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Abstract

Detection and assessment of shelling-induced damage to the agricultural fields of
Ukraine are crucial for ensuring the safety of civilians, as it helps to estimate the
number of unexploded ordnances in the region. Most existing approaches to dam-
age detection solve this problem for buildings, and the crater detection task is usu-
ally solved either for historical or planetary images. In this thesis, we aim to explore
the applicability of existing approaches to the task of crater detection in agricul-
tural fields in Ukraine. We collect and annotate a dataset with satellite images of
Ukrainian agricultural fields. We experiment with solutions that include classifica-
tion methods and conduct the hyperparameter search to find the best model for our
data. We analyze the impact of each hyperparameter on the network performance
and demonstrate the network’s ability to generalize to new locations.

The code used in our solution can be found in the project’s GitHub repository.

HTTP://WWW.UCU.EDU.UA
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Chapter 1

Introduction

The ongoing Russo-Ukrainian war has had disastrous effects on the Ukrainian econ-
omy, including one of the country’s largest and most important economic sectors
– agriculture. War has devastated agriculture, jeopardizing food production chains
and making it impossible to harvest crops and use the fields that have been shelled.
According to Kyiv School of Economics (2022), as of June of 2022, the damage to the
agricultural sector caused by Russia’s invasion totals to $4.29 billion, of which $2.135
billion is attributed to farmland and unharvested winter crops, and $89.1 million is
attributed to perennial crops. Numerous agricultural fields in Ukraine now can not
be used due to craters and unexploded ordnances (UXO). As the frontline regions
that have suffered from shelling the most are also famous for their fertile soil (cher-
nozem), the urgency of restoring those fields to their pre-war condition will only
grow with time as the stocks of harvested crops decrease.

Despite the scale of the impact of shelling on the economy, the danger that UXOs
pose to both troops and the civil population of Ukraine is much more severe, as it
puts human lives at risk1,2. To this day, UXOs from World War II can still detonate
if disturbed, causing harm to people nearby3. Fortunately, unlike in the mid-XX
century, science and technology can help us prevent such long-lasting damage and
ensure that all Ukrainian lands are safe.

The goal of this thesis is to explore the usage of machine learning (ML) and deep
learning (DL) approaches in combination with satellite imagery to detect and as-
sess the damage to Ukrainian agricultural fields caused by the Russian invasion
of Ukraine. We specifically target craters from the missiles under the assumption
backed up by the State Emergency Service of Ukraine’s (SESU) experience that there
is a higher risk of UXOs around the areas with many craters from detonated missiles.
SESU can not cover all the potentially dangerous fields quickly to determine which
ones can be used and walked on and which require demining, as it is a thorough
and laborious process. Therefore, possible applications of the results of this project
include putting all the potentially dangerous locations on a map for civilians to use
to ensure safer transportation and prevent processing fields that may contain UXOs.
Another way to use the proposed approach is to pass the results to SESU so that they
can prioritize the order of the investigation and future demining.

Accomplishing this task presents several challenges. One of them is that, ac-
cording to Solovey (2022), there are several hundred types of soil in Ukraine, each
possessing different characteristics, reacting differently to the humidity level, having
different fertilizers used on them, etc. Differences in natural terrain elements, even

1https://lb.ua/society/2023/02/25/547129_hersonshchini_zaginuli_dvoie.html
2https://suspilne.media/422451-pidirvavsa-na-rosijskij-mini-pid-cas-polovih-robit

-na-hersonsini-zaginuv-65-ricnij-colovik/
3https://suspilne.media/347302-u-centri-kieva-znajsli-artilerijski-snaradi-casiv

-drugoi-svitovoi-vijni/

https://lb.ua/society/2023/02/25/547129_hersonshchini_zaginuli_dvoie.html
https://suspilne.media/422451-pidirvavsa-na-rosijskij-mini-pid-cas-polovih-robit-na-hersonsini-zaginuv-65-ricnij-colovik/
https://suspilne.media/422451-pidirvavsa-na-rosijskij-mini-pid-cas-polovih-robit-na-hersonsini-zaginuv-65-ricnij-colovik/
https://suspilne.media/347302-u-centri-kieva-znajsli-artilerijski-snaradi-casiv-drugoi-svitovoi-vijni/
https://suspilne.media/347302-u-centri-kieva-znajsli-artilerijski-snaradi-casiv-drugoi-svitovoi-vijni/
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within a small area, make the damage assessment even harder, as the ground can
slope and vary in elevation. Therefore, craters form differently in different places,
even within relatively close proximity.

Another obstacle is the variety of missiles that are used in the Russo-Ukrainian
war. They differ in gauge, blast radius, fragmentation capability, age, and other
characteristics that affect the appearance of craters. Moreover, they affect the unex-
ploded ordnance rate, meaning the accurate estimation of the number of UXOs is
nearly impossible. Even the angle and the distance from which the missile was fired
affect the appearance of craters (Department of the Army, 1996).

One of the most critical issues that arise in damage assessment of the fields is
rapid changes in the appearance of the crater and the field overall that can be caused
by season, weather (for example, water erosion after rain or falling snow), changes
in the greenery around the crater, human activity (for instance, farmers covering the
craters with the ground, making it harder not only to identify the crater from the air
but also to extract the missile’s body later in time). Some craters that appeared at the
beginning of the Russian invasion of Ukraine now may be barely visible, especially
on satellite imagery. Such rapid changes make it crucial to analyze historical data
for the same location starting from before the invasion. In that way, we do not risk
missing any craters and UXOs. However, this need eliminates the usage of aerial
data (usually of higher resolution) because it is not collected continuously. The fact
that the whole sky in Ukraine can be covered in clouds for months during colder
seasons is an additional obstruction to collecting a large enough dataset solely from
satellite imagery.

In this work, we direct our attention toward Machine Learning based approaches
to understand how well such approaches can adapt to the domain of Ukrainian agri-
cultural fields to solve the task of detecting and assessing the damage inflicted on
them.

In Chapter 2, we provide a general overview of the existing approaches to the
damage detection of buildings and agricultural fields. Chapter 3 covers the details
of the proposed methods for data processing, dataset annotation, and damage de-
tection of agricultural fields. In Chapter 4, we describe the conducted experiments
more thoroughly, and, finally, in Chapter 5, we shortly describe the conclusions of
this thesis and outline future steps.
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Chapter 2

Related Work

This chapter provides a general overview of the war-inflicted damage assessment
task and related questions. In Section 2.1, we provide an overview of several exist-
ing satellite imagery providers and their products. In Section 2.2, we outline both su-
pervised and unsupervised approaches to the damage assessment of the buildings;
Section 2.3 contains a review of the crater detection approach specifically. Section 2.4
covers synthetic crater data generation approaches.

2.1 Satellite imagery sources

In recent years, both the quantity and quality of satellite imagery have improved
significantly, and the number of providers has increased. The data vary not only
in spatial and temporal resolution but also in the type of data they produce. This
section gives an overview of existing satellite imagery providers that we considered
using for this project.

