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Abstract

When choosing the right establishment to order from, we rely on the average
ratings of those places. The ratings are calculated based on numeric values left by
different users who have had experience with the establishment. The problem with
such ratings is that having a high score does not guarantee one’s satisfaction with a
meal. It is a mere number evaluated based on other people’s experiences. However,
every human being is an individual with specific tastes, and the concept of good
food differs for everyone. With the unexpected strike of the COVID-19 pandemic,
there was also a sharp spike in need for food delivery services. For applications
like Glovo or its competitors Rocket and Bolt Food, the only way of approximating
the food quality is a score averaged from other users’ ratings, which makes it, quite
often, a hit-or-miss experience. Such services, unfortunately, neither offer written
reviews nor any personalized recommendations based on your order history. This
project is built around this topic and is aimed to train a model that learns from vi-
sual information and user behavior and produces recommendations based on given
information.

HTTP://WWW.UCU.EDU.UA
http://department.university.com


iii

Acknowledgements
I would like to thank my project advisor, Taras Firman, for supervising this work.



iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Background research 3
2.1 Types of Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Image Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Deep Learning for Features Extraction . . . . . . . . . . . . . . . . . . . 7
2.4 Deep learning degradation problem . . . . . . . . . . . . . . . . . . . . 8
2.5 ResNet as a solution to the degradation problem . . . . . . . . . . . . . 9
2.6 Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Solution Overview 15
3.1 Image embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Behavior Sequence Transformer . . . . . . . . . . . . . . . . . . . . . . . 17

4 Implementation and experiments 20
4.1 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Experimenting with the model . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusions 24
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Bibliography 25



v

List of Figures

1.1 Artificial Intelligence in food and beverage market scope . . . . . . . . 1

2.1 Collaborative Filtering overview . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Netflix’s "New & Popular" recommendations tab . . . . . . . . . . . . . 4
2.3 Content-based filtering matrix example . . . . . . . . . . . . . . . . . . 4
2.4 Favorite artists prompt for new users in Apple Music . . . . . . . . . . 5
2.5 Image pixel intensity denoted in numbers . . . . . . . . . . . . . . . . . 5
2.6 Using matrices to represent an RGB image . . . . . . . . . . . . . . . . 6
2.7 Translating 3 matrices with pixel values into 1 . . . . . . . . . . . . . . 6
2.8 Prewitt horizontal and vertical kernels . . . . . . . . . . . . . . . . . . . 6
2.9 Image output after applying Prewitt operator . . . . . . . . . . . . . . . 7
2.10 General architecture of a CNN . . . . . . . . . . . . . . . . . . . . . . . 7
2.11 Convolution using a 5x5x3 filter . . . . . . . . . . . . . . . . . . . . . . . 8
2.12 Max pooling with a 2x2 pooling windows . . . . . . . . . . . . . . . . . 8
2.13 20-layer and 56-layer architectures trained on CIFAR-10 . . . . . . . . . 8
2.14 The sigmoid function and its derivative . . . . . . . . . . . . . . . . . . 9
2.15 Residual block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.16 plain network with shortcut connections . . . . . . . . . . . . . . . . . . 10
2.17 Deriving key, query and value representations from input vectors . . . 11
2.18 Multi-head attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.19 Transformer encoder and decoder . . . . . . . . . . . . . . . . . . . . . 12
2.20 Vision transformer model overview . . . . . . . . . . . . . . . . . . . . 13

3.1 Sample of the reviews dataframe . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Sample of the photos dataframe . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Behavior Sequence Transformer architecture . . . . . . . . . . . . . . . 18

4.1 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Tensorboard metrics for training . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Visual overlay representation of predictions over target . . . . . . . . . 23



vi

List of Abbreviations

ML Machine Learning
CF Collaborative Filtering
CNN Convolutional Neural Network
ViT Vision Transformer
ResNet Residual Network
CV Computer Vision
RGB Red Green Blue
MLP Multilayer Perceptron
BST Behavioral Sequence Transformer



vii

Dedicated to my loving family



1

Chapter 1

Introduction

As the internet became globally popularized in the 21st century, more than half the
population of this planet is interconnected via an invisible network. In this day and
age, thanks to modern technology, we are able to perform most of our daily tasks
even without leaving our desks. Every citizen with a smartphone and an internet
connection is able to communicate with close people and strangers from their homes,
read books, watch movies, order delivery from restaurants, and even get groceries
from the store. Many of our basic needs now require significantly less amount of
effort, thanks to the internet.

