settings for two out of four datasets (Car and
Bird) in Figure 5.8 (green measurements). Such a triplet combination is a standard
triplet that is used in metric learning and contrastive learning, and is considerably
the best-performing triplet combination out of all four.

Chapter 5. Experiments 28

91 92 93
Classification accuracy

47

50

53

56

59

62

65

68

TN
R9

5
car

81 82 83 84
Classification accuracy

20

23

26

TN
R9

5

bird

87 88 89 90
Classification accuracy

29

32

35

38

41

44

TN
R9

5

butterfly

89 90
Classification accuracy

11

14

17

20

23

26

29

32

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.8: Fine-grained comparison between MixOE, baseline and
(I1; I1; I2) triplets with (blue) and without (green) MixOE using ac-
curacy and confidence-based TNR@95TPR on the Car, Bird, Butterfly
and Aircraft datasets. The darker the colour, the larger the margin.

Different markers correspond to β ∈ {0.1; 0.3; 0.5}

Impact of hyperparameter β for the triplet loss

As was mentioned earlier, we experiment with three different values for β hyper-
parameter for the triplet loss as in Equations 4.5, 4.8 and 4.9. As a result of our
experiments, we see that this hyperparameter does not produce trade-offs like the
margin.

Impact of an outlier in the triplet

Triplet combinations, where a negative example is an outlier, do not significantly
improve detection or classification performance compared to the baseline for all
datasets and setups in Figures 5.9, 5.10 and Figures 5.11, 5.12 (green measurements).

Chapter 5. Experiments 29

In the case of a (I1, O; I1; I2) triplet, that is, a random choice between (I1, O; I1; I2)
and (I1; I1, O; I2), we see coarse-grained detection improvement in two out of four
datasets (Car and Bird) with the right set of hyperparameters, accompanied by slight
degradation in accuracy in Figure 5.13 (green measurements). The improvement
is less significant than when (I1; I1; I2) triplet is used in Figure 5.7 (green mea-
surements). Triplet combinations with outliers either worsen classification and
fine-grained detection results or perform closely to the baseline.

When adding MixOE, there appears a similar but less prominent trade-off with
the margin for triplets with mixed anchors or positive examples in Figures 5.13, 5.14
for (I, O; I1; I2) and Figures 5.11, 5.12 for (I1, O; I1; O) (blue measurements).

Impact of MixOE with triplet loss

We notice that MixOE with metric learning improves the detection performance for
the coarse-grained settings. It is seen in Figure 5.5, where the best detection results
are displayed out of the set of hyperparameters:

• For (I1; I1; I2), the classification accuracy stays the same while detection perfor-
mance grows for the coarse-grained settings.

• For the pairs involving outliers, namely (I1; I1; O), (I1; I1, O; I2), and (I1; I1, O; O),
there is an improvement in the coarse-grained detection performance compared
to MixOE, but classification accuracy is compromised. There is no improvement
in the fine-grained setup compared to the baseline.

When triplet (I1; I1; I2) is combined with MixOE, the classification and detection
performance stays comparably the same as in MixOE for the fine-grained settings in
Figures 5.6. For other triplets, the performance is generally lower or the same as the
baseline.

Since Mixup is used for decreasing the confidence between the decision boundary
and metric learning induces more strictness between different classes of the training
data, it is surprising for us to see that the combination of these two seemingly opposite
methods improves the coarse-grained detection performance.

Choosing best-performing hyperparameters

In Figures 5.5 and 5.6, we show the detection and classification performance based
on hyperparameters that give the best detection performance for the coarse-grained
settings. We see that for the fine-grained settings in Figure 5.6, the performance
of triplet (I1, I1, I2) with such hyperparameters is still dominant, especially when
combined with MixOE. When such a triplet is used without MixOE, we see that, for
some datasets, its performance is worse than or similar to the baseline.