2.1.1 Sentinel-2 data

Sentinel is the name of several Earth Observing missions started by the Copernicus
Programme. Sentinel-2 is the second mission launched by Copernicus. The images
acquired through these satellites have a spatial resolution between 10 and 60 m and a
revisit rate of 10 days. In fact, the presence of the second satellite in this constellation
reduced the revisit cycle duration to 5 days. In addition to the visible red, green, and
blue bands, the Sentinel-2 captures ten other frequencies from the spectrum’s near-
infrared (NIR) and short-wave infrared (SWIR) parts.

The Sentinel-2 data is publicly available through the Copernicus Data and In-
formation Access Service cloud environments. Even though it covers the whole
territory of Ukraine, the spatial resolution (from 10 meters) is not enough to de-
tect smaller craters. Therefore, this type of imagery is not fully applicable to crater
detection in agricultural fields.

2.1.2 Planet data

Planet Labs PBC is an Earth-imaging company that operates several satellite constel-
lations. First, Dove is a constellation of small satellites that provide high-frequency
imaging. The resulting spatial resolution is 3-5m, and the bands include RGB and
NIR frequencies. SkySat is a constellation that takes imagery with submeter spatial
resolution. The imagery is multispectral, containing RGB, Panchromatic, and NIR
frequencies. Finally, the PlanetScope constellation captures high-frequency (RGB
and NIR frequencies) imagery of the Earth’s surface with a spatial resolution of 3-5
meters.
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Even though the PlanetScope and Dove constellations provide higher spatial res-
olution than the Sentinel-2 imagery, it is still suboptimal for detecting some craters.
The submeter resolution of the Planet SkySat constellation would be suitable for the
crater detection task; however, these high-resolution Planet data are not publicly
available, and we have not succeeded in obtaining them from the provider.

2.1.3 Maxar data

Maxar Technologies Inc. is one of the leading space technology companies. They
offer several satellite imagery platforms: WorldView-1, WorldView-2, WorldView-3,
WorldView-4, and GeoEye-1. WorldView-1 provides imagery with a spatial resolu-
tion of 0.5 meters and has only a panchromatic mode (PM) (meaning that the images
are in black and white). Its revisit rate is 1.7 days, and it can capture up to 750, 000km2

per day. WorldView-2 has a resolution of 46 centimeters for both the panchromatic
images and RGB images taken in multispectral mode (MM). With a revisit rate of 1.1
days, its daily imaging coverage (DIC) is up to one million km2 per day. WorldView-
3 has a resolution of 31 centimeters for panchromatic images and 1.24 meters for
multispectral ones. Additionally, it can capture short-wave infrared (SWIR) data.
With a revisit time of 1.1 days, it can cover up to 680, 000km2 per day. WorldView-4
provides a resolution of 31 centimeters for both panchromatic and multispectral im-
ages and can cover 680, 000km2 per day. Its revisit time is 1.1 days. Finally, GeoEye-1
has a resolution of 41 centimeters and provides both panchromatic and multispec-
tral imagery. It has a revisit time of 3 days and can capture up to 700, 000km2 per
day.

Table 2.1 summarizes the difference between Maxar imagery platforms. In this
work, we utilize RGB images, so all technologies except WorldView-1 can be applied.
WorldView-2 and WorldView-4 have the best spatial resolutions and a short revisit
time, so that these platforms would suit our needs the best. However, the imagery
produced by the Maxar platforms is not public, which limits its usage.

Platform name PM reso-
lution (m)

MM reso-
lution (m)

Revisit
time
(days)

DIM
(km2)

SWIR
mode

WorldView-1 0.5 – 1.7 750,000 ✗

WorldView-2 0.46 0.46 1.1 1,000,000 ✗

WorldView-3 0.31 1.24 1.1 680,000 ✓

WorldView-4 0.31 0.31 1.1 680,000 ✗

GeoEye-1 0.41 0.41 3 700,000 ✗

TABLE 2.1: Summary of Maxar imagery platforms.

2.2 Damage assessment of buildings

Assessing the damage caused to buildings is used for loss estimation1 and overall
understanding of the scale of damage caused by war or natural disasters, especially
if direct access is impossible (for example, due to shelling, occupation, or the danger
of other buildings collapsing).

1https://damaged.in.ua/

https://damaged.in.ua/
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During the past few years, growth in spatial resolution and popularization of
high spatial resolution (HSR) images unlocked many applications and possibili-
ties for research. Contrary to the approaches that used moderate-resolution remote
sensing, primarily evaluating pixel-wise changes (Yusuf, Matsuoka, and Yamazaki,
2001), newer HSR data allow the extraction of information about damage for each
building separately. For example, in Aimaiti et al. (2022), similarly to Sandhini Pu-
tri, Widyatmanti, and Umarhadi (2022), Tong et al. (2012), and Brunner, Lemoine,
and Bruzzone (2010), where either pure HSR images or their combination with ad-
ditional data sources are utilized, the authors explore the capabilities of Sentinel-1
and Sentinel-2 images for building damage assessment using change detection tech-
niques. Sentinel-1 is a Synthetic-aperture radar (SAR) satellite, meaning that the
satellite emits its own energy and measures the amount of energy reflected from the
surface. Sentinel-2 data, on the contrary, is obtained from a Multispectral imager
(MSI) and consists of visible, near-infrared (NIR), and short-wave infrared (SWIR)
bands. Using the SAR imagery of Syrian regions, the authors compared pre-war
data with the newest data, where some buildings were already ruined or partially
destroyed. For the ground-truth labels, they used the damage assessment data pub-
lished by UNOSAT. The authors used two standard algorithms for the change detec-
tion block: log ratio of intensity (Jung and Yun, 2020) on the SAR data and the Gray
Level Co-occurrence Matrix on the Surface Reflection data from Sentinel-2. Even
though buildings undergo fewer changes than the ground, some areas still had to
be excluded from the analysis because of natural phenomena. The finding only
confirms our belief that the described approach, although showing decent results
for buildings, is hardly appropriate for the fields suffering from much more rapid
changes. Moreover, the abovementioned approaches require constructing hand-
crafted image features, usually specific to the site and disaster. This limitation makes
the approach less generalizable and applicable to rapid disaster response.

Deep learning (DL) approaches generalize better to other types of buildings and
disasters, as they usually do not require hand-crafted features. Typically, the pipeline
of the DL method for the building damage assessment can be separated into two
main steps (Valentijn et al., 2020; Ge, Gokon, and Meguro, 2020):

1. Building localization, the primary outcome of which is to group all the pixels
belonging to the same building on the pre-disaster or pre-war images. For ex-
ample, Gupta et al. (2019) utilize a segmentation approach based on the UNet
architecture (Ronneberger, Fischer, and Brox, 2015).

2. Classification of the building images, which is frequently achieved by training
a Convolutional Neural Network (CNN). This step aims to create correspon-
dences between the pictures of buildings extracted in Step 1 and labels indi-
cating whether they have been damaged (or, sometimes, mapping them to the
level of damage, such as light, medium, and severe destruction). In Gupta et
al. (2019), the authors utilize the ResNet-50 (He et al., 2015) for this purpose.