Arguably, another major breakthrough in the pursuit of automation and im-
provement of quality of life was the widespread adoption and availability of ma-
chine learning technologies. The integration of artificial intelligence has skyrocketed
over the years in the business industry. [Research, 2021] The global Artificial Intel-
ligence (AI) in food and beverage market size was USD 3.33 Billion in 2020 and is
expected to register a CAGR of 44.4% during the forecast period.

FIGURE 1.1: Artificial Intelligence in food and beverage market scope

Adopting machine learning allows businesses to optimize and automate pro-
cesses, account for human error, and reduce labor costs. In Food and Beverage in-
dustry, it is used for various tasks like:

• Food supply chain optimization, price and inventory management predictions,
machinery condition monitoring, and predictive maintenance are tasks that
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can be replaced with the use of Artificial Intelligence, thus getting rid of the
need for human labor in certain fields.

• Online services and applications. Automated customer service and relevant
recommendations are both keys to improving the overall user experience.

• Market analysis. Tracking, categorizing, analyzing, and updating current trends
and customer preferences make for an invaluable source of information for a
business strategy.

With the rapid development of AI and its use in the food industry, many compet-
ing reviewing platforms are present on the internet. As mentioned before, analyzing
the market and adapting to customers’ tastes is an important factor in running a suc-
cessful business. Thus recommender systems are extremely important for delivering
the right content to the end-user.



3

Chapter 2

Background research

2.1 Types of Recommender Systems

Recommender systems can be mainly classified into two types: Collaborative Fil-
tering and Content-based. In CF, users’ previous interactions with items are used
to yield new recommendations. CF can be further divided into User-based CF and
Item-based CF.

Consider an example of User-based CF. Let there be an n × m matrix with n users
ui, i = 1 . . . n and m items mj, j = 1 . . . m. respectively. A value rij indicates a rating
given by user ui to item mj. To predict ratings for items that have not been rated by
a user u(i), users with similar ratings are taken, and a weighted average of ratings
from these users is calculated to decide whether to recommend a certain item or not
[Rocca, 2019].

FIGURE 2.1: Collaborative Filtering overview

In the case of Item-based CF, similarities are instead discovered between items
by looking at similar ratings given by the same user. By discovering pairs of similar
items, the system is able to recommend items from these pairs if the user liked at
least one of the items in the pair [Sarwar et al., 2001].

Of course, CF suffers from a cold-start problem. This means that at the early
stages, such RS is obsolete since it lacks data about user’s interactions to build its
predictions on [Ricci, Rokach, and Shapira, 2011]. For such cases, platforms usually
recommend new and popular items to new users, as shown in the example below.

Content-based filtering, on the other hand, uses item features to recommend
other similar items to users.
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FIGURE 2.2: Netflix’s "New & Popular" recommendations tab

FIGURE 2.3: Content-based filtering matrix example

An easy example of that would be categories. The matrix in figure 2.3 represents
different apps in columns and categories in rows, where each category assigned to
an app is marked with a dot in its respective cell (this would be usually represented
using binary in a real matrix)

By knowing what categories a user prefers, we can recommend other items based
on some similarity metric. Features can be both implicit and explicit. For instance,
music streaming services often prompt new users to select artists that they like to
assign features like music genres to those users.

Main differences between CF and content-based filtering are:

• Content-based method requires a lot of information about features on the de-
veloper’s end to discover similarities. CF does not need explicit categories
since it relies solely on users’ interaction history and sets underlying features
implicitly.

• Content-based filtering does not require other users’ data since recommenda-
tions are user-specific, which poses restrictions on further recommendations
depending on existing user data.

• CF suffers from the cold-start problem severely when there is little interaction
with an item. New items don’t get recommended until someone rates them.