Chapter 5. Experiments 30

84 86 88 90 92
Classification accuracy

77

80

83

86

89

92

95

98

101

TN
R9

5

car

78 80 82
Classification accuracy

65

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

bird

84 86 88 90
Classification accuracy

71

74

77

80

83

86

89

92

95

98

TN
R9

5

butterfly

82 84 86 88 90
Classification accuracy

53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
98

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.9: Coarse-grained comparison between MixOE, baseline
and (I1; I1; O) triplets with (blue) and without (green) MixOE using
accuracy and confidence-based TNR@95TPR on the Car, Bird, Butterfly
and Aircraft datasets. The darker the colour, the larger the margin.

Different markers correspond to β ∈ {0.1; 0.3; 0.5}

Chapter 5. Experiments 31

84 86 88 90 92
Classification accuracy

23

26

29

32

35

38

41

44

47

50

53

56

59

62

65

TN
R9

5

car

78 80 82
Classification accuracy

11

14

17

20

23

26

TN
R9

5

bird

84 86 88 90
Classification accuracy

17

20

23

26

29

32

35

38

41

TN
R9

5

butterfly

82 84 86 88 90
Classification accuracy

5

8

11

14

17

20

23

26

29

32

35

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.10: Fine-grained comparison between MixOE, baseline and
(I1; I1; O) triplets with (blue) and without (green) MixOE using ac-
curacy and confidence-based TNR@95TPR on the Car, Bird, Butterfly
and Aircraft datasets. The darker the colour, the larger the margin.

Different markers correspond to β ∈ {0.1; 0.3; 0.5}

Chapter 5. Experiments 32

84 86 88 90 92
Classification accuracy

59
62
65
68
71
74
77
80
83
86
89
92
95
98

101
104

TN
R9

5

car

76 78 80 82
Classification accuracy

65

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

bird

82 84 86 88 90
Classification accuracy

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

butterfly

76 78 80 82 84 86 88 90
Classification accuracy

50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
98

101

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.11: Coarse-grained comparison between MixOE, baseline
and random selection between (I1,O; I1; O) and (I1; I1,O; O) during
each iteration with (blue) and without (green) MixOE using accuracy
and confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the colour, the larger the margin. Different

markers correspond to β ∈ {0.1; 0.3; 0.5}

Chapter 5. Experiments 33

84 86 88 90 92
Classification accuracy

23

26

29

32

35

38

41

44

47

50

53

56

59

62

65

TN
R9

5

car

76 78 80 82
Classification accuracy

5

8

11

14

17

20

23

26

TN
R9

5

bird

82 84 86 88 90
Classification accuracy

14

17

20

23

26

29

32

35

38

41

TN
R9

5

butterfly

76 78 80 82 84 86 88 90
Classification accuracy

5

8

11

14

17

20

23

26

29

32

35

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.12: Fine-grained comparison between MixOE, baseline and
random selection between (I1,O; I1; O) and (I1; I1,O; O) during each
iteration with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Aircraft
datasets. The darker the colour, the larger the margin. Different

markers correspond to β ∈ {0.1; 0.3; 0.5}

Chapter 5. Experiments 34

88 90 92
Classification accuracy

83

86

89

92

95

98

TN
R9

5

car

80 82
Classification accuracy

62

65

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

bird

86 88 90
Classification accuracy

77

80

83

86

89

92

95

TN
R9

5

butterfly

80 82 84 86 88 90
Classification accuracy

65

68

71

74

77

80

83

86

89

92

95

98

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.13: Coarse-grained comparison between MixOE, baseline
and random selection between (I1,O; I1; I2) and (I1; I1,O; I2) during
each iteration with (blue) and without (green) MixOE using accuracy
and confidence-based TNR@95TPR on the Car, Bird, Butterfly and Air-
craft datasets. The darker the colour, the larger the margin. Different

markers correspond to β ∈ {0.1; 0.3; 0.5}

Chapter 5. Experiments 35

88 90 92
Classification accuracy

29

32

35

38

41

44

47

50

53

56

59

62

65

TN
R9

5

car

80 82
Classification accuracy

17

20

23

26

TN
R9

5

bird

86 88 90
Classification accuracy

23

26

29

32

35

38

41

TN
R9

5

butterfly

80 82 84 86 88 90
Classification accuracy

8

11

14

17

20

23

26

29

32

TN
R9

5

aircraft

b+triplet(m=0.05_ =0.1)
b+triplet(m=0.05_ =0.3)
b+triplet(m=0.05_ =0.5)
b+triplet(m=0.1_ =0.1)
b+triplet(m=0.1_ =0.3)
b+triplet(m=0.1_ =0.5)

