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“The whole point of taking pictures is so that you don’t have to explain things with words.”

Elliott Erwitt
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Abstract

The precise identification of location in urban areas is a challenging problem for
Global Navigation Satellite Systems (GNSS), such as GPS, because of obstacles that
include signal blockage, multipath interference, and urban canyons, among other
factors. This thesis proposes a structure-based visual localization pipeline that uses
a combination of Deep Neural Networks (DNNs) and traditional computer vision
algorithms to perform accurate localization by an image. Additionally, we provide a
collection of helpful tools for constructing a reference database for visual localization
that can be used with any city found on Google Maps. The proposed method was
evaluated on established visual localization benchmarks and produced competitive
outcomes.
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Chapter 1

Introduction

The capability to localize accurately is essential for many applications, such as au-
tonomous cars, delivery robots, and augmented and mixed reality. GPS, among
other GNSSs, such as Galileo, QZSS, or BeiDou, is the most adopted tool for accu-
rate localization. The working principle of GPS involves using signals from at least
three satellites to determine the receiver’s location on the Earth’s surface through the
triangulation procedure. Many factors negatively influence GPS’s accuracy, namely
atmospheric conditions, signal interference, and the insufficient number or bad po-
sitioning of satellites in the sky. Even though GPS has been shown to achieve high
levels of accuracy, with the typical horizontal error of 2–5 meters and vertical error
of 5–10 meters in open-spaced environments, its accuracy is significantly impacted
by urban environments due to the presence of tall buildings, narrow streets, and
other obstructions that can block signals or cause multipath interference. The ex-
perimental data on GPS localization errors in urban environments vary significantly
depending on particular research. Still, even the most optimistic estimates state hor-
izontal error to be around 7–13 meters [34].

FIGURE 1.1: Factors of GPS localization error

One of the possible solutions is to use visual localization pipelines that can lever-
age urban environment complexity to identify and track unique features and land-
marks that can be used to determine location accurately. Visual localization has the
potential to provide both outdoor and indoor localization that’s accurate up to a few
centimeters and degrees.
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In the case of (semi-)autonomous cars, the visual localization pipeline supplied
with the rich visual information provided by built-in cameras all around the vehicle
can help with navigation within the narrow streets in the city center. In AR applica-
tions, the visual localization pipeline determines the user’s position and orientation
relative to the real-world environment. This information is then used to overlay
digital content onto the real-world scene, creating an immersive AR experience.

In this work, we explore the most prominent approaches to visual localization
and evaluate their pros and cons to build the most suitable city-scale visual local-
ization pipeline. The main objective of this solution is to robustly and accurately
estimate camera position based on a single image and camera parameters that are
usually automatically attached to the image through EXIF. The proposed pipeline
is designed to enable flexibility and extensibility so that the growth of the reference
image database would not require a time- and cost-consuming retraining process. In
addition, we provide handy tools for collecting and processing geotagged datasets
for visual localization based on Google Street View API.
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Chapter 2

Technical background

2.1 Pinhole camera model

The pinhole camera model explains how the location of a point in three-dimensional
space relates mathematically to its projection onto the image plane of a pinhole cam-
era with no lenses and a single-point aperture.

FIGURE 2.1: Coordinate system of pinhole camera model

The position (uc
m, vc

m) of the projection of pc on the camera plane can be derived
from similar triangles visible from the side view figure:

uc
m = f

pc
x

pc
z

(2.1)

vc
m = f

pc
y

pc
z

(2.2)

where f is the focal length (in meters), and the subscript m denotes that (uc
m, vc

m)
are still expressed in meters. But the image coordinate frame typically has its origin
in the top-left corner of the image (see frame “I” in 2.1). Therefore, we can convert
(uc

m, vc
m) to pixels and change the reference frame as follows:

uI = sxuc
m + ox (2.3)
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vI = syvc
m + oy (2.4)

For convenience, the relation above can be written, by moving pc
z to the left-

hand-side and using a matrix notation as:

pc
z

 uI

vI

1

 =

K︷ ︸︸ ︷ sx f sθ f ox
0 sy f oy
0 0 1

 pc
x

pc
y

pc
z

 (2.5)

where:

• (ox, oy) is called the principal point;

• sx f is the focal length in horizontal pixels (sx number of horizontal pixels per
meter);

• sy f is the focal length in vertical pixels (sy number of vertical pixels per meter);

• sθ f is called the skew of the pixel (zero in most cases);

• K is called the intrinsic (calibration) matrix.

There are a couple of ways to obtain an intrinsic matrix:

• calibrate camera using one of many methods;

• calculate K based on the camera sensor information.

The first method is preferred whenever possible, but in many cases, one has no
access to a camera that took the photo. Still, a relatively good approximation of K
can be obtained using camera sensor information:

• ox = w/2;

• oy = h/2;

• sθ f = 0;

• sx f = w
2tan(FoVx/2) ;

• sy f = h
2tan(FoVy/2) .

When the point coordinates are given with respect to an external world frame w,
i.e., pw, it is straightforward to adapt 2.5 as:

pc
z

 uI

vI

1

 =

intrinsic calibration︷ ︸︸ ︷ sx f sθ f ox
0 sy f oy
0 0 1

 extrinsic calibration︷ ︸︸ ︷[
Rc

w tc
w

]
p̃w (2.6)

where:

•
[

Rc
w tc

w
]

is called the extrinsic (calibration) matrix;

• Rc
w 3x3 rotation matrix;

• tc
w 3x1 translation vector in meters;
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• p̃w is pw rewritten in homogeneous coordinates.

An important thing to note is that tc
w does not represent the camera’s position

in world coordinates, but rather describes the translation of the point in world co-
ordinate system to camera coordinate system, accounting for rotation Rc

w which is
applied first. The following formulas define the relation between translation tc

w and
camera position cc

w:

tc
w = −Rc

wcc
w (2.7)

cc
w = −(Rc

w)
Ttc

w (2.8)

2.2 Triangulation

Triangulation is the process of finding the position of a point in space given its po-
sition in two or more images taken with cameras with known calibration and pose.
This can be achieved by finding the intersection of at least two known rays. Those
rays are defined by camera matrices and 2D projections of the common 3D point in
each camera. In the absence of noise, this problem is trivial. Since it is not obvious
how to estimate the 3D position of the point from two skew rays, different methods
have been proposed.