There are countless proposed solutions to solve the shortcomings of both ap-
proaches. Hybrid systems combine CF and content-based methods to use either of
them when most suitable.
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FIGURE 2.4: Favorite artists prompt for new users in Apple Music

2.2 Image Features Extraction

An embedding is a low-dimensional representation of a high-dimensional vector.
Processing similarities between two images by using their raw pixel intensities is
computationally intensive and thus highly ineffective. A few simple methods will
be demonstrated in this paper to explain how feature extraction from images works.

FIGURE 2.5: Image pixel intensity denoted in numbers

The dimensions of the image in 2.5 are 22 x 16 pixels. Here, pixel intensity values
range between 0 (meaning black) and 255 (meaning white).

In the case of RGB or colored images, the same concept applies. However, the
number of matrices is increased to 3, each representing red, green, and blue channels.

Going back to the grayscale image, the simplest way to create a feature vector
would be to arrange all pixels values sequentially, thus creating a 1D array of length
352 or a vector with 352 features.

If the image were RGB, the number of features using the previously mentioned
technique would be multiplied by the number of channels in the photo, in this case,
3, resulting in an array of length 1056. Again, the simplest solution to this rapid
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FIGURE 2.6: Using matrices to represent an RGB image

growth in size would be using only one matrix, with its values being a mean value
of pixels in every channel, as shown in 2.7 [Singh, 2020].

FIGURE 2.7: Translating 3 matrices with pixel values into 1

A more sophisticated technique of feature extraction is edge detection. Edge
detection can be achieved by highlighting a pixel in a matrix and calculating the
differences between pixels surrounding it. Various operators exist to compute an
approximation of the gradient image. For instance, the Prewitt operator uses two
3x3 kernels for horizontal and vertical derivative approximations (see 2.8).

FIGURE 2.8: Prewitt horizontal and vertical kernels

The figure below demonstrates the output of combining vertical and horizontal
edge detection masks using the Prewitt operator.

Other traditional Computer Vision techniques include, but not limited to:

• Harris Corner Detection

• Shi-Tomasi Corner Detector
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FIGURE 2.9: Image output after applying Prewitt operator

• Scale-Invariant Feature Transform

• Speeded-Up Robust Features

• Features from Accelerated Segment Test

2.3 Deep Learning for Features Extraction

Traditional approaches, however, can be replaced by Deep learning since it performs
much better on CV tasks. Convolutional Neural Networks have been proved to
provide significantly better efficiency and higher accuracy and demonstrate solid
ability in learning context-specific features. Size, lighting, angle, and deformations,
for example, are all part of an image context.

CNN allows extracting a set of features by detecting them in different image
patches. The first layers of a CNN may extract low-level features like edges, which
are then used to find mid-level features like shapes, leading to extracting high-level
features, objects, for example. Kernels are used to detect features in an image patch
(like the Prewitt kernel mentioned above for edge detection). Manual feature detec-
tion requires domain knowledge and handcrafted kernels, which is inefficient from
a time perspective. CNNs are the solution to this problem since they learn important
features from an image and apply necessary kernels (filters) to detect these features
automatically [Bezdan and Bacanin, 2019].

FIGURE 2.10: General architecture of a CNN

As shown in 2.10, an average CNN model consists of convolutional layers, pool-
ing layers, fully connected layers at the end, and an activation function (in this case,
softmax for multiclass classification).
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Convolution layers use learnable filters to convolve on the input image and out-
put activation (or feature) maps.

FIGURE 2.11: Convolution using a 5x5x3 filter

Pooling layers are used to perform pooling to reduce dimensionality and compu-
tational intensity and prevent overfitting. This is done by downsampling obtained
feature maps by sliding pooling windows over patches of each feature map. Pooling
operations include max pooling, average pooling, and global pooling [Dertat, 2017].

FIGURE 2.12: Max pooling with a 2x2 pooling windows

After these layers, the output is then flattened and passed through fully con-
nected layers that act as a classifier for detected features.

2.4 Deep learning degradation problem

In 2012, a CNN-based architecture AlexNet, which contained eight neural network
layers, further subdivided into five convolution layers and three fully connected
layers, was the first to show superior results over traditional feature learning by
winning the ImageNet competition [Krizhevsky, Sutskever, and Hinton, 2012]. The
architecture of this model became a foundation for subsequent traditional CNNs
and created a notion that using more layers leads to better results and a lower error
rate. This belief, however, was disproved by the following experiment.

