
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Reinforcement Learning Approach for
Aircraft Profile Optimization

Author:
Mykhailo SHAKHOV

Supervisor:
PhD Taras FIRMAN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Mykhailo SHAKHOV, declare that this thesis titled, “Reinforcement Learning Ap-
proach for Aircraft Profile Optimization” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Reinforcement Learning Approach for Aircraft Profile Optimization

by Mykhailo SHAKHOV

Abstract

This project is aimed for using RL approaches for flight planning problem in static
and dynamic weather environments. Classical solutions are mostly based on solving
non-linear optimization problem with additional non-linear constraints. This kind
of approaches are complex, slow and not always can find optimal solution of the
initial problem. Current research is dedicated to testing different RL methods that
can replace classical ones with at least the same performance.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I want to thank my supervisor Taras FIRMAN for generating great ideas and always
helping and guiding me in every situation.

I also want to thank the Ukrainian Catholic University for teaching, guiding me,
and making me a human.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Structure . 1

2 Background Information 2
2.1 RL basics . 2
2.2 MDP . 3
2.3 Value-Based Algorithms . 3

2.3.1 TD Learning . 3
2.3.2 Q Learning . 4

3 Related Works 5
3.1 OpenAP . 5
3.2 Aircraft Profile Optimization using Genetic Algorithms 6

4 Environment Building 8
4.1 Airspeed . 8
4.2 Wind Model . 8

4.2.1 Data collection . 8
4.2.2 Data interpolation . 9
4.2.3 Wind triangle . 9

4.3 Flight Phases . 10
4.3.1 Climb . 10
4.3.2 Descent . 11
4.3.3 Cruise . 11

4.4 Routes building . 11
4.5 Aircraft model . 11
4.6 All in one place . 12

5 RL Agents 14
5.1 Q Table . 14

5.1.1 State space . 14
5.1.2 Action space . 14

5.2 Deep Q-Networks . 14
5.2.1 Experience Replay . 16
5.2.2 Double Deep Q-Networks . 16
5.2.3 Dueling DQN . 16
5.2.4 Invalid actions . 17

v

5.3 Policy Gradient algorithms . 18
5.3.1 REINFORCE . 19

5.4 Actor Critic . 19

6 Results 21
6.1 Training . 21

6.1.1 Q Table . 21
6.1.2 DQN . 22
6.1.3 DQN-F . 23
6.1.4 A2C . 23
6.1.5 Compare Results . 23

6.2 Dynamic Environment . 26

7 Conclusions and Future work 29

Bibliography 30

vi

List of Figures

3.1 PDB inputs and outputs. Taken from [1] 5
3.2 Performance parameter in OpenAP kinematic model. It was taken

from [6] . 6

4.1 GDPS on a 25 km full-resolution Lat-Lon grid. Taken from [5] 9
4.2 Wind interpolation. It wsa taken from [1] 9
4.3 Wind Triangle . 10
4.4 Alternative Trajectories . 12
4.5 Fuel Flow kg/s . 12

5.1 Training Process. This was taken from [10] 15
5.2 Training Process. This was taken from [10] 16
5.3 DQN-F Frontier loss training process (taken from [7]) 18
5.4 Actor Critic algorithm. This was taken from [12] 20
5.5 A2C distributed environments. This was taken from [8] 20

6.1 Fuel consumption comparing . 21
6.2 DQN family Training . 22
6.3 DQN-F Training . 23
6.4 Fuel consumption comparing . 24
6.5 Greedy trajectory . 24
6.6 Solver Trajectory . 24
6.7 Q Table trajectory . 25
6.8 Greedy trajectory . 25
6.9 Weather Conditions. This is taken from [3] 26
6.10 Available Altitudes . 27
6.11 Comparison of dynamic environment 28

vii

List of Abbreviations

RL Reinforcement Learning
DL Deep Learning
DRL Deep Reinforcement learning
DQN Deep Q Networks
DDQN Double Deep Q Networks
TD Temporal Difference
CNN Convolutional Neural Network
ANN Artificial Neural Network
IAS Indicated Air Speed
TAS True Air Speed
TOP Top Of Climb
TOD Top Of Descent
WAS Wind Correction Angle
CWA Course Wind Angle

viii

Dedicated to my loving parents, grandmother, and brother

1

Chapter 1

Introduction

1.1 Motivation

The Wright brothers did the first powered flight on December 17, 1903. Approxi-
mately 17 years after this, the flight center was created. Since then, flight manage-
ment tasks have appeared. Route planning problem is one of them, and besides of
modern world of innovation, technologies it is not perfect. The ones of the lead-
ing flight planning problems are reducing the fuel consumption and compliance of
flights with Air Traffic Control requirements. Air Traffic Control service monitors the
safety of the flight. It controls air traffic, weather conditions, etc. Many researchers
have been looking for different solutions for this task for years. Some of them are
trying to solve it with genetic algorithm [1], and some of them treat flight planning
as a graph-based problem [2]. These approaches are not perfect; if some can find the
solution close to optimal, they require a lot of computing resources and time. That’s
why such kinds of problems are still open to fresh approaches.

The main problems with such existing approaches are that they are defined for
static environment. It means, that all the weather conditions and winds are predicted
beforehand. But they are not always precise, so, if they change while flight, the
algorithm will recalculate optimal solution. That’s why we propose RL approach.
It can describe the actions even if the weather conditions will change. The goal of
this project is to train RL agents on static environment, compare results with other
approaches, and check the performance on the dynamic one.

1.2 Project Structure

The second chapter describes the main concepts of RL and its broad base. The third
one represents the main approaches related to this problem and the paper that can
help build the environment. The fourth chapter is about environment building, and
the next one describes the RL agents that are used for this work. After that, the
results are described and represented in visualizations. The last chapter represents
the conclusions and next steps of this problem.