FIGURE 2.2: Noisy data triangulation

Mainly they can be classified into three types:

• midpoint methods [6, 7, 55] that find the (weighted) midpoint of the common
perpendicular between the two rays;

• linear least squares methods [21];

• optimal methods that “minimally” correct the two rays to make them intersect
[21, 25].

Note that all these three types of methods produce solutions that minimize some
cost function; the (weighted) midpoint minimizes the (weighted) sum of squared
distances to each ray, linear least squares methods minimize the algebraic errors,
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and optimal methods minimize a cost function based on either image reprojection
errors or angular reprojection errors. The most common cost functions are the L1
norm (sum of magnitude), L2 norm (sum of squares), and L∞ norm (maximum) of
the reprojection errors [28].

2.3 PnP problem

Proposed by Fischler in the early 1980s, the Perspective-n-Point (PnP) problem had
the goal of estimating the position and orientation of a calibrated camera from known
3D-to-2D point correspondences between a 3D model and their image projection
[20]. Essentially this means the estimation of 3D rotation Rc

w (roll, pitch, and yaw)
and 3D translation tc

w that sums up to 6 DOF.

FIGURE 2.3: Camera pose estimation with PnP

There are several assumptions under which the problem is solved:

• camera intrinsic properties are already known (for most approaches);

• we cannot choose coplanar point correspondences;

Throughout all these years, many approaches and their variations have been pro-
posed. Those could be divided into the following groups:

• iterative methods formulate the PnP problem into a non-linear least-squares
problem [32] and then solve it using iterative optimization methods, i.e., Gauss–Newton
and Levenberg–Marquardt method;

• non-iterative methods, the traditional methods apply linear operations to ob-
tain solutions, i.e., the DLT, EPnP, RPnP, OPnP. Recently, the PnPf [37, 60] and
PnPfr [36] methods were proposed to solve the pose estimation problem in the
case of an uncalibrated camera. However, the accuracy of these methods is
usually lower than the classical PnP method.

More or less, all the PnP approaches are prone to errors if there are considerable
amounts of outliers in the set of point correspondences. In order to enhance the
solution in terms of outlier resilience without making the underlying algorithms
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more complex, the RANSAC procedure is to be incorporated. Recognizing this, we
should seek not only the most accurate method but enough computationally efficient
one since the underlying PnP solver is executed many times following the RANSAC
procedure.
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Chapter 3

Related Works

The estimation of camera pose using images by means of visual localization pipeline
is associated with many challenges, namely:

• changes in illumination;

• dynamic scenes with moving objects that might not have been present;

• drastic changes in the scene’s appearance;

• occlusion of the scene by an object or person;

• significant viewpoint changes.

Over the years, to address these challenges, the researchers’ community pro-
posed many approaches to visual localization. By ignoring minor differences and
implementation details, most of the methods fall under one of the following cate-
gories:

• structure-based;

• structure-based with image retrieval;

• scene point regression;

• absolute pose regression;

• pose interpolation;

• relative pose estimation.

The fact that the single problem has several solutions suggests that each method has
its pros and cons and should be applied after careful consideration of the particular
problem.

3.1 Structure-based approach

The structure-based approach is a traditional camera pose estimation method that
leverages a 3D reconstruction of a given environment. An image is localized within
an area using structural information of the 3D reconstruction.
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FIGURE 3.1: Overview of different methods of visual localization

3.1.1 Pixel correspondence estimation

The very first step of constructing a 3D map is finding the pixel-wise correspon-
dences across multiple available reference images. The process of generating those
correspondences consists of 3 stages:

• detection: identify the points of interest;

• description: the depiction of the nearby visual characteristics of each feature
point should (ideally) possess invariance to changes in illumination, transla-
tion, scale, and in-plane rotation.;

• matching: descriptors are compared across the images to identify similar fea-
tures.

Depending on the method, these stages can be isolated from each other or par-
tially/fully fused. Early methods used handcrafted local feature extractors such as
Harris Corner Detection or Shi-Tomasi Corner Detector and feature descriptors such
as HoG, BRIEF, and ORB. The next-generation algorithms like SIFT[31] and its vari-
ations, SURF[5], KAZE[2], AKAZE[1] mainly represent a fusion of detection and de-
scription stages. Those methods significantly improve robustness and remain base-
line options for many pipelines that rely on correspondences between images. Still,
such keypoint extractors-descriptors have several drawbacks, including that they
might be challenging to tune to the particularities of the target task. In particular,
changing conditions such as day-night and seasons of the year are such stumbling
blocks. Not to mention, the computation efficiency of SIFT-like algorithms often is
insufficient for the tasks it tries to solve. Therefore, several data-driven learned rep-
resentations were recently proposed, such as D2-Net[16] and SuperPoint[15]. They
can learn local features in an end-to-end fashion.

Local feature matching is generally performed by matching keypoints (detected
and described in the previous two stages) with a Nearest Neighbor (NN) search, fil-
tering incorrect matches with Lowe’s ratio test, the mutual check, and heuristics such
as neighborhood consensus. Even though this approach is simple to understand and
implement, it suffers from two major problems: computational complexity and lack
of robustness to repeated patterns, which are common in human-built things such
as buildings. Recent works on deep learning for matching propose learning to filter
matches by classifying them into inliers and outliers [56, 57, 11]. These operate on
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sets of matches, still estimated by NN search. Other works, such as SuperGlue[44]
and SGMNet[13], completely eliminate the NN search step. Instead, they estimate
matches by solving a differentiable optimal transport problem, whose costs are pre-
dicted by a graph neural network. Finally, there are end-to-end solutions that take
pair of images as input and return the correspondences, effectively fusing all three
stages(detection, description, and matching) into a single forward pass of the neural
network [30, 41, 51, 61].