FIGURE 2.13: 20-layer and 56-layer architectures trained on CIFAR-10
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As shown in figure 2.13, the 56-layer architecture gives more error rate than its
smaller counterpart. It is not a case of overfitting since it tends to occur when train-
ing errors are significantly lower than test errors. Thus, the authors concluded that
the failure could be attributed to a vanishing gradient problem. [He et al., 2015],
[Ebrahimi and Abadi, 2018].

When a network generates output, it uses backpropagation to minimize the loss
function. This involves calculating the gradient of the loss function with respect to
each weight. With the chain rule, the gradient of the loss function can be represented
as a product of gradients of all activation functions with respect to each of their
weights.

FIGURE 2.14: The sigmoid function and its derivative

As shown in 2.14, the derivative of a sigmoid can reach a maximum value of
0.25. The bigger the input, the smaller the derivative of this function is. Each ad-
ditional layer in a network means an additional multiplication operation on a small
derivative, which leads to the gradient decreasing exponentially [Wang, 2019].

2.5 ResNet as a solution to the degradation problem

Suppose we have a neural network with n layers that give a training error x. Let
us consider one more neural network, a deeper one, with m > n layers. Naturally,
we expect the deeper network to perform better or at least as good as its shallower
counterpart. Since the first n layers in the deeper network will produce the same
results, the remaining m − n layers will either learn a more complex representation
or act as an identity function to carry the output to the mth layer.

Thus, we can conclude that the deeper network should give a training error y
that is no greater than x. Empirically, this does not happen, which proves that the
remaining layers are unable to learn the identity mapping. In residual networks,
instead of hoping that these layers fit an underlying mapping, we explicitly let them
fit a residual mapping. If we denote the desired mapping as H(x) and let the layers
fit mapping F(x) = H(x)− x, the original mapping is recast to F(x) + x [He et al.,
2015].

The residual block, shown in 2.15, features "shortcut connections," which are
essentially identity mappings that allow our input to skip one or more layers. With
these shortcut (or skip) connections, we are able to formulate F(x) + x. Another
advantage of these skip connections is that they add no computational complexity
and allow for training by SGD with backpropagation. To compare the difference, let
us take a "plain" network (in other words, a network without residual blocks). In
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FIGURE 2.15: Residual block

the case of a plain network, the problem of learning an identity function would be
solving the equation H(x) = F(x). On the other hand, to solve H(x) = F(x) + x,
the network has to make F(x) = 0, which is an easier task to accomplish [He et al.,
2015].

FIGURE 2.16: plain network with shortcut connections

Figure 2.16 shows a plain network with 34 parameter layers is shown with short-
cut connections inserted into every few layers. A building block y = F(x, Wi) + x.
can only be used if the input and the output are of the same dimensions. To achieve
this, either the skip connection is padded with extra zero entries to increase its di-
mensions, or a linear projection Ws is used on the shortcut connection (the projection
is made by adding 1x1 convolutional layers to the input.

2.6 Vision Transformers

CNNs are known to have been dominating the field of CV in image recognition
tasks. However, recently, a new alternative to CNN has arisen. To understand how
ViT work, let us first take a look at transformers, which served as a foundation for
this CNN alternative.

Initially, in sequence-to-sequence problems, the solutions were based on Recur-
rent Neural Networks that worked sequentially to preserve the order of the sentence,
thus requiring each layer to have access to the previous output. As a result, LSTM
computations were performed sequentially, posing serious limitations to the model:
with long sentences, if the decoder only accesses the last output, it loses information
about the first elements in the sequence. To combat those limitations, the attention
mechanism was introduced. Attention allowed to extract a weighted sum of all en-
coder states, thus extracting information from the whole sequence. This enabled the
decoder to focus on the most important element of the input to predict the output.
Nevertheless, the mechanism still fell short on large sequences due to processing
each element at a time requiring time and adding to overall computational complex-
ity.
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Transformers, on the other hand, use a self-attention mechanism to figure out the
importance of other words in a sentence relative to the last-mentioned word. The
self-attention mechanism is a sequence-to-sequence operation that takes a weighted
average over all the input vectors to produce output vectors of the same dimensions.
In this mechanism, every input vector has three representations: key, query, and
value. Maxime, 2020

FIGURE 2.17: Deriving key, query and value representations from in-
put vectors

Figure 2.17 shows an example of deriving these representations from an input
vector of dimension 4. In this example, the representations all have a dimension of
3. Each of these is a result of a matrix-vector product, as shown above.