2

Chapter 2

Background Information

2.1 RL basics

Reinforcement Learning is one of the main areas of Machine Learning. It is about
the agent interacting with the environment that it knows nothing about by tries and
errors. The agent is trying to influence the environment by doing actions, and the
environment gives feedback for this. The goal of RL algorithms is to teach an agent
to do such actions that maximize cumulative reward. It is similar to how human
beings learn to do something. Several main elements belong to the reinforcement
learning system:

MDP can formalize such kinds of problems. MDPs are a classical formalization
of sequential decision-making. In this process, actions can be influenced not only by
current rewards but also by subsequent situations. Thus it can be used to maximize
the cumulative reward – the main goal of RL algorithms. The decision-maker is
called an agent, and the thing that it interacts with is called the environment.

The RL algorithms have some basic concepts that they can manipulate:

• State: is a description of the state of the environment. For example, it can be
the location of chess pieces on the board, or it can be an RGB image of the
game.

• Action Space: is a set of actions that an agent can do. Action space can be
discrete or continuous. For example, discrete space can be the movements of a
character in some games; continuous space can describe the robot’s control in
the physical world.

• Policy: is a function or rule that helps an agent to decide what action to do
being in a certain state. A policy can be deterministic or stochastic. The de-
terministic policy defines what action an agent should do, being in a specific
state, while the stochastic policy returns the probability of taking action given
the state.

• Reward, reward function: reward function takes as arguments the current
state and some action from action space and returns a numerical value called
reward. This value is feedback from the environment to do some action given
state. This feedback can be good, bad, or neutral. Maximization of cumulative
reward is the goal of RL algorithms, so the design of this function is one of the
core principles of projecting RL solutions. For example, in chess, we can design
our reward function in such a way that for taking opponent’s pieces, we get a
positive reward and a bad - one for losing our own ones. But the main task of
a chess game is to get to mate. So, we need to assign a much bigger reward for
checkmate.

Chapter 2. Background Information 3

2.2 MDP

As it was said in the previous section, in RL environment the agent makes some
action at, being in certain state st and it moves to next state st+1. Such process can
be called transition function. The general transition can be written by following
expression [12]:

st+1 ∼ P(st+1|(s0, a0), ..., (st, at))

This means that when the agent is in state st next state st+1 can be sampled with
some probability distribution. As we can see, this transition depends on all previ-
ous state-action pairs that the agent has experienced. This makes the environment
complicated and not practical, so we assume that this transition depends only on the
current state-action pair:

st+1 ∼ P(st+1|(st, at))

With such assumption that is called Markov Property the transition function turns
into MDP. To finally formulate MDP as RL problem we introduce 4-tuple S (set
space), A (action space), R(st, at, st+1) (reward function), P(st+1|st, at) (transition
probability). Also, as it was said in previous section, the main goal of RL approaches
is to maximize cumulative reward. So we define it the next way:

R((s0, a0, s1), ..., (sN−1, aN−1, sN)) =
N

∑
t=0

γtrt

γ ∈ [0, 1] is called the discount factor, and it is a very important thing in RL. It
shows that the reward of current state action is more important than the reward that
the agent gets in the future. It is also can be possible that we have an infinite number
of episodes, so if we set γ < 1, then the sum will be bounded anyway, so it is also
helpful for math.

2.3 Value-Based Algorithms

Value-Based algorithms estimate state-action pair using value functions: V(s) and
Q(s, a). The task of an agent is to learn such functions. These functions are used
to define the policy, which means that the agent will choose action with the help of
these functions. We can define these functions as the expectation of the cumulative
discount reward. See formulas [9]:

Vπ(s) = Es0=s,τ∼π(
N

∑
t=0

γtrt)

Qπ(s, a) = Es0=s,a0=a,τ∼π(
N

∑
t=0

γtrt)

In the case of V(s) value function tells the agent how good it is to be in the state V(s)
under the policy π, and the Q(s, a) defines the value of taking action a being in state
s under policy π

2.3.1 TD Learning

Now we need to somehow estimate these values. This can be done by TD Learn-
ing. The TD learning algorithm is one of the fundamental algorithms of RL. In TD

Chapter 2. Background Information 4

learning, we update the value function using previous and current states:

V(st) = V(st) + α(rt + γV(st+1)− V(st))

Where α is the learning rate, important for function convergence. In this case, we
estimate value function, and such approach is called TD prediction.

2.3.2 Q Learning

TD prediction is used for estimation value function, but the approach to optimizing
it is called TD control. One of the algorithms of TD control is called Q-Learning -
it is an off-policy RL algorithm and one of the most famous approaches for agent
learning at all. As its name says, it is based on optimizing Q-function. The rule for
updating is defined:

Q(st, at) = Q(st, at) + α(rt + γ max
a

Q(st+1, a)− Q(st, at))

There is also one thing that should be mentioned. When the agent selects an ac-
tion, he chooses the best action due to policy. It does not always provide the optimal
result. Here is why we need such a thing as an exploration-exploitation trade-off.
When the agent always takes maximum values, he can never find some solution
that can be optimal since the policy does not tell the agent to do this. If it takes a lot
of exploration, it can waste a lot of time doing unnecessary things. That is why we
need to balance these two concepts.

One of the approaches for solving this problem is ϵ-greedy algorithm. It intro-
duces some variable ϵ that is the probability of making random actions. In most
cases, we first set this value to 1 so that the agent can explore more new actions.
And after every step, we reduce it by some rule so that the agent can do more explo-
ration and not forget about exploitation.

We can define a general Q-Learning algorithm with ϵ-greedy policy:

Algorithm 1: Q Learning
Result: Write here the result
InitializeQ(s, a) f oralls ∈ S, a ∈ A;
for each episode do

Init S;
for each step in episodes do

Select A due to epsilone greedy policy;
observe R, Snext;
Q(S, A) = Q(S, A) + α(R + γ maxa Q(Snext, a)− Q(S, A));
S = Snext;
if S is terminal then

go to next episode;
end

end
end

5

Chapter 3

Related Works

3.1 OpenAP

OpenAP is an open-source aircraft performance model for air transportation studies
and simulations [11]. In order to build the environment of considered problem we
need to know the fuel consumption. Many works that suggest different approaches
to solve such kinds of problems use PDB – numeric model of each aircraft. The exam-
ple of PDB input and outputs for Airbus A310 is on Figure 3.1 The main parameter

FIGURE 3.1: PDB inputs and outputs. Taken from [1]

we need is fuel flow for the cruise since our goal is to optimize fuel consumption.
The main problem with this is that it is not open source.