Despite the popularity and effectiveness of the cascade approach described above,
there are alternative approaches. For example, in Mueller et al. (2021), the authors
classify the images of Syrian cities with a CNN and exploit the temporal and spa-
tial clustering of the damaged buildings by training a RandomForest algorithm (Ho,
1995) on the CNN output. To do this, they divide the whole dataset into smaller
patches and assign each a label (bombed/not bombed) depending on whether, ac-
cording to UNOSAT, there are destroyed buildings on this patch or not. This way,
they considered historical data throughout the war, not just images before and after,



Chapter 2. Related Work 6

and utilized the temporal consistency and spatial closeness of the destruction. Even
though this method generalizes well across Syrian cities, it does not perform well on
highly imbalanced datasets, where only a small percentage of buildings have been
ruined.

Another approach that addresses the poor generalization across different dis-
asters and proposes a DL-based solution is the one described in Ismail and Awad
(2022). By utilizing a Graph Convolutional Network, the authors aim the algorithm
to learn aggregation functions and be generalizable for rapid disaster response. De-
spite promising results in generalizing across different disasters, highly imbalanced
datasets still exhibit an issue similar to the one described by Mueller et al. (2021).

An alternative method (Gupta et al., 2019) utilizes a Siamese-UNet architecture,
meaning that there are two identical UNet networks with the same weights (Durnov,
2020). The networks are applied to the original and post-disaster images, and then
the algorithm performs the pixel-level classification of the concatenated feature maps.
The approach underperforms on the datasets with partially destroyed buildings.
Even though the algorithm correctly recognizes the ruined area, sometimes it fails
at recognizing the whole damaged building instance, incorrectly assigning several
labels to the same building, resulting in semantic inconsistency.

To solve the issue, the algorithm has to assess the damage not on the pixel level
but on the object level. There is a considerable amount of research on the application
of object-based image analysis (OBIA) and patch-based CNNs that aims to solve the
abovementioned inconsistency (see, e.g., Zhang et al. (2018), Zhang et al. (2019)).
However, most buildings are of geometric shape, which differs from the problem
that conventional OBIA approaches aim to solve. As a step-up from the regular
OBIA-integrated CNN, the authors in Zheng et al. (2021) utilize a Siamese FCN for
accurate building localization and damage assessment. The method has achieved
SOTA results and has shown the ability to generalize across types of disasters, in-
cluding man-made ones.

While there is extensive research on building damage assessment, there is very
little analysis of how well those methods generalize to the case of war-inflicted dam-
age cases. Despite the growing number of methods for accessing the damage caused
by natural disasters, there remains a gap in understanding the extent of applicabil-
ity of those solutions to war-zone buildings. Hence, further research is needed to
either extend the existing damage assessment pipelines’ generalization to damage
resulting from warfare or develop different methods. Difficulties in data collection,
labeling, and validation are one of the many factors contributing to the slow pace of
research in this field.

2.3 Crater detection

Contrary to the building damage assessment, detecting and estimating damage in
the agricultural fields has spurred much less interest in the research community. The
obstacles presented by the assessment of the war-inflicted damage to the buildings
are compounded when assessing and estimating the damage caused to the agricul-
tural fields. While there exists labeled data by UNOSAT for ruined buildings, the
ground-truth data is practically absent in the domain of agricultural fields suffered
from shelling. The task of data search, acquisition, and labeling is time- and labor-
consuming and can require expertise to distinguish between terrain elements and
craters. Moreover, due to the variety of soil types and missiles, developing an algo-
rithm that generalizes well even throughout one country is challenging.
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As crater detection is an important research topic in planetary science and plan-
etary data are more accessible, there are many methods specifically for detecting the
craters on space bodies. Due to the tasks being related, we provide an overview of
the approaches to crater detection on planetary images.

In subsections 2.3.1 and 2.3.2, we give a review of methods used for assessing the
war-induced damage to agricultural fields and crater detection on planetary data.

2.3.1 Bomb crater detection

This section summarizes the approaches to crater detection and the number of UXOs
estimations, as the latter commonly utilizes the solutions to the former. All the de-
scribed approaches use historical data from WWII. In subsections 2.3.1.1 and 2.3.1.2,
we provide the overview of the methods of bomb-induced crater detection and the
number of unexploded missiles estimation, respectively.

2.3.1.1 Bomb-induced crater detection

Most of the developed solutions utilize image classification in one way or another.
The main difference between those approaches is the feature extraction method.

For example, Jensen, Drauschke, and Förstner (2010) perform the candidate se-
lection by adopting a cross-correlation pattern-matching approach for the patterns
derived from the labeled data. For each candidate, the feature vector is computed by
applying the scale-invariant feature transform (SIFT) algorithm to the selected area
of the image. After that, the classification is performed by the Linear Discriminant
Analysis (LDA) algorithm. Furlanello et al. (2003) and Merler, Furlanello, and Jur-
man (2005) utilize a sliding window approach for candidate selection. As opposed
to LDA, they applied principal component analysis (PCA) for the dimensionality re-
duction and then classified the eigencraters (eigenvectors of the crater images) using
the AdaBoost algorithm.

Lacroix and Vanhuysse (2015) have developed a crater detection method using
only the circle detection based on the intensity gradient of the image. However, this
approach can not be applied to real-world data without any additional verification
of the outputs, as there may exist circle-shaped terrain elements or texture present.
Nevertheless, this solution may be a step up from the window-sliding method for
the candidate selection step.

Aside from purely statistical methods, there are existing applications of DL al-
gorithms to bomb crater detection. While some of them (Brenner, Zambanini, and
Sablatnig, 2018) still make use of the sliding window approach, Clermont et al. (2019)
reduced the number of candidates by performing the candidate selection using blob
detection algorithm, similar to the abovementioned work by Lacroix and Vanhuysse
(2015). Further classification was performed with the Inception ResNet (Szegedy
et al., 2017). Their solution considered the class imbalance of the dataset by setting
higher weights for false detections, making it more generalizable and robust. In con-
trast, the solution proposed by Brenner, Zambanini, and Sablatnig (2018) was trained
under the assumption that the dataset is balanced, therefore, underperformed on
real-world data, where the number of images with craters is significantly lower than
the ones without any bomb-inflicted damage.
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2.3.1.2 UXO risk estimation

As unexploded ordnances (UXOs), also called duds, are the main risk presented by
the fields with bomb-induced damage, we decided to expand on the possible ap-
proaches to estimating the number of duds. The difficulty in detecting them, even
using HSR imagery, lies not only in the relatively small size of the missile body
but also in the fact that the UXO itself might be buried. Furthermore, the differ-
ences between examples of the craters from the exploded and unexploded ordnance
should be established with the help of the professionals for each type of missile,
location, and angle from which it has been fired. This task is highly labor- and time-
consuming. Therefore, most existing approaches assume that the estimated number
of UXOs can be derived from the number of craters. For example, Juhász, Neu-
berger, et al. (2018) and Sabour, Agarius, and Sadidi (2014) suggest estimating the
risk of UXOs per patch under the hypothesis that, according to previous research
(Brenner, Zambanini, and Sablatnig, 2018; Byrnes, 2008), approximately 10-15% of
the bombs from World War II are still not exploded. The problem with those ap-
proaches is that they all assume the constant quota of unexploded bombs among
the fired or exploded ones. Such estimations are derived from practice and years of
research, which is not applicable in our case due to the variety of missiles used in
the Russo-Ukrainian war. It is nearly impossible to detect which ones were used to
produce the specific crater based on satellite imagery alone.