To calculate an attention score for a word at a certain position, we calculate the
dot product of the selected input query and all keys, including self. A softmax func-
tion is then applied to the output to obtain the score. This is described in the paper
by the following formula:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.1)

Where Q, K, V are the query, key, and value matrices, respectively. dk represents the
dimensions of keys, and we use its square root as a scaling factor for our softmax
function [Vaswani et al., 2017].

For multi-head attention, the individual attention scores are concatenated and
multiplied by an additional weights matrix to match the output dimension for the
feed-forward layer 2.18.

The self-attention mechanism is permutation invariant. This implies that regard-
less of the words’ positions in the same sentence, the outcome stays unaltered. To
combat this problem, we create a representation of the position of the word and add
it to the word embedding. This process is called positional encoding. In the paper, a
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FIGURE 2.18: Multi-head attention

sinusoidal function is used.

PE(pos, 2i) = sin(
pos

100002i/dmodel
) (2.2)

PE(pos, 2i + 1) = cos(
pos

100002i/dmodel
) (2.3)

Where dmodel is the dimensionality of the embedding vector. Thus, for even positions
we use the cos function, and sin for even positions.

FIGURE 2.19: Transformer encoder and decoder

Let us now walk through the encoder components. The encoder incorporates:

1. Word tokenization and embeddings

2. Adding positional encodings to the embeddings

3. Passing the resulting vectors to the first encoder block
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Each encoder block consists of N layers, which in turn comprise the following
sub-layers:

• A multi-head attention mechanism

• A normalization layer

• A linear layer

• Second normalization layer

There are two residual connections in a block around each of the two sub-layers.
Both the encoder and the decoder share most of the similarities, with a few key
differences. As can be observed in 2.19, the first sub-layer is Masked Multi-Head
Attention, which allows disregarding unknown outputs by masking the next word
embeddings. We do this by setting their value to −∞.

MaskedAttention(Q, K, V) = so f tmax(
QKT + M√

dk
)V (2.4)

Where M is the matrix of zeros and −∞.
The Multi-Head Attention (also Encoder-Decoder attention) takes the Key and

Value matrices from the output of the encoder and the Query matrix from the Masked
Multi-Head Attention output. The outputs of N decoders are then passed through
the linear layer resulting in logits (i.e., a vector of scores). Softmax is used to turn
those scores into probabilities, and the word corresponding to the highest probabil-
ity is chosen as the output.

Now, we can apply the given knowledge in CV to construct a vision transformer.

FIGURE 2.20: Vision transformer model overview

The model follows the original Transformer as closely as possible [Dosovitskiy
et al., 2020]. Thus, following the same principles as with sentences, we split the
input image into fixed-size patches (equivalent to tokens) and flatten those patches.
A learnable embedding is added to the sequence of patches. Position embeddings
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are then added to the patch embeddings to maintain positional information. Finally,
those are fed to the transformer encoder [Bhojanapalli et al., 2021], [Sarkar, 2021].

Main differences between a ViT and a CNN:

• Transformers lack some of the inductive biases present in CNNs, such as trans-
lational equivariance and locality, and have to learn these properties from the
given data. Translational equivariance means that the activation in a feature
layer of a CNN will translate accordingly to the image translations. In other
words, CNN is able to recognize an object even when its position has changed.

• Unlike a CNN, a transformer is permutation invariant by design.

• Due to the lack of the aforementioned inductive biases, transformers require
huge training datasets to provide higher accuracy results than ResNet, for in-
stance. (huge implying datasets that comprise at least 14M images)

• Transformers provide higher computational efficiency and scalability. That is,
again, if we train it on large datasets
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Chapter 3

Solution Overview

3.1 Image embeddings

Several methods of producing image embeddings exist, all varying in difficulty.
Let’s go into more specifics about several of these.