OpenAP helps with this problem. There are four main components in the Ope-
nAP Model: aircraft and engine properties, kinematic performances, dynamic per-
formances, and utility libraries. There is also an open-source library written in
Python that includes all the components and features noted in the paper.

• Aircraft and engine properties. This component includes main aircraft and
engine parameters that can be used for calculating values in the environment.
OpenAP library includes a database that contains approximately 25 different
types of aircraft and around 400 different engines.

Chapter 3. Related Works 6

• Kinematic model. The library also contains a kinematic performance database,
where data is collected using a data-driven approach. It divides flight into
7 phases: Takeoff, initial climb, cruise, descent, final approach, and landing.
Deals with parameters such as aircraft speed, altitude, distances, etc. It can be
essential since it provides us with useful parameters of speed. See Figure 3.2.
Especially cruise altitude and Mach number ranges. These parameters will be
used in environment building.

• Dynamic Performance. The dynamic performance components is needed ma-
nipulation with such parameters as forces and mass. The authors emphasize
that the main challenge of constructing dynamic models is the lack of open
data. OpenAP accomplishes the goal by using models from the literature and
available flight data [11]. This component may be the most important because
it can calculate the fuel flow, and using it, we can find fuel consumption.

• Utility library. A utility library is quite a nice feature. It includes a flight phase
library, aeronautical calculations, navigation database, etc. It is not used in this
work.

FIGURE 3.2: Performance parameter in OpenAP kinematic model. It
was taken from [6]

3.2 Aircraft Profile Optimization using Genetic Algorithms

The Aircraft Profile Optimization problem can be described as a Non-Linear Con-
strained Optimization problem - the problem where the objective function or some

Chapter 3. Related Works 7

of the constraints are non-linear. In such problem, the main purpose is to select such
decision variables from feasible region x1, x2, x3 for the purpose of maximizing or
minimizing objective function:

f (x1, x2, ..., xn)

Feasible regions can be limited by the set of constraints. So, we can formalize this
problem:

Maximize/Minimize f (x1, x2, ..., xn)

due to constraints:
c1(x1, x2, ..., xn) ≤ b1

...

cn(x1, x2, ..., xn) ≤ bn

Among such works, the authors in the paper [1] are optimizing both horizontal and
vertical profiles. Generally speaking, they define objective function as a function
of fuel consumption. In that case, decision variables are speed, altitude, current
trajectory, etc. And the constraints can be the altitude boundaries and arrival time.

Some values can be discrete, like chosen trajectory or altitude step. In this case,
we have a Mixed-Integer Non-Linear Constrained Optimization problem. There are
a lot of approaches for solving such kinds of problems, and one of them is a genetic
algorithm. It is a search heuristic that is routinely used to generate useful solutions
to optimization and search problems [6]. It takes inspiration from natural evolution,
and it uses such techniques as crossover, mutation, selection, and inheritance. It is a
general algorithm for finding global optimum, so it also can solve the Mixed-Integer
Non-Linear Constrained Optimization problem.

8

Chapter 4

Environment Building

4.1 Airspeed

Before building an aircraft model, we need to understand some concepts.

• Altitude is the vertical distance of the aircraft from sea level.

• True Air Speed (TAS) is the actual speed of aircraft relative to the air. And this
measure is exactly what we need to calculate travel time and fuel consumption.
This value can be calculated in different ways, using other types of speed.

• Indicated Airspeed (IAS) is measured from outside air pressure using a pitot
tube. And we can calculate TAS from IAS. One of the main problems of esti-
mating TAS using IAS is that air has a lower density at higher altitudes. There-
fore, EAS is not close to TAS there, and that’s where Mach number comes for
help.

• Mach number is the ratio of TAS due to the speed of sound.

• Ground speed is the measure that we directly use to calculate the flight time.
Ground speed is true Airspeed with the influence of winds.

• Crossover altitude is the altitude where TAS calculated from IAS and TAS cal-
culated from Mach number are equal. It is needed in our work because we
use IAS to calculate TAS at altitudes less than crossover one and Mach number
high than the crossover altitude.

4.2 Wind Model

The next thing that we should care about is the wind model since winds affect hor-
izontal speed and, indirectly - fuel flow. Therefore in our case, travel time and fuel
consumption depend on them.

4.2.1 Data collection

In this work we use weather real-time predictions collected from Global Determinis-
tic Forecast System (GDPS) [5]. It is dataset on 1500x751 latitude-longitude grid, see
Figure 4.1. There is data for ten days forecast with a period of 3 hours. There is avail-
able information about the atmosphere on 28 isobaric levels from 1015 to 50 that we
can convert to altitude. There is also included information about wind magnitude
and direction.

