
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Global Motion Understanding in
Large-Scale Video Object Segmentation

Author:
Volodymyr FEDYNYAK

Supervisor:
Roman RIAZANTSEV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences and Information Technologies
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
https://www.linkedin.com/in/volodymyr-fedynyak-1717b919a/
https://www.linkedin.com/in/roman-riazantsev-9b100711a/
http://apps.ucu.edu.ua
http://apps.ucu.edu.ua


i

Declaration of Authorship
I, Volodymyr FEDYNYAK, declare that this thesis titled, “Global Motion Understand-
ing in Large-Scale Video Object Segmentation” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:



ii

“No matter how difficult it was for us, but now we definitely won’t be ashamed .”

Valerii Zaluzhnyi



iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Global Motion Understanding in Large-Scale Video Object Segmentation
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Abstract

In this thesis, we show that transferring knowledge from other domains of video
understanding combined with large-scale learning can improve robustness of Video
Object Segmentation (VOS) under complex circumstances. Namely, we focus on in-
tegrating scene global motion knowledge to improve large-scale semi-supervised
Video Object Segmentation. Prior works on VOS mostly rely on direct compari-
son of semantic and contextual features to perform dense matching between cur-
rent and past frames, passing over actual motion structure. On the other hand,
Optical Flow Estimation task aims to approximate the scene motion field, expos-
ing global motion patterns which are typically undiscoverable during all pairs sim-
ilarity search. We present WarpFormer, an architecture for semi-supervised Video
Object Segmentation that exploits existing knowledge in motion understanding to
conduct smoother propagation and more accurate matching. Our framework em-
ploys a generic pretrained Optical Flow Estimation network whose prediction is
used to warp both past frames and instance segmentation masks to the current
frame domain. Consequently, warped segmentation masks are refined and fused
together aiming to inpaint occluded regions and eliminate artifacts caused by flow
field imperfects. Additionally, we employ novel large-scale MOSE 2023 dataset to
train model on various complex scenarios. Our method demonstrates strong per-
formance on DAVIS 2016/2017 validation (93.0% and 85.9%), DAVIS 2017 test-dev
(80.6%) and YouTube-VOS 2019 validation (83.8%) that is competitive with alter-
native state-of-the-art methods while using much simpler memory mechanism and
instance understanding logic.
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Chapter 1

Introduction

Video Object Segmentation (VOS) is a fundamental task in Video Understanding,
aiming to segment multiple objects through an entire video sequence. In this work,
we address semi-supervised video object segmentation, i.e. the scenario where only
the first frame annotations are given, or the annotations are given only for the frames
where the corresponding object appears in the video for the first time.

The key feature of Video Object Segmentation is the complete agnosticity of the
actual class information for considered objects. This allows a very broad range of
possible applications, including but not limited to autonomous driving, sports and
video editing.

Prior works achieved significant success in VOS, focusing on making solution
highly generalizable and robust under different complex scenarios while maintain-
ing real-time efficiency and low GPU memory footprint. AOT [40] proposed to map
objects to a pre-defined set of feature vectors making possible simultaneous pro-
cessing of many instances. While most works use feature memory to correctly treat
occlusions and eliminate errors during propagation, XMem [7] points out the high
memory consumption of such an approach and designs efficient unified multi-type
memory inspired by Atkinson-Shiffrin model. DeAOT [41] notes the poor perfor-
mance of existing methods when the objects drastically change in scale and appear-
ance during the video, presenting a novel feature decoupling block to treat such
cases more robustly. ISVOS [35] argues that instance understanding matters in VOS
and employ an instance segmentation branch based on state-of-the-art instance seg-
mentation architectures increasing the VOS performance for video clips with a high
number of similar objects.