1. If we print out children of a ResNet18 model in Pytorch (this specific model
was chosen for brevity), we will see the following:

Children Counter: 0 Layer Name: conv1
Children Counter: 1 Layer Name: bn1
Children Counter: 2 Layer Name: relu
Children Counter: 3 Layer Name: maxpool
Children Counter: 4 Layer Name: layer1
Children Counter: 5 Layer Name: layer2
Children Counter: 6 Layer Name: layer3
Children Counter: 7 Layer Name: layer4
Children Counter: 8 Layer Name: avgpool
Children Counter: 9 Layer Name: fc

To obtain the output of our last layer (namely layer4), we take the modules in
our model and discard the average pooling and fully connected layers that
come after layer4. Using the remaining modules, we can replace our pre-
trained model with a new Sequential model. The drawback here is, of course,
the creation of two virtually identical models, which take up twice as much
memory until the initial one is freed [Manna, 2021b].

2. Second way of doing this involves just one instance of a model. This is done
by first creating a subclass of a ResNet class in Pytorch and assigning only the
layers we need to it. We then obtain the output from layer4 by overriding the
_forward_impl method of the ResNet class to return the output. This method
is easier on the memory but requires creating an instance from our subclass
and loading the pretrained weights [Manna, 2021a].

3. Attaching hooks. Pytorch provides one more, arguably, the most convenient
method for extracting activations. The method register_forward_hook, as one
may have guessed, enables registering hooks on desired layers. When the
forward() method is triggered, the modules inputs and outputs get are passed
to the hook. This method was chosen for the implementation due to its intu-
itive design.
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3.2 Dataset

Yelp is a crowd-sourced local business review directory. Yelp was a compelling
choice for producing a dataset for this task since it features its own API called Yelp
Fusion. Using an API would allow for great customizability in choosing what data
the dataset is comprised of.

Yelp fusion provides a few useful endpoints that could contribute to our dataset:

• Business search, featuring querying by search terms (e.g., "food" or "restau-
rants"). This endpoint provides some useful information that we could use,
for example, the business’ id, location, rating, categories, and review count.

• Business details, providing much more information about a certain business
than the aforementioned endpoint, namely photos of the business.

• Reviews endpoint returns reviews’ id, text, rating, timestamp, user’s id, and
user’s name for a given business id. The timestamp is crucial for creating a
time-based sequence of reviews from one user.

Nevertheless, Yelp Fusion suffers from a few major drawbacks.

• By default, a client is limited to only 5000 API calls per 24 hours. This can be
used up pretty quickly if several endpoints are used in conjunction to produce
the final dataframe. Of course, one can register a few API keys on different
accounts, but this process makes gathering data so much more inefficient.

• The API features no endpoints to retrieve reviews by a specific user id. Hence,
forming user-based sequences can be a little tricky.

• For each business, only up to 3 reviews can be returned. This makes the task
of forming a complete dataset based on just one city seem highly impractical.

• Every business query by term returns a maximum of 50 results, allowing up to
1000 by setting the offset value in the request parameters. This means that for
every 1000 businesses per term, 20 API calls have to be executed.

Having said that, this is still one of the best options for obtaining restaurant-
specific information with photos, so an attempt was made to make use of the API.
First, three scripts were created to obtain and process the necessary data. To extract
the maximum amount of information about businesses in one city, the script used
3 of the available sorting methods (best match, rating, review count) and a dozen
terms related to our topic. For each 50 business ids obtained from this search, 50
more requests performed a search for business details (i.e., photos) by business id,
and the same amount for reviews for a given business. Seconds script grouped all
obtained reviews by userid, and the third one merged all these reviews into one file.
The duplicate reviews, obtained from performing numerous searches with large in-
tersections, were then dropped when operating with the DataFrame object. After
some time of experimenting with the API, it was concluded that pulling a sufficient
amount of reviews is possible, but forming a fair amount of considerably long se-
quences (at least five reviews per user) is not.

Fortunately, Yelp provides its own dataset to work with. The numbers specified
in its description are as follows:

• 6,990,280 reviews
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• 150,346 businesses

• 200,100 pictures

This may seem a lot, but if only one city is accounted for, the amount of data
might not be perfect for achieving the highest accuracy results possible. Still, it is
definitely enough to experiment with the model.