Chapter 4. Environment Building 9

FIGURE 4.1: GDPS on a 25 km full-resolution Lat-Lon grid. Taken
from [5]

4.2.2 Data interpolation

Wind data is available on only certain points, but we may have a need to get wind
speed that is located between two available points. This problem can be solved by
interpolation. The wind direction and magnitude is interpolated between every two
consecutive waypoints and also between two related altitudes where wind data is
available. The idea is quite similar to the one that is used in [1]. See Figure 4.2

FIGURE 4.2: Wind interpolation. It wsa taken from [1]

4.2.3 Wind triangle

We consider groundspeed to be horizontal speed. Let’s check the way to extract
groundspeed from TAS and wind speed. It can be done using a wind triangle. One
can see the general idea in the Figure 4.3

From [1] we have:

−−−−−−−−→
Groundspeed =

−−→
TAS +

−−−−−−→
Windspeed

CWA is the angle between course and wind direction, that can be found by sub-

Chapter 4. Environment Building 10

FIGURE 4.3: Wind Triangle

tracting one from another:

CWA = Course − Winddirection

WCA is the TAS shift in the influence of winds. To find it, we can use the Law of
sines:

sin WCA

|
−−−−−−→
Windspeed|

=
sin CWA

|−−→TAS|
Therefore,

WCA = arcsin

(
sin |

−−−−−−→
Windspeed|

|−−→TAS| sin CWA

)
Finally, we can find Groundspeed using the cosine theorem:

∥Groundspeed∥2 = ∥TAS∥2 + ∥Windspeed∥2−
− 2∥TAS∥ · ∥Windspeed∥ · cos (180◦ − WCA − CWA) .

4.3 Flight Phases

The flight in the environment that we consider is divided into three phases: climb,
cruise, and descent.

4.3.1 Climb

The climb phase is started when the airplane reaches an altitude of 10000ft at a con-
stant speed. After that, it accelerates to some TAS that is calculated from IAS. In this

Chapter 4. Environment Building 11

case, IAS is a parameter that can be optimized. After that, it reaches crossover alti-
tude where TAS given from IAS and from Mach number are equal. After that TAS is
constant and calculated from Mach number up to the point that indicates the end of
this phase called TOC.

4.3.2 Descent

The point of beginning the descent is called top of descent. And the logic of this
is the opposite to climb. First airplane descents to crossover altitude at constant
Mach number, then it accelerates from some IAS to the certain speed that was on the
beginning of climb.

4.3.3 Cruise

Cruise is usually the longest flight phase, and it is the main part that should be
optimized. This phase begins in the top of climb and end at the top of descent, and
it is divided into some waypoints, each of which is a position expressed by latitude
and longitude (Figure 4.4). As we can see, there are five possible routes for aircraft,
and the red line is the one possible trajectory of aircraft flight. The trajectory is one
of the parameters that should be optimized. It seems the trajectory built on only
middle points is the most optimal, but due to the influence of winds and weather
conditions, it is not always true. Also, there are two more parameters that can be
optimized: the altitude where the aircraft is located and Mach number.

4.4 Routes building

The first step of building routes is to construct waypoints over the geodesic line.
A geodesic line – is the shortest path between two points on Earth, and then we
build a constant number of waypoints that lies on these lines and have the same
distance between them. Then we build n almost parallel trajectories from each side.
The waypoints of alternative trajectories can be found by doing the following: We
take the point at from the waypoints of the geodesic line. Find bearing between this
point and the last waypoint (TOD). The absolute difference between found bearing
and the bearing between at and a′t should be 90 degrees, so we add to that bearing
b 90 and 270 degrees b′ to find waypoints from both sides. We can calculate latitude
and longitude given old waypoint, bearing, and angle distance d between waypoints
by the following formula:

at = (Lat, Lon), a′t = (Lat′, Lon′)

Lat′ = arcsin(sin(Lat) cos(d) + cos(Lat) sin(d)) cos(b′)

Lon′ = Lon + arctan 2(sin(b′) sin(d) cos(Lat), cos(d)− sin(Lat) sin(Lat′))

Distance is a certain constant number that allows to calculate two new waypoints
from both sides. In the figure 4.4 the red trajectory is the geodesic line, and the other
four are generated alternative trajectories.

4.5 Aircraft model

As it was written before, in order to build aircraft model we need to use something
like PDB. For this purposes we used OpenAP. It provides us with all the necessary

Chapter 4. Environment Building 12

FIGURE 4.4: Alternative Trajectories

information that we can use to build an aircraft performance model for our environ-
ment. The main things that we should extract from it are speed, altitude range, and
fuel flow. In our case, fuel flow is the amount of fuel burnt in a period of time, and it
is measured in kilograms per second, and it depends on TAS, current altitude, and
airplane weight. In this work, we set airplane weight to a constant number, so we
get the following function:

FF(TAS, altitude)

In Figure 4.5 one can see how the fuel flow of Airbus210 at a constant weight of

FIGURE 4.5: Fuel Flow kg/s

30000kg depends on TAS and altitude. To decrease fuel flow, we should decrease
TAS and increase altitude. So, the optimal solution is being on the highest altitude
and with the lowest TAS, but it doesn’t always minimize the fuel consumption be-
cause the highest altitude is not always available due to weather conditions. Also,
TAS depends on winds and it is possible that winds at the lowest and the highest
altitude have big magnitude, but at the lowest one its direction coincides with the
aircraft course, and at the highest one - on the contrary. That is why it can be better
for aircraft to choose the lowest altitude.

4.6 All in one place

To build an environment, we need to define three things: state space, action space,
and reward function. We consider only the cruise phase of flight because it is the
longest one, and the most fuel is burnt during this phase. Also, the parameters that
can be optimized on other phases are different from the ones from the cruise, and it
can be complicated to build a general algorithm to handle all the phases.

Chapter 4. Environment Building 13

In general case, state is the location of the aircraft, and it is expressed by the
current waypoint and altitude. The current waypoint is the latitude and longitude
of the aircraft, which means that we have a 3-dimentional state.

The actions that aircraft can do located in a certain state is to choose one of five
next waypoints (trajectory), choose Mach number and the altitude step (for example,
aircraft can do climb into 1000ft or 2000ft; or descent in the same value, and also
altitude can remain unchanged.

The reward that the agent can get should be related to fuel consumption. The
cumulative reward should display fuel consumption during flight. First, we need to
find TAS, then we can find groundspeed using TAS and winds direction and mag-
nitude in the current waypoint. The next step is to calculate fuel. Finally, we find
the distance between the current waypoint and the previous and calculate time for it
using groundspeed. The reward is fuel flow multiplied by travelling time from one
waypoint to another. We add some positive constant to its value to avoid negative
values, because some algorithms cannot handle them. Also, we should give small
reward if the agent extends beyond the altitude limits and if it arrives to final point
at a not exact time.