b+triplet(m=0.5_ =0.1)
b+triplet(m=0.5_ =0.3)
b+triplet(m=0.5_ =0.5)
b+triplet(m=1.0_ =0.1)
b+triplet(m=1.0_ =0.3)

b+triplet(m=1.0_ =0.5)
b+mx+triplet(m=0.05_ =0.1)
b+mx+triplet(m=0.05_ =0.3)
b+mx+triplet(m=0.05_ =0.5)
b+mx+triplet(m=0.1_ =0.1)

b+mx+triplet(m=0.1_ =0.3)
b+mx+triplet(m=0.1_ =0.5)
b+mx+triplet(m=0.5_ =0.1)
b+mx+triplet(m=0.5_ =0.3)
b+mx+triplet(m=0.5_ =0.5)

b+mx+triplet(m=1.0_ =0.1)
b+mx+triplet(m=1.0_ =0.3)
b+mx+triplet(m=1.0_ =0.5)
b (baseline)
mx (mixoe)

FIGURE 5.14: Fine-grained comparison between MixOE, baseline and
random selection between (I1,O; I1; I2) and (I1; I1,O; I2) during each
iteration with (blue) and without (green) MixOE using accuracy and
confidence-based TNR@95TPR on the Car, Bird, Butterfly and Aircraft
datasets. The darker the colour, the larger the margin. Different

markers correspond to β ∈ {0.1; 0.3; 0.5}

36

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we looked at the broad problem of OoD detection, which involves ID
sample classification and OoD sample detection. We investigated the method of
Mixup when it is used between outliers and inliers by changing the Mixup compo-
nents and an auxiliary outlier dataset:

• We find that mixing only the label with the uniform label provides almost as
good of a performance as the standard MixOE, dispensing with the collection
of the auxiliary outlier dataset for fine-grained outlier detection.

• The large size of such a dataset for the coarse-grained settings significantly
improves detection.

We also provide our findings on metric learning in OoD detection by using triplet
loss with and without outliers via creating new triplet combinations, with and without
Mixup between ID and OoD examples:

1. We find that triplets comprised of inliers of the same class as positive examples
and inliers of different classes as negative examples provide the best results
both for coarse- and fine-grained detection. This is a standard approach that
is used in metric learning, including contrastive learning. A trade-off occurs
between coarse- and fine-grained detection performance depending on the
margin size.

2. We find that the triplet combinations with outliers, mixed or not, mostly worsen
fine-grained detection results or perform similarly to the baseline. Detection
performance improvement is observed on coarse-grained settings for such
triplets, compromising classification accuracy.

3. Metric learning without MixOE:

• Using metric learning without MixOE improves (with the right set of
hyperparameters) the coarse-grained detection performance compared to
the baseline for the (I1; I1; I2) and (I1, O; I1; I2) triplets for four and two
datasets out of four, respectively (Figure 5.7 and 5.13, green measurements),
that is, when negative examples are inliers from a different class from the
anchor.

• No triplet combination improves over the fine-grained detection MixOE
performance. Only (I1; I1; I2) improves (with the right set of hyperparam-
eters) fine-grained detection performance compared to the baseline for two

Chapter 6. Conclusion and Future Work 37

datasets (Car and Bird) in Figure 5.8 (green measurements). Such a combi-
nation does not use the auxiliary outlier dataset, which is a considerable
advantage. When the hyperparameters are used so that the coarse-grained
detection performance is the best, as in Figure 5.6 (green measurements),
mostly, the detection performance of such a triplet is close to the baseline.

4. Metric learning with MixOE:

• For the coarse-grained detection, depending on the triplet combination,
detection performance is either significantly improved over MixOE, or
performs similarly to MixOE (Figure 5.5, blue measurements).

• For the coarse-grained detection, triplet combination with only inliers,
that is, (I1, I1, I2), improves detection without decreasing classification
accuracy.