Existing approaches rely on dense attention-based feature matching [32] to prop-
agate segmentation masks through the video sequence. Even though this achieves
remarkably high scores on existing benchmarks, a single all-pairs correlation search
is not capable of capturing global motion context and uncovering relevant motion
patterns. In this work, we argue that motion understanding matters in VOS. In-
spired by ISVOS proposing to reuse existing instance segmentation architectures to
improve instance understanding for VOS domain, we propose to reuse existing op-
tical flow estimation architectures to propagate instance information between video
frames.

We present WarpFormer, an VOS architecture that benefits from global motion
structure knowledge. We adopt a generic VOS architecture for spatial-temporal
matching similar to [40] and replace short-term memory mechanism with optical
flow warp, for which we employ a flow estimation network. The propagation pro-
cess is tackled by optical flow warp while the spatial windowed attention is used to
refine warped segmentation mask and inpaint occlusions. Finally, refined mask is
fused with long-term memory matches and passed to decoder.
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Time

Previous Frame Current FrameInverse optical flow
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FIGURE 1.1: Matching process with Optical Flow guidance. Existing
methods adopt windowed attention to perform short-term matching,
though, employing a single attention module to perform both mo-
tion compensation and semantic search leads to performance degra-
dation. Contrastively, in WarpFormer we decouple motion and se-

mantic contexts to eliminate aforementioned ambiguity.

We conduct additional training of our model on large-scale MOSE 2023 [8] dataset
to achieve robustness under complex VOS scenarios. We evaluate our method on
DAVIS 2016 & 2017 and YouTube-VOS 2019 benchmarks. Conducted experiments
demonstrate that both exploiting global motion structure and large-scale training
improve evaluation scores and qualitative results.

In Chapter 2 we provide the generic description of Video Object Segmentation
problem along with the central concepts and relevant challenges. Chapter 3 overviews
the existing approaches on VOS and optical flow estimation. The proposed Warp-
Former architecture is described in details in Chapter 4. The model training details
and related hyperparameters are provided in Chapter 5. In Chapter 6 we discuss the
conducted experiments and analyze the results. Finally, we conclude the contribu-
tions of presented work and outline future research directions in Chapter 7.
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Chapter 2

Problem Formulation

2.1 Video Object Segmentation

This work focuses on problem of semi-supervised Video Object Segmentation. Given
a video clip and the segmentation masks for some set of objects for the first frame,
and optionally for some other frames, the task is to predict the segmentation masks
for the entire video sequence. The reference first frame defines the set of the objects
and the initial segmentation masks. As new objects may appear for the first time in
the middle of the video, their segmentation masks may be given separately.

2.2 Class agnosticity

One of the descriminative features of VOS problem is class agnosticity, i.e. the op-
tions for reference objects are not limited with predefined set of classes and could
include literally anything. On the other hand, object detection, instance segmenta-
tion and video instance segmentation problems are class-dependent making VOS in-
dependent and self-contained domain of research. Therefore, class-agnostic formu-
lation settles the clear requirement for VOS methods to have strong generalization
power and demonstrate robustness while performing on previously unseen object
classes. Another central problem in VOS is developing large-scale properly labeled
video datasets covering a wide variety of reference objects categories.

FIGURE 2.1: Semi-supervised Video Object Segmentation formula-
tion. For the first frame segmentation masks for some object instances
are given. The target is to correctly predict the segmentation masks
for all the following frames. Challenging scenarios typically include:
similar objects (rows 1, 3, 4), complex occlusions (rows 2, 4), drastic

scale (row 1) and shape (rows 2, 3) change. Image taken from [22].
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FIGURE 2.2: Overview of propagation and matching approaches.
Short-term matching (a) adopts only the previous frame for propaga-
tion. Long-term matching keeps the first (b) and optionally some in-
termediate (d) frames in memory bank to perform memory readout.
Recent VOS methods usually adopt both short-term and long-term
matching making prediction by fusing two matching outputs (c, d).

Image taken from [22].