14

Chapter 5

RL Agents

5.1 Q Table

Q-Table algorithm is a tabular representation of Q-Learning approach. This algo-
rithm works with discrete action and space, that is why before using it we need to
define our state and actions to feed them to Q-Table.

5.1.1 State space

As it was mentioned before our state space consists of waypoint and altitude. We
can define our waypoint as a tuple of trajectory index and the point index. Assume
that we have five different trajectories and nine waypoints in each. Altitude space is
defined within minimum cruise altitude and maximum one. For making it possible
to run ass a table, we need to divide this range into n values. For example, if we
have the altitude range [10000ft, 40000ft] we can divide it into 40 values with step
1000ft and we will have the values: [10000ft, 11000ft, ..., 40000ft]. In that case, our
state-space will contain 40x5x9 = 1800 values.

5.1.2 Action space

The action space of our environment is defined by tuple (Mach Number, Altitude
Step, trajectory). We need to descretize our mach number in the same manner that
we did with altitude. For example, if we have mach number within range [0.75, 0.8]
we can divide it into 5 values with step 0.01. Since we have 5 different trajectories,
5 different altitude steps and 5 values of mach number, the action space will contain
5x5x5 = 125 values.

5.2 Deep Q-Networks

Q-Table requires states to be discrete, but what to do with continuous ones? For
such a case we need to use Deep Q-Networks. The main idea of this an algorithm is
similar to Q-Table. It is also an off-policy value-based TD algorithm, and updating
the Q value has similar logic. But instead of directly calculating it, this algorithm
approximates it using ANN:

Q∗(St, At) ≈ Q(St, At; θ)

where θ is parameter (weights) of ANN. The loss function for such ANN training
looks the following way:

L(θ) = (yi − Q(s, a; θ))2

Chapter 5. RL Agents 15

where
yi = R + γ max

a′
Q(s′, a′; θ).

It makes RL more similar to a supervised learning problem, but in such kinds of
problems, we can deal with a full dataset with additional preprocessing and shuf-
fling. Shuffling is one of the main steps because, in such a way, we allow our opti-
mization method to avoid developing overfiting biases; reduce the variance of the
training process, speed up convergence, and overall learn a more general represen-
tation of the underlying data-generating process [10]. But in RL, full dataset is not
fully collected for training. The data (Rt, St, At, St+1) is constantly gathered, so the
nearby samples can be correlated.

The other problem with such kind of training is that targets are moving with
every training step, because we change value function, and it can negatively affect
the training process. In supervised learning, we always have fixed targets. The idea
of avoiding this problem is to introduce the target network:

Q(s, a; θ′)

It has the same architecture and is initialized with the same weights as a model that
we will optimize (current network). This network will be used in the training pro-
cess with frozen parameters, and after some training steps, its weights will be up-
dated by copying the weights of the current network. The difference in convergence
one can see in the Figure 5.1.

FIGURE 5.1: Training Process. This was taken from [10]

The step of updating the target network can vary due to the problem, and it is a
hyperparameter that must be tuned.

Chapter 5. RL Agents 16

5.2.1 Experience Replay

The one possible solution of solving the correlation between data samples is to build
an experience replay buffer. It is some data structure that stores played samples in
memory. It also has limited memory. For example, it can hold only 1000 or 20000
samples. This buffer can gather data:

(R2, S1, A1, S2), (R3, S2, A2, S3), . . . , (Rt+1, St, At, St+1)

and it allows to sample random mini-batches for model to train. The method reduces
the correlation between samples, and the target can be moved slower than better
convergence. The overall algorithm with experience buffer is illustrated on 5.2

FIGURE 5.2: Training Process. This was taken from [10]

5.2.2 Double Deep Q-Networks

There is a paper [4] where the author has shown that Q-values will cause positively
biased results of maxa Q(s′, a; θ) if Q(s′, a′; θ) contains any errors. There are many
reasons of such errors: function approximation using neural networks is not perfect,
an agent may not fully explore the environment, and the environment itself may be
noisy. [9] So, we can make an improvement of it by following updating rule:

Qtarget(st, at) = r + γQ(st+1, max
a

Q(st+1, a))

5.2.3 Dueling DQN

Another improvement of the DQN algorithm is Dueling DQN. This approach affects
only ANN architecture. The algorithm and Q-values updating are the same as in
DQN. The idea of such approach is to connect Q-function to value function V(s)
and action-advantage function A(s, a) by summing it:

Q(s, a) = V(s) + A(s, a)

In the case of learning only Q-value, we learn different values for different state-
action pairs: Q(s1, a1), Q(s1, a2), ..., Q(s1, at) etc. But as you can see in that sequence,
we have the same state s1, so the idea of such an approach is that instead of learning
only the function that depends on state-action, we also learn the value function that
is common to all actions V(s).

Chapter 5. RL Agents 17

The idea of Dueling DQN architecture is to use shared and separated layers for
value and advantage. For example, if the state is an image, we should use CNN,
we can make the convolutional layer shared and build two different fully-connected
layers for both estimators: value and advantage.

The motivation of the dueling architecture is to create a new network that im-
proves on the previous network but without having to change the underlying con-
trol method. [10]

Finally, Q-value can be computed by following formula:

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α)− 1
|A| ∑

a′
A(s, a′; θ, α)

Where θ stands for weights shared layer, α and β stand for advantage and value
layers respectively. For stabilisation of learning process, we shift our Q-value in a
way of subtracting mean of advantage of all actions.

5.2.4 Invalid actions

One of the main problems of training DQN and its improvements is invalid actions.
It is the actions that we shouldn’t do at all. In our case, we can call the action invalid
if the aircraft goes beyond the allowed altitudes. It is what we want to forbid our
agent from doing it. There are some possible approaches to avoiding such actions.