• For the coarse-grained detection, triplet combinations with outliers trade
an increase in detection performance for the classification performance.

• For the fine-grained settings, only (I1; I1; I2) triplet combined with MixOE
could produce comparably similar results to MixOE. Other triplets, which
are (I1; I1; O), (I1, O; I1; O), (I1, O; I1; I2) perform similarly to the baseline
or worse (Figure 5.6, blue measurements).

6.2 Future Work

Mixup is a never-ending plethora of research, so future work could focus on the
incorporation of Mixup with labels with other Mixup variants that do not use a
uniform label during training.

As for metric learning, the combination of different types of triplets is worth
investigating due to their diverse nature. For example, random choice between
(I1, I1, I2) and (I1, I1, O) for each anchor among many other combinations.

Given the found benefit from the combination of MixOE and (I1, I1, I2) triplet,
future work includes finding the reasoning behind these results.

38

Bibliography

Aliakbarisani, Roya, Abdorasoul Ghasemi, and Shyhtsun Felix Wu (2019). “A data-
driven metric learning-based scheme for unsupervised network anomaly detec-
tion”. In: Computers & Electrical Engineering 73, pp. 71–83.

Baena, Raphael, Lucas Drumetz, and Vincent Gripon (2022). “Preventing manifold
intrusion with locality: Local mixup”. In: arXiv preprint arXiv:2201.04368.

Bodesheim, Paul et al. (2015). “Local Novelty Detection in Multi-class Recognition
Problems”. In: 2015 IEEE Winter Conference on Applications of Computer Vision,
pp. 813–820. DOI: 10.1109/WACV.2015.113.

Carratino, Luigi et al. (2020). “On mixup regularization”. In: arXiv preprint arXiv:2006.06049.
Cen, Jun et al. (Oct. 2021). “Deep Metric Learning for Open World Semantic Segmen-

tation”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 15333–15342.

Chapelle, Olivier et al. (2000). “Vicinal risk minimization”. In: Advances in neural
information processing systems 13.

Chen, Jiefeng et al. (2021). “Atom: Robustifying out-of-distribution detection using
outlier mining”. In: Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part III 21. Springer, pp. 430–445.

Chen, Tianshui et al. (2018). “Fine-grained representation learning and recognition
by exploiting hierarchical semantic embedding”. In: Proceedings of the 26th ACM
international conference on Multimedia, pp. 2023–2031.

Cho, Hyunsoo, Jinseok Seol, and Sang-goo Lee (2021). “Masked Contrastive Learning
for Anomaly Detection”. In: CoRR abs/2105.08793. arXiv: 2105.08793. URL: https:
//arxiv.org/abs/2105.08793.

Chun, Sanghyuk et al. (2020). “An empirical evaluation on robustness and uncertainty
of regularization methods”. In: arXiv preprint arXiv:2003.03879.

Cuturi, Marco (2013). “Sinkhorn distances: Lightspeed computation of optimal trans-
port”. In: Advances in neural information processing systems 26.

Guo, Hongyu, Yongyi Mao, and Richong Zhang (2019). “Mixup as locally linear
out-of-manifold regularization”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01, pp. 3714–3722.

Hadsell, Raia, Sumit Chopra, and Yann LeCun (2006). “Dimensionality reduction
by learning an invariant mapping”. In: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE, pp. 1735–1742.

Harris, Charles et al. (Sept. 2020). “Array programming with NumPy”. In: Nature 585,
pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

He, Kaiming et al. (June 2016). “Deep Residual Learning for Image Recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Hein, Matthias, Maksym Andriushchenko, and Julian Bitterwolf (2019). “Why ReLU
networks yield high-confidence predictions far away from the training data and
how to mitigate the problem”. In.

https://doi.org/10.1109/WACV.2015.113
https://arxiv.org/abs/2105.08793
https://arxiv.org/abs/2105.08793
https://arxiv.org/abs/2105.08793
https://doi.org/10.1038/s41586-020-2649-2

Bibliography 39

Hendrycks, Dan and Kevin Gimpel (2016). “A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks”. In: arXiv preprint
arXiv:1610.02136.