3.1.2 3D map construction

Building a map is called structure from motion (SfM), as spatial information about
the environment is obtained due to the disparity of cameras’ viewpoints. Usually,
the SfM procedure is applied to a large set of unordered photos with unknown rel-
ative positions and (un)known intrinsic parameters of the cameras. Depending on
how the reconstruction phase is approached, incremental and global SfM are distin-
guished.

In the case of global SfM[35], the whole procedure is performed in 2 global stages:
absolute rotation estimation and absolute translation estimation, followed by bun-
dle adjustment (BA) for further absolute pose refinement. The first stage contains
relative rotation and translation estimation based on image pair (or triples) matches
through essential matrix calculation. Further, the obtained input epipolar graph is
filtered from outliers and false matches, and individual global rotations are com-
puted with a least-square minimization. Then global translations are recovered from
relative translations and global rotations. The global SfM, contrary to incremental
methods, is less subjected to external calibration drift, and residual errors distribute
evenly.

In contrast to global SfM, Incremental SfM[49] is a sequential processing pipeline
with an iterative reconstruction component. It commonly starts with feature extrac-
tion and matching, similar to global SfM, followed by geometric verification. The
resulting scene graph serves as the foundation for the reconstruction stage, which
seeds the model with a carefully selected two-view reconstruction before incremen-
tally registering new images, triangulating scene points, filtering outliers, and refin-
ing the reconstruction using bundle adjustment (BA).

3.1.3 Camera pose estimation

The way the 3D map is generated causes each 3D point to have at least two corre-
sponding 2D keypoints in images of the reference image database. Using this fact,
one can find 2D-3D correspondences between the 2D keypoints of the query image
and the 3D points of the map by matching the 2D keypoints of the query image
with 2D keypoints of images in the reference database. Alternatively, a more opti-
mized algorithm can be applied that is in detail described here[45]. Based on the
2D-3D matches obtained in the previous step, the camera pose is computed using a
so-called PnP solver within a RANSAC loop to increase robustness.

3.1.4 Limitations of the structure-based approach

The resulting maps can be quite large when mapping large areas like entire build-
ings or cities. For example, the 3D reconstruction of the Aachen-Day-Night visual
localization dataset[46], which covers only the old inner city of Aachen, Germany,
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contains between 700,000 and 2.5 million 3D points depending on the number of im-
age pairs used. However, when the map grows even larger, it becomes impossible to
efficiently analyze the correspondences between keypoints in the query image and
all 3D points in the map. To address this issue, image retrieval methods (discussed
in the next section) can be used. We can effectively reduce the search range by re-
trieving the most relevant images from the map. This allows for exploring keypoint
correspondences only in the area defined by those images [23].

A slightly modified option would be to use retrieved images to create an ad hoc
local map while maintaining the localization step instead of generating a global map
of the environment. The advantage of this approach is that a global map is not
required. However, constructing a local map using the retrieved images may not
always be possible if there are not enough images showing the same scene as the
query image.

Another way to establish correspondences in structure-based methods is to use
scene point regression, where 2D-3D correspondences are estimated directly using
techniques such as a DNN [9, 12, 29] or a random forest[50].

3.2 Image retrieval-based methods

Visual localization heavily relies on image retrieval as it assists in efficient structure-
based localization methods, particularly in large-scale areas such as airports, com-
mercial centers, and city regions, thereby enhancing both mapping and localization
robustness. Additionally, image retrieval can be used as an alternative to structure-
based methods, bypassing the need for pre-computed 3D structures. To perform
image retrieval, the database of images must either have approximate location infor-
mation like GPS (geo-localization) or exact poses with six degrees of freedom (DOF)
within a designated world coordinate framework (visual localization). A pose of the
query image is inferred by the pose of the nearest neighbor image or by interpolat-
ing the poses of top k retrieved images [48, 54]. Note that these simple methods use
only the poses of the retrieved images.

In both cases, the main objective is to choose a set of most similar images based
on a chosen representation, followed by an optional re-ranking step that utilizes
query expansion or filtering techniques.

In recent years, the predominant approach in image retrieval has been the uti-
lization of different versions and expansions of the ’bag of visual words’ technique.
However, a more recent development has emerged where deep neural network ac-
tivation features have demonstrated their capability to encode advanced semantic
information, making them well-suited for image retrieval purposes. Furthermore,
by training the network specifically for the retrieval task using ranking losses, the
performance of such systems can be significantly enhanced [39]. Usually, fully-
convolution networks such as VGG, AlexNet, or ResNet are fine-tuned for image
retrieval on a large collection of unordered images in a fully automated manner.
Reconstructed 3D models obtained by the state-of-the-art retrieval and structure-
from-motion methods guide the training data selection. The training itself happens
in metric learning fashion using triplet loss [22]. Recent approaches adopt learnable
aggregation layers to boost retrieval performance even further. The goal of those lay-
ers is to transform features extracted by CNNs into compact descriptors. NetVLAD
is a generalized VLAD layer that mimics the VLAD pooling procedure but keeps
it differentiable in order to enable end-to-end training [3]. Alternatively, a pooling
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layer called Generalized-Mean (GeM) generalizes max and average pooling by let-
ting the network learn which is better for individual feature maps [38].

3.3 Pose regression-based methods

This approach involves utilizing a CNN network to learn how to regress the camera
pose in an end-to-end manner from an RGB image by leveraging transfer learning
from pre-trained deep CNNs for pose estimation. Specifically, PoseNet[26] modifies
the CNN architecture used for image classification, such as VGGNet or ResNet, by
replacing softmax layers with fully connected layers to regress both the 3D location
and the orientation of the camera.