The first one is to give the agent a very small reward for these actions. It is
acceptable to approach methods when we don’t use function approximation. But
there is a problem with this approach when we work with DRL. As [7] states, it has a
hard time training the forbidden actions. The agent will require a lot of transitions to
set small Q values to invalid actions, and it will take time instead to explore the valid,
valuable samples, which are very useful for the agent to perform more optimally.

The second approach is not sampling from the forbidden actions and setting the
Q-values of such ones to small values. This way can be acceptable in many cases,
but there are also some problems with it. First, we need to check all actions every
time we are sampling to avoid forbidden ones, and this can take time. The second
problem is that we are trying to change the output of value functions manually, and
the agent cannot understand and learn which actions are forbidden and which are
not.

The third approach is introducing Frontier Loss. This way of solving DQN prob-
lem with forbidden actions was suggested in the paper [7]. The authors add a feed-
back function F to transition tuple - (St, At, Rt+1, St+1, F). F is a function that takes
state and action as arguments and returns 0 if the action is valid and 1 otherwise.
The loss function is based on the assumption that an agent can never make illegal
decisions following the optimal policy. The rule is the following: for every state
encountered during training, the Q-values of all forbidden actions should be below
one of each valid action, within a certain margin m. Margin is the hyperparameter
that should be chosen according to the reward function.[7] The loss that describes
this rule is following:

JF(θ) = Q(s, ainvalid)− min
avalid

(Q(s, a)− m)

And it is called Frontier Loss. The algorithm that includes such loss is called DQN-F
and train networks due to following loss function:

J(Q) = λ1 JDQN(Q) + λ2 JF(Q)

Chapter 5. RL Agents 18

Where JDQN is the standard DQN loss and λ1 and λ2 are the weights for the losses
and are hyperparameters. The Frontier Loss training process can be seen in the Fig-
ure 5.3. Such an approach directly puts Q-values of forbidden actions below valid

FIGURE 5.3: DQN-F Frontier loss training process (taken from [7])

ones.

5.3 Policy Gradient algorithms

This section in mostly based on [9]. The previous methods were based on value
functions, and policies were built using them. The policy gradient methods use
parameterized policy, and the action is selected by using it, that can be written in the
following way:

π(a|s, θ) = P(At = a|St = s, θ)

That means that such policy describes the probability of doing some action, being
in a certain state. The goal of RL algorithm is to maximize cumulative reward. We
need to train such policy that can achieve this. Objective function can be defined as:

J(πθ) = Eτ∼πθ
(

N

∑
t=0

γtrt)

and then we define policy gradient rule:

max
θ

J(πθ) = Eτ∼πθ
(

N

∑
t=0

γtrt)

These methods are concentrated of maximizing agent performance. The updating
rule looks like gradient ascent:

θt+1 = θt + α∇J(θt)

where ∇J(θt) is the policy gradient, and it is defined:

∇θ J(θt) = Eτ∼πθ
(

N

∑
t=0

γtrt∇θ log πθ(at|st))

Chapter 5. RL Agents 19

We can define policy function with respect to weights in any way. In most cases,
the policy function uses soft-max distribution so that the actions with the highest
values can have higher probabilities and the actions with the lowest - on the contrary.
Gradient ascent looks like:

π(a|s, θ) =
exph(s,a,θ)

∑b eh(s,b,θ)

This allows the agent to perform an action with a certain probability with respect to
policy. One of the advantages of policy gradient methods over value-based approach
is that we are training the model using a gradient with respect to stochastic policy
nature, which means better convergence since the action is changed smoothly, unlike
when we are taking a maximum of value functions. Another advantage is despite
the fact that the policy is stochastic, we can easily make it deterministic.

5.3.1 REINFORCE

REINFORCE is one of the policy gradient RL algorithms and it considers to be the
fundamental one. As I have mentioned before the policy gradient methods use gra-
dient ascent for weights updating, but REINFORCE express loss function as gradient
descent:

θt+1 = θt + αA(s, a)∇θ log π(a|s; θ)

5.4 Actor Critic

Actor-Critic algorithms combine policy gradient and value function. Such approaches
contain two components: Actor and Critic. Actor is doing actions (it is expressed as
parameterized policy), and Critic estimates them (that’s how value function works).
These components are learned together. The idea of such an algorithm is that the
reward value can give less information than the value function. The policy gradient
of Actor is quite similar to one from REINFORCE:

∇θ J(θt) = Eτ∼πθ
(Aπ

t ∇θ log πθ(at|st))

where A(s, a) is an advantage function that was used in Dueling DQN. It can be
found by subtracting V(s) from Q(s, a):

A(s, a) = Q(s, a)− V(s)

And the Critic is used for finding A(s, a) The general algorithm of Actor-Critic is
defined by the following way 5.4

As we can see from the algorithm, this approach is collecting data before training,
that allows making parallel environments for this. See Figure 5.5

Chapter 5. RL Agents 20

FIGURE 5.4: Actor Critic algorithm. This was taken from [12]

FIGURE 5.5: A2C distributed environments. This was taken from [8]

21

Chapter 6

Results

The environment and all described algorithms were implemented in Python pro-
gramming language use PyTorch - framework for dealing with ANN. The route from
which it was trained was Montreal to Toronto. The route was divided into 9 way-
points, and it has 5 alternative trajectories. The idea of choosing such parameters in
environment building is because the [1] uses the same ones, so it was easier to com-
pare with it. As it was said, such kinds of problems are generally solved by genetic
algorithms. To find the optimal solution and compare results with RL approaches,
we used an open-source scipy optimizer [13] that uses the genetic algorithm [1] It
will be also compared with greedy agents.

The main goal is that the agent should perform a solution close to the optimal
one from scipy and that it should perform better then greedy agent.

6.1 Training

In this section we will show the results of testing different approaches that were
described in previous sections.