Hendrycks, Dan, Mantas Mazeika, and Thomas Dietterich (2019). “Deep Anomaly
Detection with Outlier Exposure”. In: Proceedings of the International Conference on
Learning Representations.

Hsu, Yen-Chang et al. (2020). “Generalized odin: Detecting out-of-distribution image
without learning from out-of-distribution data”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10951–10960.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3, pp. 90–95. DOI: 10.1109/MCSE.2007.55.

Jézéquel, Loïc et al. (2022). “Semi-supervised anomaly detection with contrastive
regularization”. In: 2022 26th International Conference on Pattern Recognition (ICPR).
IEEE, pp. 2664–2671.

Koner, Rajat et al. (2021). “OODformer: Out-Of-Distribution Detection Transformer”.
In: arXiv preprint arXiv:2107.08976.

Krause, Jonathan et al. (2013). “3D Object Representations for Fine-Grained Cate-
gorization”. In: 2013 IEEE International Conference on Computer Vision Workshops,
pp. 554–561. DOI: 10.1109/ICCVW.2013.77.

Lee, Kimin et al. (2017). “Training confidence-calibrated classifiers for detecting out-
of-distribution samples”. In: arXiv preprint arXiv:1711.09325.

Lee, Kimin et al. (2018). “A simple unified framework for detecting out-of-distribution
samples and adversarial attacks”. In: Advances in neural information processing
systems 31.

Lee, Minjung and Seoung Bum Kim (2022). “Sensor-Based Open-Set Human Activity
Recognition Using Representation Learning With Mixup Triplets”. In: IEEE Access
10, pp. 119333–119344.

Li, Wen et al. (2017). “Webvision database: Visual learning and understanding from
web data”. In: arXiv preprint arXiv:1708.02862.

Li, Xuan, Christian Desrosiers, and Xue Liu (2022). “Symmetric Contrastive Loss
for Out-of-Distribution Skin Lesion Detection”. In: 2022 IEEE 19th International
Symposium on Biomedical Imaging (ISBI), pp. 1–5. DOI: 10.1109/ISBI52829.2022.
9761434.

Liang, Shiyu, Yixuan Li, and Rayadurgam Srikant (2017). “Enhancing the reliability
of out-of-distribution image detection in neural networks”. In: arXiv preprint
arXiv:1706.02690.

Liu, Aishan et al. (2021). “Training robust deep neural networks via adversarial noise
propagation”. In: IEEE Transactions on Image Processing 30, pp. 5769–5781.

Maji, Subhransu et al. (2013). “Fine-grained visual classification of aircraft”. In: arXiv
preprint arXiv:1306.5151.

Mao, Chengzhi et al. (2019). “Metric learning for adversarial robustness”. In: Advances
in Neural Information Processing Systems 32.

Masana, Marc et al. (2018). “Metric Learning for Novelty and Anomaly Detection”.
In: British Machine Vision Conference (BMVC).

Papadopoulos, Aristotelis-Angelos et al. (2021). “Outlier exposure with confidence
control for out-of-distribution detection”. In: Neurocomputing 441, pp. 138–150.
ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2021.02.007. URL:
https://www.sciencedirect.com/science/article/pii/S0925231221002393.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc. URL: https://proceedings.

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ISBI52829.2022.9761434
https://doi.org/10.1109/ISBI52829.2022.9761434
https://doi.org/https://doi.org/10.1016/j.neucom.2021.02.007
https://www.sciencedirect.com/science/article/pii/S0925231221002393
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Bibliography 40

neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-
Paper.pdf.

Ravikumar, Deepak et al. (2020). “Exploring Vicinal Risk Minimization for Lightweight
Out-of-Distribution Detection”. In: arXiv preprint arXiv:2012.08398.

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747.

Sun, Yiyou et al. (2022). “Out-of-distribution Detection with Deep Nearest Neighbors”.
In: ICML.

Tack, Jihoon et al. (2020). “CSI: Novelty Detection via Contrastive Learning on Distri-
butionally Shifted Instances”. In: Advances in Neural Information Processing Systems.