Directly regressing the absolute pose with end-to-end learning offers several ben-
efits, including not requiring any feature engineering, relying on deep network en-
codings that are more resilient to challenging changes in the scene, and requiring less
memory and constant inference time compared to 3D-based methods. However, the
localization error achieved with PoseNet[26] is an order of magnitude larger than
the error attained with state-of-the-art structure-based methods. In particular, the
absolute camera pose regression approach suffers from two main issues[48]:

• It is sensitive to the scale of the training data: Since absolute camera pose re-
gression directly predicts the camera pose in absolute coordinates, it requires
a large and diverse dataset that covers a wide range of scales and viewpoints.
However, collecting such a dataset is challenging and expensive.

• It is prone to overfit: Since the absolute camera pose regression approach has
to predict the camera pose in absolute coordinates, it has a higher number of
degrees of freedom compared to the relative camera pose regression approach.
This makes it more prone to overfitting, especially when the training data is
limited.

To address these issues, several improvements to the PoseNet[26] architecture
have been proposed, including new loss functions, adding LSTM layers, or rely-
ing on additional data sources and sensor measurements to further enhance perfor-
mance.

Despite these advances, learning an entire pipeline can result in suboptimal per-
formance due to the tight coupling with the scene coordinates, limiting the general-
ization power of the network. Hybrid pose learning methods have been developed
to address this issue by focusing on local or related problems and combining them
with traditional image retrieval and structure-based pipelines, such as DSAC[12],
which relies on geometrical constraints and is focused on 2D-3D matches. However,
the learned models remain scene-dependent and do not generalize to new scenes.

To address the generalization problem, the recent SANet[17] proposes a scene-
agnostic neural architecture for camera localization, where model parameters and
scenes are independent of each other. The model leverages geometry through 3D
point clouds obtained as dense MVS reconstructions from the top retrieved images
and learns query-scene registration, as well as a camera pose regression.



13

Chapter 4

Methodology

In order to satisfy flexibility and extensibility requirements, we propose a structure-
based approach that uses the database of reference images with known intrinsic and
extrinsic parameters. The method utilizes image retrieval with multiple global im-
age representations to select relevant images for further stages of visual localization.
The request processing is divided into stages. During the very first stage, the input
image’s metadata is parsed, and feature enhancement algorithms are applied to the
image itself. In the second stage, the input image is used to retrieve visually sim-
ilar reference images from the database. The usual number of retrieved images is
around 10-20, but it can be adjusted depending on the images’ spatial disparity. In
the next stage, we generate local 3D scene reconstruction by establishing 2D-2D local
feature correspondences between the query image and the database images. One the
final stage, the 6DOF camera pose is estimated by solving a PnP problem robustly
inside a RANSAC with 2D-3D matches between keypoints on the query image and
3D points of the map.

FIGURE 4.1: Key steps of visual localization

4.1 Preprocessing stage

The parameters of the camera and GPS are of the greatest interest to us when parsing
image metadata. Specifically, we need the camera’s parameters that would allow us
to calculate the intrinsic matrix, which is required by the majority of PnP solvers. For
example, if the metadata contains FOV, then we can approximate the camera intrin-
sic matrix as shown in 2.1. The GPS coordinates give us a good first approximation
of the camera position, and if present, they are used to limit the search area during
database retrieval.
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The image itself is processed with a color equalization algorithm. This method
usually increases the global contrast of the image, especially when the image is rep-
resented by a narrow range of intensity values which allows for finding better key-
point during the third stage. In addition, it partially mitigates changes in lighting
conditions which can possibly lead to better retrieval results during the second stage.

Another optional step is a segmentation of all non-static objects, such as peo-
ple, bicycles and cars, etc., followed by blending them with surroundings. It is im-
portant to note that usually masking is not enough. Masking, which introduces
black blobs on the images, produces worse results during retrieval and local fea-
ture estimation than skipping this step entirely. The segmentation is performed by
the DeepLabV3Plus-ResNet101[19] model pre-trained on the Cityscapes dataset[14].
Considering that the task this model solves in the pipeline is not critical, it might be
replaced with another one offering lower computation costs as well as segmentation
quality.

4.2 Retrieval stage

The retrieval step is essential for scalability, as regardless of the database’s size, the
computational complexity of the next pipeline’s stages remains fixed. Namely, one
can set hard and soft limits on the number of retrieved images. On the other hand,
the next stages become heavily dependent on the retrieval step, as the quality (cov-
erage of the scene) of selected images determines the quality of overall localization.

As discussed in 3.2, the main idea of the retrieval step is to find similar images
in the reference database. Comparison is performed on images in some space which
ideally is invariant to illumination changes, different seasons or weather conditions,
viewpoint changes, etc. The function that maps images in such space is usually
approximated with DNN. There are a couple of criteria when selecting a retrieval
model. It is important to carefully investigate what datasets have been used for
model training, namely the size, and presence of hard samples. Validation datasets
should be investigated as well. The next criterion is speed which directly relates to
model architecture. Most of the models have a similar structure: CNN features ex-
traction block represented by popular backbones such as ResNet-18/50/101 or VGG
followed by aggregation block, namely SPOC[4], MAC[53], R-MAC[33], GeM[38],
NetVLAD[3] or CRN[27]. Optionally, an aggregation block can be followed by a
dimensionality reduction block that might use FC or PCA. Surprisingly, the dimen-
sionality reduction block might have the biggest influence on the pipeline’s overall
performance. The latency of retrieval model inference is constant since each query
input image requires a single forward pass to generate a descriptor. However, the
time of finding top k images in the reference database based on descriptors directly
depends on the size of the database as well as the dimensionality of a descriptor. For
the proper model selection, we used visual geo-localization benchmark infrastruc-
ture[8]. More specifically, we use two implementations of ResNet-101 + GeM + FC
trained with triplet[22] and AP[39] losses, respectively.

It is possible to end up in a situation where the combination of database size and
descriptor size would not allow all descriptors to fit into RAM. To overcome this, a
specialized library such as Faiss[24] can be used. It is a library for efficient similarity
search and clustering of dense vectors. It contains algorithms that search in sets of
vectors of any size, up to ones that possibly do not fit in RAM.