6.1.1 Q Table

FIGURE 6.1: Fuel consumption comparing

Chapter 6. Results 22

As we can see on Figure 6.1, the learning process of Q-Table is quite successful.
On the y-axes, we have the inverse value of episodic fuel consumption. Since reward
function is related to fuel consumption by adding a constant to it, the shape of the
reward is the same, but the fuel consumption plot was used because it gives more
clear values. This approach avoids forbidden action by setting q values to 0. This
approach doesn’t take a lot of time to train. The agent is training almost perfectly, but
there is a problem with this approach that it depends on the dimension of state space
since we have a tabular representation of such values. With increasing waypoints or
trajectories or discretizing steps, this table will be much larger and take up a lot of
space in memory. Also, we cannot complicate the environment by adding weather
conditions to the state or something like that in future work. That’s why we need
DL approaches that handle continuous space.

6.1.2 DQN

Another tested approach is DQN and its improvements. The architecture network
of DQN and DDQN has two hidden layers with 128 and 64 neurons with activation
function tangent.

Dueling DQN has architecture as value with one hidden layer with 64 neurons
and an advantage with hidden layer of 128 and 64 neurons. The activation function
is tangent. They are considered in one section since their training process is quite
similar. To avoid forbidden actions, we sample from only valid ones when taking
random action and set Q-value 0 when we follow policy. We use the target model
and update it every 15 steps. The smoothed training process of these approaches can
be found in Figure: 6.2. The DQN and DDQN show almost the same performance,

FIGURE 6.2: DQN family Training

but Dueling DQN is worse than them. This performance overall is worse than Q-
Table because, in this case, we are using function approximation rather than directly
calculating Q-value, that cost more chance for error.

Chapter 6. Results 23

6.1.3 DQN-F

Another approach is called DQN-F. In this case, we let the agent do forbidden actions
so that he can learn to avoid them. We set the margin to 100 since we have quite a
big reward and the weight of the frontier loss of 0.3 so that it can pay more atten-
tion to finding the optimal solution. The smoothed training process is shown in the
Figure 6.3. This approach teaches to deal with forbidden actions, but it shows worse

FIGURE 6.3: DQN-F Training

performance in finding the optimal solution. The approach of just not to sampling
from invalid actions is better.

6.1.4 A2C

The next agent that was trained was A2C. For its training, we used three numbers
of parallel environments and a small learning rate. In the architecture of ANN, only
one shared hidden layer was used for both actor and critic with 32 neurons and an
activation function tangent.

You can see the process of training on the Figure: 6.4. It is learning pretty well
although it requires many episodes due to small learning rate. The performance of
this approach is similar to Q-Table.

6.1.5 Compare Results

The next step is to compare how every agent performs in a static flight path environ-
ment, including greedy agent and solver.

DQN DDQN Dueling DQN A2C QTable DQN-F Solver Greedy
8914.1 8788.6 9012.45 8688.71 8618.3 9838.04 8671.04 8829.62

Chapter 6. Results 24

FIGURE 6.4: Fuel consumption comparing

As you can see on the table Q-table showed the best result, and A2C is quite similar
to the solver and is better than greedy. DQN family has worse performance in this
environment because they are losing to greedy algorithm. If to compare the results
of Q-Table (since it showed the best results), Greedy agent, and Solver agent in a
static environment, the Mach number in all cases is almost the same. In the case of
Q-Table and Greedy agent, its value is 0.75 in all waypoints, but in solver agent, its
mean value is 0.75144. The trajectories of the agents you can see on Figures 6.7, 6.5
and 6.6.

FIGURE 6.5: Greedy trajectory

FIGURE 6.6: Solver Trajectory

Chapter 6. Results 25

FIGURE 6.7: Q Table trajectory

As can see, the trajectory of the greedy agent differs from the other ones. That
means that the routes in the trajectory in which in every step we get less fuel con-
sumption is not optimal, the solver agent and Q-Table are choosing such routes
where the cumulative fuel consumption is the lowest. Let’s now look at the alti-
tudes in Figure 6.8

FIGURE 6.8: Greedy trajectory

As it was said before, the lowest fuel flow is at the highest altitude, so the greedy
act in this way. In this case, the optimal altitude coincides with the greedy, which
means that Q-table also chooses the highest altitude. The solver may not choose
the highest one because of the numerical accuracy during calculation. In the case
of Mach number, we see that 0.75 seems to be optimal, but the solver has chosen
another one, and that could cause the selection of another altitude. That proves that
the solution is not perfectly optimal, but it is close to it. Even Q-table shows better
results. It doesn’t mean that there is no better solution. But it is still close to the
optimal one. Anyway, both solver’s and q table solutions are close to optimal, and

Chapter 6. Results 26

they are better than the greedy algorithm. To conclude, the main idea of the research
was proven.

6.2 Dynamic Environment

All the things that have been described before were related to a static environment.
That means that we need to know winds’ direction, magnitude and weather condi-
tions in advance and then, among all possible routes, find the optimal one. But the
initial idea of this project is to describe the environment that the agent can choose
paths in dynamic weather. Let’s take a look at general weather conditions and how
they can affect flight path planning.

The messages that describe such weather conditions are called AIRMET and SIG-
MET. An AIRMET is a message containing information issued by a meteorological
watch office concerning the occurrence or expected occurrence of specified en-route
weather phenomena that may affect the safety of low-level aircraft operations and
which was not already included in the forecast issued for low-level flights in the
flight information region concerned. [14]. SIGMET information is information is-
sued by a meteorological watch office concerning the occurrence or expected occur-
rence of specified en-route weather phenomena that may affect the safety of aircraft
operations [14]. These messages contain information about a thunderstorm, strong
winds, icing, turbulence, etc. Such a dangerous zone can be illustrated as polygons.
See Figure 6.9

FIGURE 6.9: Weather Conditions. This is taken from [3]

There is also information about their coordinates, speed, direction, and altitude.
The information about this thing is available on [3], but as far as it is real-time, and
it might be complicated to collect historical data. In our case, we can simulate these
zones by limiting altitude in some waypoints. We create a matrix 5x9 (5 trajectories,
9 waypoints) and fill it with maximum cruise altitude. After that, we randomly
choose the waypoints and fill them with a value from a uniform distribution of the
range between minimal and maximal cruise altitude (Figure 6.10). As we can see in
the four of five possible trajectories, and there are some altitudes that agent cannot
visit. Let’s randomly choose several such environments and check A2C, QTable and
Greedy agent on them (see Figure 6.11). In this case, Q-Table and A2C perform much

Chapter 6. Results 27

FIGURE 6.10: Available Altitudes

Chapter 6. Results 28

FIGURE 6.11: Comparison of dynamic environment

better than greedy one, that allows to conclude that RL approaches can show good
performance in dynamic weather environment.