Techapanurak, Engkarat, Masanori Suganuma, and Takayuki Okatani (2019). “Hyperparameter-
free out-of-distribution detection using softmax of scaled cosine similarity”. In:
arXiv preprint arXiv:1905.10628.

Thulasidasan, Sunil et al. (2019). “On mixup training: Improved calibration and pre-
dictive uncertainty for deep neural networks”. In: Advances in Neural Information
Processing Systems 32.

Van Horn, Grant et al. (2015). “Building a bird recognition app and large scale dataset
with citizen scientists: The fine print in fine-grained dataset collection”. In: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 595–604.
DOI: 10.1109/CVPR.2015.7298658.

Venkataramanan, Shashanka et al. (2022a). “AlignMixup: Improving Representations
By Interpolating Aligned Features”. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Venkataramanan, Shashanka et al. (2022b). “It Takes Two to Tango: Mixup for Deep
Metric Learning”. In: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=ZKy2X3dgPA.

Verma, Vikas et al. (June 2019). “Manifold Mixup: Better Representations by Interpo-
lating Hidden States”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Pro-
ceedings of Machine Learning Research. Long Beach, California, USA: PMLR,
pp. 6438–6447. URL: http://proceedings.mlr.press/v97/verma19a.html.

Wang, Jiang et al. (2014). “Learning fine-grained image similarity with deep ranking”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1386–1393.

Winkens, Jim et al. (2020). “Contrastive training for improved out-of-distribution
detection”. In: arXiv preprint arXiv:2007.05566.

Yang, Donghun et al. (2020). “Out-of-distribution detection based on distance metric
learning”. In: The 9th International Conference on Smart Media and Applications,
pp. 214–218.

Yun, Sangdoo et al. (2019). “CutMix: Regularization Strategy to Train Strong Clas-
sifiers with Localizable Features”. In: International Conference on Computer Vision
(ICCV). published.

Zhang, Hongyi et al. (2018). “mixup: Beyond Empirical Risk Minimization”. In:
International Conference on Learning Representations. URL: https://openreview.
net/forum?id=r1Ddp1-Rb.

Zhang, Jingyang et al. (Jan. 2023). “Mixture Outlier Exposure: Towards Out-of-
Distribution Detection in Fine-Grained Environments”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 5531–
5540.

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1109/CVPR.2015.7298658
https://openreview.net/forum?id=ZKy2X3dgPA
http://proceedings.mlr.press/v97/verma19a.html
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related work
	Mixup
	Input Mixup and manifold intrusion
	Manifold Mixup
	AlignMixup
	Local Mixup
	Mixup for metric learning
	Metrix
	Mixup for triplet loss

	Out-of-distribution detection
	Overview
	OoD, anomaly and novelty detection
	Detection methods
	Outlier Exposure

	Out-of-distribution detection with metric learning
	Out-of-distribution detection with Mixup

	Problem formulation and Contribution
	Formulation
	Contribution

	Method
	MixOE analysis
	Auxiliary outlier dataset
	Mixup variants
	Mixup with K nearest neighbours
	Mixup with Outlier Exposure
	Mixup with labels
	Mixup with noise

	Metric learning for out-of-distribution detection
	Triplet loss
	Meaningful choice of the margin
	Mixup in metric learning for out-of-distribution detection

	Evaluation metrics
	Confidence-based True Negative Rate

	Experiments
	Implementation and experimental details
	Implementation and training details
	Datasets
	Experimental details
	Mixup variants
	Changing outlier distribution
	Metric learning with and without Mixup for OoD detection

	Results
	Impact of the size of auxiliary outlier dataset and Mixup with labels
	Impact of the diversity of auxiliary outlier dataset
	Impact of Mixup variants
	Input Mixup (Mixup with inliers) and Mixup with noise
	Manifold MixOE and Align MixOE
	MixOE with KNN
	MixOE with and without OE loss

	Impact of metric learning
	Impact of (I1, I1, I2) triplet
	Impact of hyperparameter for the triplet loss
	Impact of an outlier in the triplet
	Impact of MixOE with triplet loss
	Choosing best-performing hyperparameters

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