This dataset provides four files (business.json, review.json, user.json, photo.json)
that may be of use for our case. Unfortunately, the user file contains little informa-
tion that can be applied for context learning (i.e. no person-related features like age
or sex), so this file was omitted in the resulting dataframe.
After converting these files to .csv format and stripping all the unnecessary data,
here are the samples of two resulting dataframes for photos and reviews, respec-
tively.

FIGURE 3.1: Sample of the reviews dataframe

FIGURE 3.2: Sample of the photos dataframe

Some columns have been dropped in these samples but contain extra informa-
tion like image labels (inside, outside, drink, food, menu) and business categories
that can be used as extra features to further experiment with training our model.

3.3 Behavior Sequence Transformer

The base architecture for the model in this paper will be the Behavior Sequence
Transformer developed by Alibaba Search and Recommendation Group.
The paper proposes that we use the Transformer model to "capture the sequential
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signals underlying users’ behavior" for recommendations. The problem this model
is trying to solve is that the standard embedding and MLP paradigm, despite being
successful, fails to take into account a very important factor of sequences, i.e., users’
clicked items in an order.

FIGURE 3.3: Behavior Sequence Transformer architecture

The embedding layer embeds all input features into low-dimensional vectors of
fixed size. Other Features denotes features related to the user (e.g., gender, age, city),
item clicked (category, shop, tag), contextual features exclusive to the website, and
cross features (e.g., age * item). These features are concatenated and embedded into
a low-dimensional vector, as can be seen in 3.3.
For the rest, each item from a sequence is embedded, as well as a target item. An
item is represented by "Sequence Item Features" and "Positional Features," where the
first includes the item id and its category. In the paper, position values are computed
as pos(vi) = t(vt)− t(vi), where t(vt is the recommending time of item vi, and t(vi
is the time when user clicks on the item. This method claims to outperform the
sinusoidal and cosinusoidal functions used in the original Transformer paper. The
scaled dot-product attention is described as

S = MH(E) = Concat(head1, head2, . . . , headh)

WH = Attention(EWQ, EWK, EWV),

where WQ, WK, WV are the projection matrices, Q, K, V are the Query, Key and Value
matrices respectively, E is the embedding matrices of all items, and h is the num-
ber of heads. To avoid overfitting, dropout and LeakyRELU are used both in self-
attention and Point-wise Feed Forward Network. Chen et al., 2019

To summarize, the key modifications made to the original Transformer in this model
are:

• Other features embeddings are added and concatenated to the Transformer
Layer output



Chapter 3. Solution Overview 19

• Item features are used for the Embedding Layer

• The sigmoid function is used to generate the final output (for the recommen-
dation)
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Chapter 4

Implementation and experiments

4.1 Model Implementation

The implementation is based on the Behavior Sequence Transformer model. Since
user data contains no personal information on the user, only the user’s id is used
in place of Other Features of the original model, and thus, no cross features are
implemented.

In the original paper, the position is calculated using pos(vi) = t(vt) − t(vi),
where t(vt) is the recommending time of the item and t(vi) is the time when user
click the item vi. In our scenario, we use the timestamps of the reviews to sort them
in order of posting the review and represent positions of items as their respective
positions in the created sequence. In other words, positions in a sequence of length
8 are represented with an array [0, 1, 2, 3, 4, 5, 6, 7].

For items, we use extracted image features. For this purpose, we created a class to
pass normalized images from the dataset to a pretrained ResNet model and extract
features from the avgpool layer. The best performance was achieved when convert-
ing the images to tensors and saving them to the dataframe, rather than performing
feature extraction during the training phase.

As this is not a sequence to sequence problem, only the Encoder is used in the
model. Fortunately, the Pytorch machine learning framework already provides a
built-in Trans f ormerEncoderLayer class that is made up of self-attention and feed-
forward network following the "Attention is all you need" paper.

In the original Transformer paper, the Adam optimizer is used for the training
phase. We use AdamW optimizer for this model, which is essentially the same opti-
mizer but includes decoupling the weight decay from the optimization step.

The model is a linear regression for rating predictions in the range of 1 to 5. For
training, the loss function is Mean Squared Error (MSE) and is computed as

1
n

n

∑
i=1

(Yi − Ŷi)
2

Where n = number of items, Y = observed values, Ŷ = predicted value. The square
part of the function allows it to put larger weights on errors, preventing outlier pre-
dictions.