It is worth mentioning that most of the described approaches utilize historical
aerial imagery, which is of higher resolution compared to satellites. Additionally, it
covers a smaller area, meaning there is little to no variation in soil type and weather
conditions. Generally, all the research in the direction of bomb crater detection could
benefit from collecting the structured and publicly available dataset and developing
a benchmark for this task. Nevertheless, most of the HSR satellite and aerial imagery
is not available publicly, which is a considerable obstacle to research in this field.

2.3.2 Planetary data crater detection

Craters on space bodies are often their most defining factor, which explains the high
interest in this topic among the scholars of astrophysics. As the quality of space im-
agery progresses and allows wider applications, the research community’s interest
in automatic crater detection is growing.

Overall, we can roughly divide the solutions to automatic planetary crater de-
tection into unsupervised and supervised approaches. While the former is usually
purely statistical or utilizes classical CV algorithms, the latter includes traditional
learning algorithms and DL approaches.

Most statistical approaches exploit the fact that the majority of craters are round-
shaped or elliptical. Thus, many of them utilize either circle or edge detection al-
gorithms. One of the most straightforward statistical approaches to planetary crater
detection is the utilization of Hough transform (Salamuniccar and Loncaric, 2010).
Some of the methods (Pedrosa et al., 2017) adopt template-matching algorithms.
Both of these approaches function under the abovementioned assumption that the
craters are round or elliptical, which results in underperformance on irregular-shaped
or overlapping craters.

Supervised methods do not adopt this assumption, which makes them more ro-
bust and generalizable. For example, in (Kang et al., 2018), authors adopt a HOG-
SVM algorithm to the crater detection task. However, even with a spatial resolu-
tion of 1.4m, the smallest craters detected with the algorithm are 20m in size. Even
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though such craters are considered small for the lunar pictures, such results are not
sufficient for bomb craters. The CNN-based approaches, such as (Silburt et al., 2019;
Wang, Jiang, and Zhang, 2018), show improvement in the size of the detected lunar
craters and generalization across the old and new craters.

There is still room for research on how well the solutions for the planetary data
generalize to the bomb craters. In Geiger, Martin, and Kühl (2022), authors claim
that the model trained on lunar images performs poorly on the existing aerial images
of bomb craters. Despite having similar origins (either bomb or meteoroid), the
physical properties of craters, space bodies, and their top layers vary, impacting
the crater’s visual characteristics. For example, due to less rapid weather changes
and differences in the atmosphere structure, the craters undergo different types of
changes: those on Earth may change their appearance because of water erosion due
to rain or vegetation development, while the planetary craters face other weather
phenomena. Additionally, the craters on Earth may vary due to the soil type, type
of plant life present in the area, temperature, and so on. In contrast, the craters on
the other space bodies usually do not differ with respect to such factors.

2.4 Synthetic data

As mentioned before in this work, the problem of finding relevant and sufficient
data is crucial for automatic crater detection. The larger area and time domain we
aim to cover, the more variety in plant life, weather, used missiles, and soil type
it brings. Additionally, exploring the satellite datasets to find enough examples of
each type of crater is highly time- and labor-consuming, and the annotation of such
data requires many hours under the supervision of field experts. Thus, the question
of generating the synthetic dataset arises and becomes particularly urgent.

We are aware of only one approach to synthetic crater image generation. In
Geiger, Martin, and Kühl (2022), the authors utilize Generative Adversarial Net-
work (GAN) to perform image-to-image (I2I) translation of craters from the lunar
images to the Earth pictures. Later, they apply the YOLO (Redmon et al., 2016) ob-
ject detection system for other crater detection. Training on the combined dataset
of real and artificial images showed marginal gains compared to using solely real
images. Overall, the problem, once again, lies in the limited dataset, as even I2I
translation is performed on a limited area of the target domain.

Aside from the abovementioned underperformance, another problem with this
approach is the lack of variety. As mentioned before, the bomb craters differ in color,
the intensity of plant life, and more. With I2I translation from the lunar images do-
main, it is difficult to achieve the color changes in the background and surrounding
areas of the craters because such changes usually do not occur in planetary data.
However, generating synthetic data that could be applicable to modern bomb craters
is an essential concern for the research community.
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Chapter 3

Approach

This thesis aims to test whether the classification approaches common in building
damage assessment and bomb crater detection on historical aerial photos generalize
to our domain of interest: satellite imagery of Ukrainian agricultural fields.

We collect and annotate a dataset of natural-color satellite images and study the
applicability of different neural network architectures and the impact of their hy-
perparameters on the metrics. For evaluation, we implement metrics that can be
applied to rate the models’ performance according to various objectives.

As described in Chapter 2, existing approaches to the damage detection task in-
clude segmentation and classification. However, segmentation was only widely ap-
plied to the damage assessment of buildings (see Section 2.2), whereas classification
is the preferred algorithm for the crater detection and war-induced damage assess-
ment of agricultural fields (see Section 2.3.1). Therefore, the algorithm we adopted
for our solution is classification.

Section 3.1 describes the dataset preprocessing and annotation. In Section 3.2, we
review the metrics developed for this thesis, and in Section 3.3 – algorithm used for
the classification of the images, including augmentation and model selection meth-
ods used.

3.1 Dataset

The dataset for classification consists of the images separated into classes according
to the assigned labels. As we utilize large satellite images, our task requires splitting
the whole image into smaller patches, similar to Mueller et al. (2021), and classifying
each patch into a category. Due to the small amount of data, we only identify two
classes of damage: bombed and not bombed. The region is considered bombed if
at least one crater is present and not bombed if there are no signs of bomb-induced
damage.

3.1.1 Preprocessing

For better visibility of the craters during the annotation process and overall under-
standing of the image context, we have performed a min-max stretch between the
2nd and the 98th percentiles of each channel, as it is a standard image preprocess-
ing technique used by geographic information software (QGIS Development Team,
2009).

Let Iinput be the input image of shape (h, w, c), where h is the height, w is the
width, and c is the number of channels. Then, for each channel Ii

input we get the
following output:
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Ii
output =

Ii
input − P(Ii

input, 2)

P(Ii
input, 98)− P(Ii

input, 2)
· 255, (3.1)

where P(Ii
input, j) is the jth percentile of Ii

input. After performing these manipulations
for each channel, we stack the channels back and get the resulting image. Figure 3.1
illustrates the results of such preprocessing: on Figure 3.1a, some of the craters are
barely visible, and it may be more difficult to differentiate between a crater and a
terrain element in comparison to Figure 3.1b.

(A) Original images. (B) Images after min-max stretch.

FIGURE 3.1: An example of the preprocessing result.

The satellite imagery providers typically save and distribute images according
to how the Earth is positioned, which means they are sometimes rotated north-up.
This results in patches with no information at the edges (see Figure 3.2) and may
lead to overfitting of the model because the parts near the edge contain less image
information, leading to the majority of them being assigned the ’not bombed’ label.