In order to increase retrieval quality, a few additional steps are introduced:

• reranking;
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• geometric expansion;

• geometric validation.

4.2.1 Reranking

Re-ranking techniques are categorized into two types based on similarity criteria,
namely feature similarity and neighbor similarity. Evaluating feature similarity in-
volves measuring the Euclidean distance in the feature space between a pair of im-
ages. On the other hand, the neighbor similarity is determined by the number of
shared neighbors between images. Typically, neighbor-based methods outperform
feature-based methods as they are robust to hard negatives or outliers that may
differ by only one neighbor from true matches. The major challenge of neighbor-
based re-ranking methods such as the k-reciprocal re-ranking method is their high
computational complexity which makes them impractical for our application. We
tackle this problem by using a highly parallelizable GNN-powered image retrieval
re-ranking approach[58]. In order to eliminate redundant computations, we intro-
duce partial caching of the initial k-NN graph, which is built in the first stage of the
algorithm.

4.2.2 Geometric expansion

Geometric expansion is a rather simple technique to enrich the number of view-
points on the scene. For each retrieved image, its neighbors within a radius of r are
added to the set of retrieved images.

4.2.3 Geometric validation

Geometric validation is a step that ensures that all of the retrieved images describe
the same scene. First, perform cluster filtering based on the image position: we
build a graph by connecting images if the Euclidean distance between their positions
is less than dthr. Then we look for the largest connected sub-graph in the graph
and ignore all the other images. This way, we effectively ensure view overlap of
the neighboring cameras by selecting optimal dthr. For the remaining images, the
dominant view direction is calculated. If an image view direction deviates from the
dominant view direction by more than 90 degrees, then this image will be discarded
as well.

4.3 Scene reconstruction and camera pose estimation stage

The local scene 3D reconstruction is a step that enables accurate position estimation.
This step is subdivided into 3 phases: keypoints generation, matching, and triangu-
lation. Keypoints generation methods have a long history of evolution from sets of
handcrafted techniques to single end-to-end DNN that are able to find and describe
thousands of points robustly. Most of the experiments were inducted with Super-
Point[15], D2-Net[16], and R2D2[40]. Those models feature in many benchmarks
and sustainably get into the top 5. For the matching phase, we use a state-of-the-art
model called SuperGlue[44]. It uses a graph neural network and attention to solve
an assignment optimization problem, and handles partial point visibility and oc-
clusion elegantly, producing a partial assignment. Other matching approaches that
took into consideration either perform worse or are the variation of the SuperGlue
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approach with little to no improvements in benchmark metrics. Alternatively, there
are quite a few end-to-end approaches, such as DualRC-Net[30], LoFTR[51], and
Patch2Pix[61], that incorporate keypoints generation as well as matching. We re-
jected those as they were incompatible with our 3D scene reconstruction procedure
which we will discuss later.

The reconstruction algorithm consists of the following steps:

1. precompute keypoints for every image in the reference database (offline);

2. compute keypoints for query image with one of the keypoints generating mod-
els (SuperPoint by default);

3. establish keypoints correspondence of every retrieved image keypoints to query
image keypoints with SuperGlue;

4. generate every possible pair of retrieved images;

5. for each such pair (a, b) use matches from query keypoints to a’s keypoints
and to b’s keypoints in order to establish correspondences between a and b
keypoints;

6. use one of the triangulation algorithms (we use OpenCV implementation) to
obtain 3D points corresponding to those keypoints;

7. apply Expansion or Displacement policy when populating shared 3D points pool
with points from each individual pair.

The Expansion policy orders to append new points to the shared pool. As a result,
a single 2D point on the query image might correspond to multiple 3D points.

The Displacement policy orders to replace a 3D point with another corresponding
to the same 2D point if the confidence of the newer point is greater than the former
one has. The confidence of the 3D point is calculated as a product of matching con-
fidences of the keypoints that was used to calculate that 3D point. Alternatively, one
can use non-linear triangulation of all points together. However, optimizing repro-
jection errors when data contains a high percentage of bad matches leads to lower
robustness. It is better to have fewer points but to be more confident about them.

By the end of this procedure, we obtain well-established correspondences be-
tween 2D points on the query image and 3D points in reference database coordi-
nates. After obtaining these 2D-3D matches, perspective-n-point (PnP) solvers are
utilized for computing the camera pose. However, to improve the robustness and
compensate for any outliers present in the 2D-3D matches, the PnP computation is
performed within a RANSAC loop. In the pipeline, we use OpenCV implementation
of PnP solver inside RANSAC since it delivers great performance.

4.4 Parallelization opportunities

Apart from the accuracy of the localization, latency is the second most important ob-
jective for the pipeline. One way of approaching this is to reduce the latency on each
individual step. We can do this by using smaller networks or setting the number of
retrieved images lower. However, it comes at the cost of accuracy. We suggest ex-
ploring data dependencies between each individual step before performing drastic
optimization influencing the accuracy.
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FIGURE 4.2: Dependencies between stages

As the diagram 4.2 suggests, the global descriptor calculation and image retrieval
can be performed in parallel with local keypoints calculation. Considering the com-
putation complexity of them both, we can conclude that in most cases, local key-
points calculation would not introduce any additional latency.

The matching of query image keypoints with keypoints of k retrieved images can
be completed in parallel. The only limitation is the computation capacity.

The triangulation step is also completely parallelizable. Even though C2
k pairs

might seem like a lot, considering that k is usually between 10 and 20, the total
number of triangulation pairs does not exceed 190. Furthermore, the majority of
those pairs do not have any matching keypoints, meaning that only a small part of
them triggers actual computation.
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Chapter 5

Dataset

In addition to presenting the localization pipeline, we introduce a tool designed to
facilitate the collection of datasets. The primary objective of this visual localization
pipeline is to achieve universality, with the reference image database being the only
element that requires modification, providing considerable flexibility and expand-
ability. The tools for database collection are powered with OpenStreetMap API and
Google Street View Static API.