4.2 Metrics

Metrics are divided into two sections. In training, Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) are used.
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1
n

n

∑
i=1

|Yi − Ŷi|

The following metrics are present in the test: precision, recall, and F1-score. Ad-
ditionally, a confusion matrix is plotted for a better visual interpretation of the re-
sults.

FIGURE 4.1: Precision and Recall

Figure 4.1 is a good explanation of the underlying principle of recall and preci-
sion metrics. Precision is defined as

TP
TP + FP

(4.1)

With TP = True Positive, FN = False Positive respectively. Precision measures the
fraction of relevant instances out of all retrieved instances. Recall is calculated using

TP
TP + FN

(4.2)

Where FN = False Negative. Recall determines the accuracy of the model in
terms of correctly identifying True Positives.
F1-score is a harmonic mean of precision and recall and is calculated as follows:

F1 = 2
precision ∗ recall
precision + recall

(4.3)

To simplify, F1-score combines recall and precision to rate the overall accuracy of
our model.
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4.3 Experimenting with the model

Following options were considered during the experiments:

• Choosing batch sizes between 32 and 256 with increments of power of 2

• Limiting image processing exclusively to images of same label (inside, outside,
drink, food, menu)

• Choosing between AdamW and AdaGrad optimizers

• Adding ReduceLROnPlateau learning rate scheduler on top of the existing op-
timizer

• Varying learning rate from 0.00005 to 0.01

• Using Pytorch Lightning automatic learning rate finder utility

• Processing images inside batches vs. preprocessing images to dataset directly

• Applying normalization before and after in the Encoder layer

• Using positional encodings with a sinusoidal function instead of pytorch em-
beddings

Using Pytorch Lightning tuner to automatically find the optimal learning rate
proved partially useful. The initial learning rate suggested by the system (by run-
ning warmup steps in the range 100-200) closely corresponded to manual findings
(that is, the learning rate of values from 0.005 to 0.0013 for batches of sizes 64 and
128). Experimenting with the learning rate was a necessity due to the tuner mal-
functioning and causing the error rate to grow exponentially (this feature is, indeed,
described as "bleeding edge").

AdamW showed slightly better performance than AdaGrad, and thus was used
in its favor with parameters specified following "Attention is all you need" (with
parameters β1 = 0.9, β2 = 0.98 and ϵ = 10−8). Using a Resnet-34 pretrained
model instead of ResNet-18 demonstrated worse accuracy and needed additional
fine-tuning.

Encoding images to vectors prior to feeding them to the transformer vastly im-
proved training time. Image vectors were added to the training dataframe to be
directly accessed by our model and ignore unnecessary loading times.

Over several dozens of runs showed that the minimum loss value that could pos-
sibly be achieved with a given dataset size was 1.1-1.3 (MSE). Due to the absolute
value of error exceeding 1, the testing phase was converted to a binary classifica-
tion problem rather than multiclass since discretizing values would cause a serious
fraction of predictions to be off by a unit.
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FIGURE 4.2: Tensorboard metrics for training

Initial training was performed exclusively on one city from the dataset, compris-
ing 3299 images and 92399 sequences. Each modification was tested on batches of
sizes 32, 64, and 128 (with some exceptions, including 16 for tuning learning rate).
Other experiments on achieving the lowest error rate were conducted on a bigger
training dataset of 14075 images and 379312 sequences. Some runs included the
entire dataset but were insufficient to achieve a higher convergence rate.

FIGURE 4.3: Visual overlay representation of predictions over target
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Chapter 5

Conclusions

5.1 Summary

In this work, we checked the possibility to use a recommendation system based on
deep learning approaches for trip planning using visual information from places
photos. We tested the architecture of attention-based NN as a baseline and adapted
it for working with images input. The model demonstrated relatively poor perfor-
mance and the reason of that can be a big variation of input data. We proved that
guessing user tastes is very complex task and can be depended not only on entire
place’s features but also on other features that we cannot easily include into the
model.

5.2 Future work

Our goal in the future would be to increase a set of external factors that can help to
extend environment vector and most probably increase a performance of NN.
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