FIGURE 3.2: Examples of patches with no information at the edges.

To avoid further overfitting of the models on such dark corners without jeopar-
dizing the size of the dataset, we rotate and crop the image to minimize the black
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borders.
First, we extend the image’s borders to avoid artifacts at the corners. After that,

the image is thresholded so that all the pixels containing information are white. We
perform the morphological closing operation with an elliptical kernel to reduce pos-
sible noise from black pixels that can occur inside the picture content (see Figure
3.3b). After extracting the contours, we find the one with the largest area and its
minimum bounding rectangle. After that, the transformation matrix is constructed
and applied so the resulting image is rotated and cropped to the content (see Figure
3.3c). Algorithm 1 shortly describes the process of the rotation of the image.

Algorithm 1: Rotate and crop satellite image
Input: image I
Output: transformed image I′, transformation matrix M, output shape S
// extend borders to avoid artifacts at the corners after the

morphological operations
1 Iextended ← extended I with borders of I by 100 pixels in all directions with

black pixels;
// resize to reduce noisy contours

2 Ithresholded ← binary image of Iextended;
3 Imorphed ← result of morphological closing to Ithresholded with an elliptical

kernel;
4 Contours← contours in Imorphed;
5 ContourMax ← the contour with the largest area;
6 Rectangle←minimum bounding rectangle for ContourMax;
7 θ, (cx, cy), (w, h)← angle, center, and size from Rectangle;
// define destination points for affine transformation

8 Dest← ((0, w), (0, 0), (h, 0), (h, w));
9 M← affine transformation from Rectangle to Dest;

10 I′ ← warp Iextended using M to size (w, h);

(A) Input image. (B) Image after border expan-
sion, thresholding, and mor-

phological closing.

(C) Warped image.

FIGURE 3.3: An example of image rotation and crop.

3.1.2 Labeling

Typically, the annotation process for the classification datasets consists of assigning
labels to every image. However, in our case, the pictures are patches of large images,
and the size of such patches is predefined at the splitting step. Therefore, in case of
changing the patch size, it would be required to reannotate the whole dataset. Ad-
ditionally, for the annotation process, the general context is crucial to understand
whether some details on the image are bomb-induced craters or terrain elements,
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and by cutting images into patches and presenting them to the annotation team sep-
arately, we remove the patch out-of-context, possibly reducing the quality of the
labeling.

Therefore, the labeling process, performed by the team of volunteers, consisted
of creating a segmentation mask covering all the craters on the image. Then, the
annotations were validated by the authors of the work and exported. To produce
a dataset suitable for the classification, all the images were post-processed so that
if a patch contained a labeled crater, it was assigned the ’bombed’ label and ’not
bombed’ otherwise. Algorithm 2 describes the process of assigning the labels to the
patches.

This approach sometimes produces patches where only a few pixels of the mask
are present. Such patches are assigned the ’bombed’ label, even though no crater is
visible. To resolve the issue, we empirically established a threshold for the minimal
number of mask pixels on a patch needed to declare it ’bombed’, which minimizes
the number of incorrect labels in the train/validation dataset.

Algorithm 2: Assign labels to the image patches according to the mask
Input: image I, mask M, patch size S, output paths bombedPath,

notBombedPath
Output: None

1 for i← 0 to ⌊Height(I)
S ⌋ do

2 for j← 0 to ⌊Width(I)
S ⌋ do

// get the beginning and the end of the current patch
3 x ← i · S; y← j · S; xend ← x + S; yend ← y + S;

patch← I[x:xend, y:yend]; patchmask ← M[x:xend, y:yend]; if
∑ patchmask ≤ threshold then

4 Label patch as bombed;
5 else
6 Label patch as not bombed;
7 end
8 end
9 end

To summarize, the modifications described in this chapter allow us to get the
dataset applicable for the classification task. Moreover, they make our approach
adaptable to the patch size, meaning we can change it and produce a dataset with an
arbitrary patch size. Additionally, the labeled data can be used for other approaches,
such as segmentation or (after some modifications) object detection.

3.2 Metrics

We have utilized several metrics to evaluate and select the best classification algo-
rithm. Most of the agricultural fields in Ukraine, especially those away from the
frontlines, are not bombed, resulting in the class imbalance in the test dataset. In
contrast, the training and validation datasets are relatively balanced or imbalanced
the other way (the bombed class is better represented). Such inequality in the num-
ber of class elements risks running into the base-rate fallacy.

The base-rate fallacy is a tendency to neglect information about the base rate –
in our case, the percentage of the agricultural fields that have war-induced damage
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FIGURE 3.4: Base-rate fallacy example. Taken from Washington State
Department of Health (2022)

present. Therefore, tracking both true and false predictions rate is crucial for un-
derstanding the model’s learning. Figure 3.4 illustrates an example of the base-rate
fallacy in the case of vaccinated and unvaccinated patients.

In our case, the "bombed" class is considered the positive class, and vice versa,
"not bombed" - is the negative one; therefore, the positive class in our dataset is
represented better than in the real-world data. Hence, the False Positive Rate (FPR) is
crucial to understanding the model’s actual performance, as it is essential to reduce
the number of false alarms.

In this case, tracking precision and recall, which have the number of true positive
predictions (TP) in the numerator, is not the best choice of the metrics. Those metrics
would still be high even when a classifier yields no true negative (TN) predictions.

Precision = TP
(TP+FP) Recall = TP

(TP+FN) (3.2)

In this thesis, one of the metrics that we have used for the evaluation of the clas-
sification methods is the area under the receiver operating characteristic (AUROC),
as it measures the trade-off between True Positive Rate (TPR) and False Positive Rate
(FPR), and taking into account FPR, as mentioned above, is critical in our case.

Another metric that we have implemented is a True Positive Rate at a fixed False
Positive Rate (TPR@FPR). It measures the classifier’s performance at a fixed FPR
threshold. For example, if we allow FPR=0.4 (40% of the not bombed patches being
classified as bombed), then we can find the TPR that corresponds to it, obtaining the
value of TPR@FPR=0.4. Figure 3.5 illustrates an example of the ROC curve and how
it is related to the TPR@FPR.

This metric is applicable in scenarios where the cost of FP and FN predictions
are different. For example, in one application, one may need to minimize FPR to
avoid false alarms, while the other task may require FNR minimization. By fixing
the FPR threshold, we can measure the performance of the classifier at a specific
point, which can be changed based on the application and desired sensitivity to
the negative samples. In our case, reducing false positives is crucial; therefore, we
measure TPR@FPR=0.2, TPR@FPR=0.1, and TPR@FPR=0.05.
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FIGURE 3.5: Example of the ROC curve and TPR@FPR values.

3.3 Algorithm

We utilize the classification approach for the bomb-induced damage assessment
of the task. Similarly to Mueller et al. (2021), Furlanello et al. (2003), and Mer-
ler, Furlanello, and Jurman (2005), for the candidate selection step, we separate the
whole image into patches and run each one through a classifier.