The tools implement an interface to allow the following use case:

• user specifies what area needs to be covered with the database;

• user examines the preview map depicting points where images will be taken;

• user stops the process and goes to the first step if not satisfied else continues;

• user starts the database population process.

User can specify the coverage area in a couple of ways:

• supply the point with the latitude, longitude, and size of the bounding box
around it in meters;

• supply the city name.

Additionally, the user can specify the distance between neighboring points. The
supplied value is treated as an upper bound, meaning the maximum distance be-
tween 2 neighboring points is less or equal to that value. At the intersections and
steep turns, the distance between points naturally decreases, which helps to cope
with occlusions and limited views.

There are some more advanced parameters that have default values:

• camera FOV (90◦ by default);

• camera pitch (0◦ by default);

• number of images taken at each point (8 by default).

The default parameters listed above enable the creation of a 360-degree panorama
5.2 where each object in the scene is captured at least twice. This is crucial for image
retrieval, as it prevents the objects from being split between separate views. Thus,
making the retrieval process more robust to occlusions.

There might be situations where the other set of parameters would be more suit-
able. For example, if a user wants to capture more details at the cost of global context
and structure, one can try to reduce FOV to 60-70 degrees and slightly increase pitch
to capture more of building facades rather than sidewalks and roads. The number
of photos taken at each point can be left as is or slightly increased.

https://osmnx.readthedocs.io/en/stable/
https://developers.google.com/maps/documentation/streetview
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FIGURE 5.1: Preview map around Lviv City Council with 350-meter
bbox

(A) 0◦ (B) 90◦ (C) 180◦ (D) 270◦

(E) 45◦ (F) 135◦ (G) 225◦ (H) 315◦

FIGURE 5.2: A panorama taken with default parameters
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Chapter 6

Experiments

6.1 Dataset and Preprocessing

The experiments were conducted on several datasets, including the Cambridge Land-
marks dataset[26], Aachen Day-Night datasets[47, 46, 59], and 2 datasets depicting
the old city of Lviv that were collected with the tools discussed in the previous sec-
tion.

Cambridge Landmarks, a large-scale outdoor visual relocalization dataset taken
around Cambridge University, contains 6 scenes, namely Old Hospital, Kings Col-
lege, St. Mary’s Church, Great Court, Shop Facade, and Street, that total up to 8380
reference images and 4841 query images.

FIGURE 6.1: The 3D map of Cambridge Landmarks dataset

The Aachen Day-Night datasets, which are based on the original Aachen dataset,
depict the old inner city of Aachen, Germany. The database images used to build the
reference scene representations were all taken during the daytime with hand-held
cameras over a period of about two years. The datasets offer query images taken
during the daytime and at nighttime. All query images were taken with mobile
phone cameras. Aachen Day-Night dataset features 4328 reference images and 922
(824 daytime, 98 nighttime) query images. Aachen Day-Night v1.1 dataset extends
the Aachen Day-Night dataset with additional 93 nighttime query images and 2369
reference images.
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FIGURE 6.2: The 3D map of Aachen Day-Night v1.1 dataset

Images of both Cambridge Landmarks and Aachen Day-Night datasets were
downsized with OpenCV cubic interpolation to fit into GPU during evaluation. The
intrinsic matrices were rescaled respectively.

The Lviv1 dataset consists of 5389 reference images and 1347 query images. The
dataset covers a 500x500 meters square area around Lviv Opera. The images are
taken exclusively at driveways with approximately 20-meter intervals in between.

The Lviv2 dataset consists of 9690 reference images and 2422 query images. The
dataset covers a 350x350 meters square area around Lviv City Council. The images
are taken at driveways as well as pedestrian zones with an approximately 10-meter
interval in between. Unlike Lviv1, Lviv2 contains many images taken by mobile
devices rather than Street View car equipment and images depicting scenes during
nighttime.

6.2 Evaluation Metrics

There are a set of evaluation metrics used during the evaluation and parameter tun-
ing of the visual localization pipeline. To measure the quality of descriptor vec-
tors produced by DNNs, we use Mean Average Precision (MAP). MAP is a measure
of how well a system or algorithm is able to retrieve relevant information from a
dataset. One can think of MAP as an average of the area under the precision-recall
curve for all possible retrieval cutoff values. The higher the MAP score, the better the
algorithm is performing in terms of retrieving relevant information from the dataset.
The trainset of each dataset was evaluated using MAP in order to determine which
of [22] and [39] is more suited.

For the end-to-end evaluation of the Cambridge Landmarks dataset, we used the
median position error in meters and median rotation error in degrees since most of
the papers featuring this dataset use these metrics.

For the end-to-end evaluation of the Aachen Day-Night datasets as well as the
Lviv1 and Lviv2 datasets, we used the accuracy metric, which was defined as the
percentage of queries localized correctly within the predefined position errors and
rotation errors.



Chapter 6. Experiments 22

6.3 Parameter settings

The pipeline has 6 major hyperparameters:

• k specifies how many images are retrieved from the reference database. The
value of k was set to 10 for all the experiments.

• cameras_distance_threshold is used to select the largest set of images that are
close enough to each other to ensure that they have enough view overlap. Each
image within the set is not further than cameras_distance_threshold meters
from the rest of the images in the set. The value of cameras_distance_threshold
was set to 30 meters for all the experiments.

• confidence_threshold is used to filter out weak indirect matches. It can take
values in the range from 0 to 1. The value of the confidence_threshold was set
to 0.4 for all the experiments.

• points_distance_threshold is used to filter out 3D points that are too far from
the cameras. Usually, incorrect matches can generate that kind of outlier. How-
ever, sometimes perfectly valid points can be quite distant. For example, the
tops of churches or other tall buildings can be clearly visible from great dis-
tances. As a compromise, the value of points_distance_threshold was set to
300 meters for all the experiments.