29

Chapter 7

Conclusions and Future work

Although, there are many papers and different approaches to solving flight planning
problems, this task is still open to new interesting, and nonstandard ideas. As we
could see, RL shows quite good results, even compared with the nonlinear solver.
Even being trained in a static environment, it can perform quite well in the dynamic
one. It is a good step for solving flight planning problems with dynamic weather.

The problem with such approach is that RL agent does not see the overall state
of the weather. It just estimates the possible action being in certain states, and the
solution in such a case is not optimal. That is why we need DRL even if Q-Table
works well. The idea is to represent weather conditions, wind direction, and magni-
tude with some continuous state. It can be the image where the polygons are repre-
sented, and also to add to this state the direction, magnitude, etc. This approach is
more complicated and requires approaches that can work with the continuous state
like A2C, DQN, etc.

30

Bibliography

[1] Aircraft Flight Plan Optimization with Dynamic Weather and Airspace Constraints.
https://www.researchgate.net/publication/271014315_New_methods_
of_optimization_of_the_flight_profiles_for_performance_database-
modeled_aircraft.

[2] Aircraft Flight Plan Optimization with Dynamic Weather and Airspace Constraints.
https://core.ac.uk/download/pdf/334963344.pdf.

[3] Aviation Weather Center. https://www.aviationweather.gov/sigmet.

[4] Deep Reinforcement Learning with Double Q-learning. https://arxiv.org/abs/
1509.06461.

[5] GDPS data in GRIB2 format: 25 km. https://weather.gc.ca/grib/grib2_glb_
25km_e.html#variables.

[6] Genetic Algorithm – an Approach to Solve Global Optimization Problems. https:
//www.ijcse.com/docs/IJCSE10-01-03-29.pdf.

[7] I’m Sorry Dave, I’m Afraid I Can’t Do That Deep Q-Learning from Forbidden Ac-
tions. https://arxiv.org/pdf/1910.02078.pdf.

[8] Micheal Lanham. Hands-On Reinforcement Learning for Games. Packt Publish-
ing, 2020.

[9] Wah Loon Keng Laura Graesser. Foundations of Deep Reinforcement Learning, An
Introduction. Pearson Education, Inc., 2020.

[10] Miguel Morales. Deep Reinforcement Learning. Manning Publications Co., 2020.

[11] OpenAP: An Open-Source Aircraft Performance Model for Air Transportation Stud-
ies and Simulations. https://www.researchgate.net/publication/343163153_
OpenAP_An_Open-Source_Aircraft_Performance_Model_for_Air_Transportation_
Studies_and_Simulations.

[12] Andrew G. Barto Richard S. Sutton. Reinforcement Learning. An Introduction.
2nd ed. aa, 2018.

[13] Scipy, differential evolution. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.differential_evolution.html.

[14] Skylibrary. https://skybrary.aero/articles/airmet.

https://www.researchgate.net/publication/271014315_New_methods_of_optimization_of_the_flight_profiles_for_performance_database-modeled_aircraft
https://www.researchgate.net/publication/271014315_New_methods_of_optimization_of_the_flight_profiles_for_performance_database-modeled_aircraft
https://www.researchgate.net/publication/271014315_New_methods_of_optimization_of_the_flight_profiles_for_performance_database-modeled_aircraft
https://core.ac.uk/download/pdf/334963344.pdf
https://www.aviationweather.gov/sigmet
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461
https://weather.gc.ca/grib/grib2_glb_25km_e.html##variables
https://weather.gc.ca/grib/grib2_glb_25km_e.html##variables
https://www.ijcse.com/docs/IJCSE10-01-03-29.pdf
https://www.ijcse.com/docs/IJCSE10-01-03-29.pdf
https://arxiv.org/pdf/1910.02078.pdf
https://www.researchgate.net/publication/343163153_OpenAP_An_Open-Source_Aircraft_Performance_Model_for_Air_Transportation_Studies_and_Simulations
https://www.researchgate.net/publication/343163153_OpenAP_An_Open-Source_Aircraft_Performance_Model_for_Air_Transportation_Studies_and_Simulations
https://www.researchgate.net/publication/343163153_OpenAP_An_Open-Source_Aircraft_Performance_Model_for_Air_Transportation_Studies_and_Simulations
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://skybrary.aero/articles/airmet

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Project Structure

	Background Information
	RL basics
	MDP
	Value-Based Algorithms
	TD Learning
	Q Learning

	Related Works
	OpenAP
	Aircraft Profile Optimization using Genetic Algorithms

	Environment Building
	Airspeed
	Wind Model
	Data collection
	Data interpolation
	Wind triangle

	Flight Phases
	Climb
	Descent
	Cruise

	Routes building
	Aircraft model
	All in one place

	RL Agents
	Q Table
	State space
	Action space

	Deep Q-Networks
	Experience Replay
	Double Deep Q-Networks
	Dueling DQN
	Invalid actions

	Policy Gradient algorithms
	REINFORCE

	Actor Critic

	Results
	Training
	Q Table
	DQN
	DQN-F
	A2C
	Compare Results

	Dynamic Environment

	Conclusions and Future work
	Bibliography