3.3.1 Augmentation

To avoid overfitting and expand the diversity of the dataset, we perform several
data augmentations, similar to those applied by Mueller et al. (2021): first of all, the
image is rotated randomly by an angle in the range (−45◦, 45◦), randomly flipped in
horizontal and vertical directions. As the craters may result from the missile being
fired from different locations, their shape and form may change, and the rotation
and flip augmentations prevent the overfitting. The image can also be normalized
to the training set mean and standard deviation depending on the hyperparame-
ters set. Also, depending on the abovementioned hyperparameters, we perform the
upsampling of the underrepresented class.

3.3.2 Classification approaches

For the classification algorithm, we have tested two architectures: the ResNet-50
(He et al., 2015) and the Vision Transformer (ViT) (Lee, Lee, and Song, 2021). For
the training, we experimented with pretrained weights and evaluated the models
pretrained on the ImageNet (Russakovsky et al., 2015) dataset and a dataset with
Sentinel-2 images.

3.3.2.1 ResNet

ResNet (short for Residual Network) is a family of neural networks designed to
mitigate the risk of vanishing gradients that comes with increasing the depth of the
network. The main idea introduced with ResNet is the usage of skip connections
that enable the flow of information between earlier and later layers, allowing the
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network to learn more effectively by allowing the gradient values to reach the early
layers of the network.

FIGURE 3.6: ResNet-50 building block. Taken from He et al. (2015).

The ResNet-50 model is a member of the ResNet family that consists of 50 layers.
It is widely used for image classification tasks, as well as other tasks in computer
vision. Building blocks of ResNet-50 consist of three convolutional layers with batch
normalization and ReLU activation. The block is followed by a skip connection that
adds its input to the output (see Figure 3.6). These blocks are also called ’bottleneck
blocks.’

3.3.2.2 Vision Transformers (ViT)

(A) Shifted Patch Tokenization. (B) Locality Self-Attention.

FIGURE 3.7: ViT architectures of the Shifted Patch Tokenization and
Locality Self-Attention. Taken from Lee, Lee, and Song (2021)

Vision Transformer (ViT) is a family of architectures applied to computer vision
tasks that, instead of standard computer vision blocks (such as convolution), utilize
transformer blocks, which are widely used for natural language processing (Vaswani
et al., 2017). ViT models take an image as an input and flatten it into a sequence of
patches later fed through a transformer block to learn a representation of the image
(see Figure 3.7). It showed a significant improvement in the image classification
tasks when pretrained on large datasets.

ViT Small Patch is an architecture from the ViT family that passes smaller patches
(for example, 16× 16) to the transformer block. It makes ViT Small Patch more ef-
fective for tasks that require high-resolution images and increases its ability to rec-
ognize more fine-grained details. On the negative side, it increases the training time
and requires more computational resources.
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3.3.3 Model selection

The architectural details of a neural network affect its ability to learn and generalize.
Deeper networks can learn more complex features but are more prone to overfitting.
Models that use smaller patches (e.g., ViT Small Patch) are generally better at rec-
ognizing fine-grained details but require more computational time and resources.
Hyperparameter choice also affects the model’s performance. In this thesis, we have
searched the following hyperparameters: base size, batch size, minority class up-
sampling presence, dropout rate, learning rate, learning rate schedule patience, nor-
malization presence, optimizer, weight decay, and the usage of pretrained weights
(see Table 4.3).

The base size hyperparameter is the size to which all the input patches are re-
sized. It is only used for ResNet models, as the ViT Small Patch architecture requires
fixed-size input images. A larger base size can benefit the model’s ability to rec-
ognize smaller details on the image. A smaller base size decreases computational
resources and time required for the model training but may make the model less
sensitive to smaller features in the input image.

The batch size hyperparameter determines the number of input samples fed into
the model between two subsequent model training updates. For ResNet models,
a larger batch size may increase memory usage, but it reduces training time. ViT
models are based on self-attention, which requires processing all input images si-
multaneously. Therefore, the batch size may not significantly impact training time,
but a larger batch size may result in better generalization.

Minority class upsampling is performed during training by altering the proba-
bility of the underrepresented class (in our case, ’not bombed’ one) occurring in the
batch. Generally, the upsampling may improve the model performance, especially
on imbalanced datasets, by allowing it to learn better representations of the minority
class. However, the upsampling may increase the time and memory required for the
training process.

Dropout is a regularization technique that prevents overfitting in neural net-
works. It randomly sets some neurons’ weights to zero during training. As a re-
sult, the model learns more robust features, as it can not rely too much on any neu-
ron. The dropout hyperparameter determines the probability that the neuron will
be dropped during the training forward pass. A lower dropout rate can generally
lead to better performance on the training set but worsen generalization abilities. A
higher dropout rate results in worse metrics while training but a great generalization
ability. However, as mentioned in Steiner et al. (2021), the peak drop probability for
which the ViT models show improvement in terms of regularization is 0.1. There-
fore, higher dropout values may lead to a decrease in performance.

The learning rate hyperparameter is crucial for the model’s training and perfor-
mance. It determines the step size of the optimization algorithm, directly affecting
the model’s weights and minimizing the loss function. The model may take longer
to converge if the learning rate is too low. On the other hand, with a large learn-
ing rate, the optimization algorithm may overshoot the optimal value and fail to
converge.

Learning rate schedule patience is a hyperparameter that determines how often
the learning rate is reduced by a factor (known as learning rate decay). Smaller
patience means the learning rate will be reduced more often, sometimes leading
to longer training times but better performance. A larger learning rate schedule
patience results in faster training and, sometimes, suboptimal performance.
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Input image normalization is a popular preprocessing technique. It is usually
performed by calculating each image channel’s statistical mean and standard devi-
ation on the training dataset and then normalizing images using these values. This
technique ensures that all the neural network inputs are on the same scale, which
helps with faster convergence.

The optimizer used for the training may affect the computational resources needed
for the training and the final performance. AdamW and Stochastic Gradient Descent
(SGD) are among the most popular optimizers. AdamW is an adaptation of Adam
Optimizer. It introduces weight decay directly into the weight update, combining
it with adaptive learning rates. Such an approach causes the model weights to stay
small and the optimizer robust to noisy gradients. Typically, AdamW converges
faster than the other optimizers. SGD is a classic optimization approach that up-
dates the weights based solely on the gradients of the loss function and a learning
rate. Usually, it requires more tuning in order to find the optimal learning rate and
other hyperparameters and may take longer to converge. However, it requires less
memory than AdamW. AdamW is an excellent choice for smaller datasets, whereas
SGD is used more for larger datasets and models with fewer parameters.

Weight decay is a hyperparameter that affects the regularization ability of the
neural network. It adds the magnitude of the parameters to the loss function, en-
couraging them to stay reasonably small. Usually, this technique is used to prevent
overfitting, but in case of high weight decay values, the model may underfit and
perform sub-optimally.

Using pretrained weights significantly affects the model performance and train-
ing. The weights are usually learned from a large dataset (such as ImageNet). Due to
the usage of such weights, the model can already be capable of capturing important
features and patterns needed for the task, as it already has some knowledge about
the domain, contrary to the model with randomly initialized weights. Usage of the
pretrained weights can speed up the training process and increase performance, es-
pecially when the training set size is small.