• reranking is a boolean parameter that determines whether additional rerank-
ing will be applied after the retrieval step. This parameter wasn’t fixed during
the experiments.

• policy is a parameter that refers to the Expansion and Displacement policies dis-
cussed in the 4. This parameter wasn’t fixed during the experiments.

6.4 Evaluation results

6.4.1 Cambridge Landmarks

The evaluation of the Cambridge Landmarks datasets shows the pipeline perfor-
mance in case localization guided by GPS attached to the photo. The area which is
covered by each scene except for Street is approximately 30x30 meters, which allows
mimicking cases when reference images from the database are filtered by keeping
only those within 30 meters around the GPS coordinates.

Cambridge Landmarks Median 6D Localization Errors
Method Great Court K. College Old Hospital Shop Facade St M. Church Street
PoseNet [26] 7.00 m, 3.7◦ 0.99 m, 1.1◦ 2.17 m, 2.9◦ 1.05 m, 4.0◦ 1.49 m, 3.4◦ 20.7 m, 25.7◦

ActiveSearch [45] 0.24 m, 0.1◦ 0.13 m, 0.2◦ 0.20 m, 0.4◦ 0.04 m, 0.2◦ 0.08 m, 0.3◦ N/A
InLoc [52] 1.20 m, 0.6◦ 0.46 m, 0.8◦ 0.48 m, 1.0◦ 0.11 m, 0.5◦ 0.18 m0.6◦ N/A
DSAC++ [10] 0.40 m, 0.2◦ 0.18 m, 0.3◦ 0.20 m, 0.3◦ 0.06 m, 0.3◦ 0.13 m, 0.4◦ N/A
DSAC* [12] 0.49 m, 0.3◦ 0.15 m, 0.3◦ 0.21 m, 0.4◦ 0.05 m, 0.3◦ 0.13 m, 0.4◦ N/A
HACNet [29] 0.28 m, 0.2◦ 0.18 m, 0.3◦ 0.19 m, 0.3◦ 0.06 m, 0.3◦ 0.09 m, 0.3◦ N/A
PixLoc [42] 0.30 m, 0.1◦ 0.14 m, 0.2◦ 0.16 m, 0.3◦ 0.05 m, 0.2◦ 0.10 m, 0.3◦ N/A
HLoc [43] + SuperGlue [44] 0.16 m, 0.1◦ 0.12 m, 0.2◦ 0.15 m, 0.3◦ 0.04 m, 0.2◦ 0.07 m, 0.2◦ N/A
NAVER [23] 0.10 m, 0.0◦ 0.05 m, 0.1◦ 0.09 m, 0.2◦ 0.02 m, 0.1◦ 0.03 m, 0.1◦ 0.10 m, 0.3◦

Our(Displacement, w/o rerank) 0.47 m, 0.2◦ 0.22 m, 0.3◦ 0.25 m, 0.5◦ 0.07 m, 0.3◦ 0.14 m, 0.4◦ 0.27 m, 0.9◦

TABLE 6.1: The Cambridge Landmarks dataset evaluation results

The parameter settings for the experiment are reflected in 6.3. In addition, the
parameter reranking was set to false since retrieval as a step wasn’t necessary at all
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due to the size of the scenes. The parameter policy was set to Displacement because
the number of matches was high due to the size of the scenes. Filtering out weak
matches during triangulation is beneficial for pose estimation later on.

The results suggest that our pipeline has average performance in most of the
scenes. There are a couple of reasons for that:

• Unlike most of the approaches in the table, our method doesn’t leverage 3D
reconstruction, which is part of the dataset. Our pipeline is purely relying on
the images, camera intrinsics, and camera extrinsics for reference images.

• The resolution of the images has been reduced by more than two times in order
to fit in GPU constraints.

Besides, the last column of the table 6.1 reveals that, unlike most approaches, our
pipeline keeps the error level low when the scene size increases significantly.

6.4.2 Aachen Day-Night v1.1

The Aachen Day-Night v1.1 dataset is much closer to the conditions our localization
pipeline has been designed to work in. This dataset covers a much greater area
compared to individual scenes of the previous dataset, as well as features different
weather and lighting conditions.

Aachen
Day-Night v1.1

Accuracy thresholds
high: 0.25 m, 2◦ mid: 0.5 m, 5◦ low: 5 m, 10◦

daytime nighttime
Method high mid low high mid low
ActiveSearch [45] 57.3 83.7 96.6 28.6 37.8 51.0
HLoc [43] + SuperGlue [44] 89.8 96.1 99.4 77.0 90.6 100
NAVER [23] 90.9 96.7 99.5 78.5 91.1 98.0
RLOCS v1.0 [18] 86.0 94.8 98.8 72.3 88.5 99.0
Our(Displacement, w/o rerank) 75.7 88.1 97.3 59.2 77.0 94.8
Our(Expansion, w/o rerank) 70.0 85.1 97.2 60.2 79.1 94.8
Our(Displacement, w/ rerank) 67.5 82.5 95.5 60.7 77.5 92.7
Our(Expansion, w/ rerank) 66.5 81.1 95.0 57.6 77.0 92.7

TABLE 6.2: The Aachen Day-Night v1.1 dataset evaluation results

Similar to the previous evaluation, the result table states that our pipeline has
an average performance. The factors that might have influenced the metrics are the
same as in 6.4.1. Overall, we see that presence of reranking step has negative effect
on the performance. The possible reason is that reranking can often result in a bias
towards a specific set of images, which could reduce the diversity of retrieved im-
ages. This could negatively impact the accuracy of the visual localization pipeline,
particularly in cases where the initial set of retrieved images contains important im-
ages that were not included in the reranked set. Another observation about table
data is that Displacement policy works better than Expansion policy. The possible ex-
planation is that the images in the Aachen Day-Night v1.1 dataset have a lot of over-
lap and thus generate a lot of matches for 3D reconstruction. By applying Expansion
policy, we extend the number of 3D points even further by introducing points based
on weak matches. In the next step, the PnP solver in the RANSAC loop is prone
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to exit before fitting the best subset of points due to max iteration constrain. Basi-
cally, the less filtering is done before pose estimation, the more challenging the pose
estimation problem is.