It is important to note that each hyperparameter depends on the other hyperpa-
rameters, model architecture, and the dataset. To find the best set of hyperparame-
ters, it is best to perform a hyperparameter search.
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Chapter 4

Experiments

4.1 Implementation and training details

The whole pipeline for our solution was implemented using PyTorch library (Paszke
et al., 2019) and PyTorch Lightning framework (Falcon and The PyTorch Lightning
team, 2019). The model architectures and pretrained weights were taken from the
Torch Image Models (timm) Python library. Other libraries, such as NumPy (Harris
et al., 2020), Scikit-learn (Pedregosa et al., 2011), and OpenCV (Bradski, 2000), were
used for data processing and visualizations. As an annotation tool, we used the
CVAT (Sekachev et al., 2020). We used Weights and Biases software (Biewald, 2020)
for experiment tracking, hyperparameters search, hyperparameters importance es-
timation, and model comparison. Code snippets for the model’s fine-tuning, as well
as model pretrained weights, were taken from the TorchGeo (Stewart et al., 2022)
documentation. All the training was executed on a Google Colab’s NVIDIA Tesla T4
GPU.

4.2 Dataset

The dataset used in this thesis was collected with the help of a representative of an
NGO that works on humanitarian projects aimed at supporting Ukraine. As of the
time of writing, the dataset consists of satellite imagery data collected from Planet
SkySat satellites (see Section 2.1.2). The spatial resolution of images is 0.5× 0.5m.
The imagery covers a geographical area in the Bakhmut region, a frontline city in
Ukraine.

Patch size, pix-
els

’bombed’ class
count

’not bombed’
class count

Total dataset
count

64 3130 443 3573
128 1009 886 1895
256 576 29 605

TABLE 4.1: Class distribution in the train/validation dataset depend-
ing on the patch size.

As described in Section 3.1.2, the large satellite images can be split into patches
of various sizes and are assigned labels depending on the craters’ presence on them.
For future experiments, we have used patches of various sizes, resulting in datasets
of different sizes and class distributions. Table 4.1 shows how the patch size affects
the dataset size and class distribution. For size of patch 64× 64 pixels, finding the
optimal threshold for minimum mask pixels number is difficult. The main reason
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behind this is that the masks are imperfect, and while inaccuracies are easier to filter
out with larger patches, they are more significant with smaller ones. The dataset
is highly imbalanced if the patches are 256 × 256. This is caused by the fact that
the patch is so large it almost always contains at least one crater, so it is classified
as bombed. We used 128 × 128 patches for our further experiments, as such size
produced the most balanced dataset.

Class label Class count in
train set

Class count in
validation set

Class count in
test set

’bombed’ 909 100 182
’not bombed’ 798 88 433
total 1707 188 615

TABLE 4.2: Class distribution and size of subsets.

Table 4.2 describes the subsets’ size and class distribution in them. The train
and validation sets were created by randomly splitting all the image patches. The
training set accounts for 90% of the total elements, and the validation consists of the
remaining 10%. All the data from the train/validation dataset comes from one large
agricultural field in the Bakhmut region. The test set consists of images that also
come from this region but from a different field. They were captured by the same
satellite and have the same spatial resolution and other characteristics. Even though
the images from the test set come from another field, they are still from the same
region and are close to each other, so it is fair to assume that the soil type does not
differ significantly from the one in the train/validation sets.

However, the class distribution in the test set significantly differs from that of the
train/validation sets. The ’not bombed’ class is much more represented and dom-
inates in terms of class count compared to the ’bombed’ class, while the class dis-
tribution in the train and validation sets is relatively balanced, with a slight bias to-
wards the ’bombed’ class. Moreover, the test set shows noticeable distinctions from
train/validation sets in terms of the inclusion of various terrain elements (such as
trees and hills) and textures that are underrepresented or absent in the train/validation
sets. Because of such differences, the test set exhibits a potential distribution shift,
leading to variations in the performance and generalization of the model.

4.3 Hyperparameters selection

For the best model selection, a hyperparameters search has been performed. Table
4.3 summarizes the hyperparameters we searched. For a detailed explanation of
how each parameter can affect the training process and performance, see Section
3.3.3.

4.4 Results

The main metric that we used for ranking the models by performance is the area un-
der the receiver operating characteristic (AUROC). We also used TPR@FPR, which
is described in detail in Section 3.2.
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Hyperparameter name Values
Base size 64, 128
Batch size 32, 64
Minority class upsampling True, False
Dropout 0, 0.2
Learning rate 1e-04, 1e-05
Learning rate schedule patience 3, 5
Normalization True, False
Optimizer AdamW, SGD
Weight decay 0, 5e-5, 5e-4
Pretrained weights ImageNet, Sentinel-2

TABLE 4.3: Hyperparameters search details.

4.4.1 Hyperparameters importance analysis

For evaluation of how each hyperparameter affects the performance, we utilized the
approach used by Weights and Biases (Biewald, 2020). It provides correlation and
importance scores for each hyperparameter. As explained in the lecture by Howard
(2018), the correlation is not enough for the correct selection of the most important
hyperparameters, as it does not consider the fact that some of them have different
scales. Therefore, the introduced importance metric is delivered from a random
forest algorithm trained on the hyperparameters as inputs and the target metric as
an output. Later in this thesis, we only use the importance score and the sign of the
correlation score, as the absolute value of the correlation does not depict the true
relations between the metric and the hyperparameter value, as explained above. As
we calculated the scores with respect to the AUROC metric for the validation set,
the higher the importance score, the more influence the hyperparameter has on the
AUROC. If the correlation sign is positive (+), the higher hyperparameter values
correspond to the higher AUROC (therefore, better performance), and vice versa.

4.4.1.1 ResNet-50

Hyperparameter name Importance
score

Correlation sign

Batch size 0.220 +
Weight decay 0.216 −
Normalization 0.195 +
Learning rate 0.175 +
Base size 0.146 +

TABLE 4.4: Importance score and correlation sign with respect to AU-
ROC metric calculated on the validation set for the ResNet-50 model.

Table 4.4 contains five hyperparameters with the highest importance scores and
the corresponding correlation sign values for the ResNet-50 model. The batch size
value correlates positively with the AUROC, which is surprising, as larger batches
usually lead to poor generalization. Another unexpected positive correlation in this
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table is the learning rate because, typically, high learning rates may make an opti-
mization process difficult. Weight decay is the second most important hyperparam-
eter and it negatively correlates with the AUROC – as mentioned in Section 3.3.3,
higher weight decay values may lead to underfitting. Normalization is also present
in the list, and it, as expected, positively affects the performance. Similarly, the base
size value also positively impacts the AUROC, which is also anticipated, as by resiz-
ing the image to a smaller size, we lose some information.

4.4.1.2 ViT Small Patch

Hyperparameter name Importance
score

Correlation sign

Dropout 0.296 −
Weight decay 0.248 +
Learning rate 0.152 +
Batch size 0.096 +
Normalization 0.061 −

TABLE 4.5: Importance score and correlation sign with respect to AU-
ROC metric calculated on the validation set for the ViT Small Patch

model.