6.4.3 Lviv1/2

The Lviv1/2 datasets encompass a much broader area compared to the Cambridge
Landmarks or Aachen Day-Night v1.1 datasets. The panoramas are distributed
evenly throughout the region as per the limits of the Google Street View database.
The purpose of Lviv1/2 datasets is to be reference databases for visual localization
in the corresponding areas. Therefore, splitting these datasets for evaluation nega-
tively effects the performance, as query samples effectively become blind spots of the
reference databases. On the other hand, we cannot create dataset of queries based
on geotagged photos from the internet, as the source of their geodata is GPS in the
vast majority of cases. Benchmarking the visual localization pipeline with GPS data
does not make sense, considering that the research’s primary purpose is to outmatch
the GPS performance in the urban environment. Therefore, we need to stick to the
first option, recognizing possible pitfalls.

Lviv1
Accuracy thresholds
high: 0.5 m, 2◦ mid: 1 m, 5◦ low: 5 m, 10◦

Median 6D
localization error

Method high mid low
Our(Displacement, w/o rerank) 0.5 0.69 0.86 0.43 m, 1.0◦

Our(Expansion, w/o rerank) 0.48 0.69 0.86 0.46 m, 1.0◦

Our(Displacement, w/ rerank) 0.42 0.61 0.81 0.58 m, 1.1◦

Our(Expansion, w/ rerank) 0.4 0.57 0.75 0.66 m, 1.2◦

TABLE 6.3: The Lviv1 dataset evaluation results

Lviv2
Accuracy thresholds
high: 0.5 m, 2◦ mid: 1 m, 5◦ low: 5 m, 10◦

Median 6D
localization error

Method high mid low
Our(Displacement, w/o rerank) 0.43 0.58 0.75 0.55 m, 1.2◦

Our(Expansion, w/o rerank) 0.39 0.54 0.71 0.66 m, 1.4◦

Our(Displacement, w/ rerank) 0.36 0.51 0.70 0.85 m, 1.6◦

Our(Expansion, w/ rerank) 0.32 0.45 0.65 1.19 m, 1.8◦

TABLE 6.4: The Lviv2 dataset evaluation results

The results slightly exceed the expectations, considering the intrinsically nega-
tive effect of splitting the datasets for evaluation. The tables 6.3 and 6.4 suggest that
60-70% of all queries have been localized within 1 meter around the ground truth,
which is a decent result. Furthermore, a considerable portion of the query images
depicts challenging scenes that make it tough or almost impossible to identify their
location accurately:

• Some scenes are only visible from a single panorama. In this case, the proper
multi-view 3D reconstruction is impossible; the only option is to estimate the
camera pose based on matches from the single most similar view or use the
camera pose of that view as a rough approximation itself.

• Scenes depicting an extensive amount of vegetation are challenging for the
retrieval step of the pipeline. In most cases, such queries do not contain unique
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features that would allow distinguishing between them and others found in
the reference database.

• Scenes containing repeating patterns might cause a failure of localization dur-
ing local keypoints matching. This problem is directly related to the method of
matching, which, in this case, is SuperGlue [44].

(A) Single panorama view (B) Trees occluding a building (C) Repeating wall pattern

FIGURE 6.3: Problematic cases for visual localization pipeline

Another observation is that the performance of the pipeline with different pa-
rameters is consistent with previous experiments 6.2. We have also tried to bench-
mark the state-of-the-art approaches such as NAVER [23] and HLoc [43] + Super-
Glue [44] on the Lviv1/2. Unfortunately, we were unable to conduct these experi-
ments because the computational complexity required exceeded the capabilities of
our hardware.
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Chapter 7

Conclusions

In this work, we have built an end-to-end visual localization pipeline that is meant
to increase localization accuracy in the urban environment. We analyzed various
approaches, from structural-based to DNNs and everything in between. We came
up with an efficient, flexible, and extensible solution that delivers decent results on
many benchmarks without fine-tuning. Furthermore, we analyzed the scenarios in
which the localization process might fail and found countermeasures for some of
them. In addition, we developed a set of tools for collecting and extending a refer-
ence database by samples from a given area.
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Chapter 8

Future work

We consider several possible directions for improvement and development. We plan
on conducting more experiments with other localization datasets, as well as per-
forming the evaluation of state-of-the-art approaches on Lviv1/2 datasets or their
expanded versions. In addition, we are going to add filtering steps to our database
acquisition tools in order to discard panoramas that are not helpful for localization.

Another possible track is to turn the research into a product. The backend, rep-
resented by the pipeline itself, must be deployed onto the cloud infrastructure. In
addition to that, the REST API will be set up to allow other services to access the
localization capabilities we are to offer. On top of that, the frontend app is to be cre-
ated based on that API, allowing ordinary users to add or refine geotag information
to their photos easily.
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Appendix A

The code for this project is available in our GitHub repository https://github.com/
Tsapiv/visual-geolocation-pipeline. The repository contains the source code for
the project, along with any necessary documentation or setup instructions.

https://github.com/Tsapiv/visual-geolocation-pipeline
https://github.com/Tsapiv/visual-geolocation-pipeline


29

Bibliography

[1] Pablo Alcantarilla, Jesus Nuevo, and Adrien Bartoli. “Fast Explicit Diffusion
for Accelerated Features in Nonlinear Scale Spaces”. In: Procedings of the British
Machine Vision Conference 2013. British Machine Vision Association, 2013. DOI:
10.5244/c.27.13. URL: https://doi.org/10.5244/c.27.13.

[2] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison. “KAZE
Features”. In: Computer Vision – ECCV 2012. Springer Berlin Heidelberg, 2012,
pp. 214–227. DOI: 10.1007/978-3-642-33783-3_16. URL: https://doi.org/
10.1007/978-3-642-33783-3_16.
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