Table 4.5 contains the importance score and the correlation sign of the five most
important hyperparameters for the ViT Small Patch model. As expected for the ViT
models, high dropout values lead to a decrease in performance. Contrarily to the
ResNet-50 model, here we observe a positive correlation between the weight decay
value and the AUROC. Similarly to ResNet, the learning rate and batch size corre-
late positively with performance. However, the positive impact of the batch size in
ViT models is more anticipated, as described in Section 3.3.3. Surprisingly, the nor-
malization of the input images negatively affected the AUROC value in this case.

4.4.2 Models Comparison

To compare and demonstrate the hyperparameters’ impact on performance, we se-
lect the best model for each architecture and the model that differs in the hyperpa-
rameters with the highest importance score. We select the best-performing model
among the models that differ from the best in the most important hyperparameters.

From tables 4.6 and 4.7, we can see that diverging from the automatically selected
in Section 4.4.1 values of the hyperparametrs does indeed change the model perfor-
mance the way that it was expected during the importance score and correlation sign
calculation.

4.4.3 Examples of model outputs

For the demonstration, we have selected the best-performing ViT Small Patch model
(see Table 4.7), as it has shown the best metric scores. All its hyperparameters are
given in Table 4.8.

Figure 4.1 illustrates examples of the model’s output on the images that were
present in the train and validation sets. As can be seen, the model performs well and
correctly classifies both bombed and not bombed regions in Figure 4.1b. However, it
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Hyperparameter/metric
name

Value in the best-performing
model

Value in the model that dif-
fers in the most important
hyperparameters

Batch size 64 32
Weight decay 0 5e-4
Normalization True False
Learning rate 1e-4 1e-5
Base size 128 64
AUROC 0.998 0.55
TPR@FPR=0.2 0.99 0.24
TPR@FPR=0.1 0.99 0.05
TPR@FPR=0.05 0.98 0.01

TABLE 4.6: Comparison of the best-performing ResNet-50 model and
the model that differs in the most important hyperparameters. Met-

rics are calculated on the validation set.

Hyperparameter/metric
name

Value in the best-performing
model

Value in the model that dif-
fers in the most important
hyperparameters

Dropout 0 0.2
Weight decay 5e-4 5e-5
Learning rate 1e-4 1e-5
Batch size 64 32
Normalization False True
AUROC 0.999 0.87
TPR@FPR=0.2 0.99 0.73
TPR@FPR=0.1 0.99 0.71
TPR@FPR=0.05 0.99 0.69

TABLE 4.7: Comparison of the best-performing ViT Small Patch
model and the model that differs in the most important hyperparam-

eters. Metrics are calculated on the validation set.

sometimes mislabels the complicated and textured terrain elements, such as regions
with trees, present in the top-left corner of the Figure 4.1a.

To test out the generalizability of the approach, we performed testing on the
images from the test set.

Figure 4.2 shows examples of the images that were separated into patches and
classified by our best-performing neural network. The input images underwent the
min-max stretch in the same way the images from the training and validation sets
did. In both examples, the network typically incorrectly labels more textured areas
as bombed ones. For example, the right-hand side of the Figure 4.2b is occupied not
by field but by some terrain element that was not represented in the training set;
most of this region is assigned the ’bombed’ label as it is more textured. Meanwhile,
most patches from the part with the agricultural field are labeled correctly. Simi-
larly, in Figure 4.2a, most patches that were misclassified as bombed contain texture
(white lines or spots).

Table 4.9 contains the metrics measured on the test images from Figure 4.2. It can
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Hyperparameter name Values
Base size −
Batch size 64
Minority class upsampling False
Dropout 0
Learning rate 1e-04
Learning rate schedule patience 5
Normalization False
Optimizer AdamW
Weight decay 5e-4
Pretrained weights ImageNet
Architecture ViT Small Patch

TABLE 4.8: Hyperparameters and the architecture of the best-
performing model.

be observed that for the image in Figure 4.2a, the metrics indicate great model perfor-
mance as opposed to the image in Figure 4.2b. This supports our claim that textured
elements that are not parts of the agricultural field are associated with a decrement
in the model performance, as the former figure does not contain this many regions
with textures that were not represented in the training dataset compared to the latter
one.

Metric Value for image
on Figure 4.2a

Value for image
on Figure 4.2b

Value for both
images

AUROC 0.88 0.56 0.61
TPR@FPR=0.2 0.70 0.20 0.24
TPR@FPR=0.1 0.60 0.09 0.11
TPR@FPR=0.05 0.40 0.03 0.05

TABLE 4.9: Values of the metrics measured on the test dataset.

These results demonstrate, first of all, that the textures and terrain elements that
are underrepresented in the training dataset are the main causes of the incorrect out-
puts of the model. Despite some mistakes in these cases, the network shows a great
ability to generalize to new locations. However, the locations from the training set
and test images are within close proximity. Due to the lack of data, we can not make
any conclusions about the network’s ability to generalize to agricultural fields from
different regions with different soil types, plant life, etc. Similarly, judging its gener-
alizability across images with different weather conditions is difficult. To address the
aforementioned issues and increase the model’s generalizability and performance,
one potential avenue is to collect a larger and more diverse dataset. Additionally,
finding and utilizing the data about exact agricultural fields’ locations and bounds
to exclude the terrain elements that are not parts of the agricultural fields from the
analyzed images is the way to tackle the problem of underperformance in such ar-
eas.
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(A) A region that contains various terrain elements.

(B) A region that does not contain highly textured terrain elements.

FIGURE 4.1: An example of the model output on the data from the
train and validation datasets. Patches that were assigned the ’not
bombed’ label are colored in green, and the ones that were assigned

the ’bombed’ label are in red.
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(A)

(B)

FIGURE 4.2: An example of the model output on the data from the test
set. Patches that were assigned the ’not bombed’ label are colored in
green, and the ones that were assigned the ’bombed’ label are in red.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

In this thesis, we explored the application of classification methods for detecting
and assessing shelling-inflicted damage on agricultural fields. As classification is the
most popular approach to damage assessment of buildings and crater detection, we
explored how well such methods generalize to the domain of Ukrainian agricultural
fields and war-inflicted damage.

We showed that the classifier trained on our dataset shows great metrics on the
train and validation sets and can generalize to the new agricultural fields in the same
region. However, it tends to misclassify images that contain textures and terrain
elements that are either complex or underrepresented in the training set (e.g., snow
and sand). This fact implies that the underperformance on the new data may be fixed
by expanding the variety in the training data in both spatial and temporal domains.

5.2 Future work

The first step in our planned future work is dataset expansion. We consider collect-
ing data from different locations and dates to enhance our dataset’s diversity, in-
cluding images from Ukraine and other countries that have suffered from shelling.
We believe that the growth in dataset size will have a significant positive influence
on the models’ performance.

Next, the future work includes two main directions. First, we would like to
experiment more with classification approaches, increasing their performance and
generalizability. Another direction includes exploring the applicability of the seg-
mentation approaches to our problem.
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