2.3 Mask propagation

The two fundamental concepts in VOS approaches are mask propagation and mem-
ory matching. Mask propagation is a process of subsequent prediction of object
segmentation mask starting from the reference mask given for the first frame. The
order of video sequence traversing is strictly aligned with timeline. In mask propa-
gation both the predicted masks for the previous frames and the reference masks for
the first frame may be used to predict the mask for the current frame.

2.4 Memory matching

Memory matching stands for seeking the similarities between the current and past
frames based on visual representations and predicting object masks based on found
correspondences. Long-term matching focuses on memorization of objects appear-
ance in different timestamps of video keeping visual representations for different
poses, shapes and backgrounds, which is crucial for handling occlusions and demon-
strating stable long-time performance. Some approaches introduce short-term match-
ing, sometimes called short-term propagation, i.e. predicting the object mask using
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FIGURE 2.3: Memory bank readout operation. The multiple frames
are kept in memory bank covering different object poses, scales and
backgrounds. For the query (i.e. current) frame visual features are
matched with visual features stored in memory and the best corre-
spondence is selected. The most important features for the query ob-
ject are shown as bright regions on memory frames. Image taken from

[22].

the immediate predecessor frame and limiting the search space with object neigh-
bour locations assuming smooth motion. Short-term matching ensures temporal
consistency and correct handling of dynamic scale and shape changes.
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Chapter 3

Related Work

3.1 Optical Flow Estimation

Optical flow estimation plays a crucial role in our study. The primary function of
optical flow is to model the movement of individual points from one image frame to
another. Initial efforts in this field centered on optimization problems, maximizing
visual similarity with regularization terms [11, 2, 3, 29]. The entry of deep neural
networks, particularly convolutional networks, substantially propelled progress in
this area.

Early deep learning models such as FlowNet [9] and FlowNet2.0 [14] set the stage
for more sophisticated methods. These include SpyNet [26], PWC-Net [30], and
LiteFlowNet [13], which employ coarse-to-fine and iterative estimation approaches.
Despite their advancements, these models struggled to capture small, fast-moving
objects during the coarse stage.

3.1.1 Recurrent refinement approaches

The Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) model [31] intro-
duced significant improvements, a novel architecture employing a coarse-and-fine
(multi-scale search window per iteration), and a recurrent approach to optical flow
estimation.

FIGURE 3.1: RAFT [31] optical flow estimation method architecture
overview. Subsequent video frames are first separately encoded with
feature and context encoders. The outputs of feature encoders are
used to build 4D correlation volumes representing the feature match-
ing. Recurrent refinement block adopts convolutional GRU to itera-
tivelty update estimated optical flow by querying the 4D correlatation
volume with current optical flow and combining the result with con-

text encoder features. Image taken from [31].
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Following the introduction of RAFT, subsequent studies like GMA [16] and DEQ-
Flow [1] focused on enhancing flow accuracy or improving computational efficiency.

3.1.2 Transformer-based approaches

Flowformer [12], a recent state-of-the-art recurrent method, further extends the RAFT
architecture. It incorporates a transformer-based strategy that aggregates cost vol-
ume in a latent space, building upon the work of Perceiver IO [15]. This was the
first model to use transformers [32] for establishing long-range relationships in op-
tical flow, and it achieved state-of-the-art performance. FlowFormer leverages the
cost volume as a compact similarity representation and expands the search space
globally by aggregating similarity information using a transformer architecture.

Another cutting-edge approach is GMFlow [37], which treats optical flow as a
global matching problem and employs a specialized Transformer for feature en-
hancement, global feature matching, and flow propagation. This approach outper-
forms the RAFT on the Sintel benchmark while offering greater efficiency [37].

3.2 Video Object Segmentation

3.2.1 AOT

A key approach that has delivered groundbreaking results in the field of Video Ob-
ject Segmentation (VOS) is AOT (Associating Objects with Transformers for VOS)
[40]. This method relies on a Long Short-Term Transformer (LSTT) block which com-
prises of self-attention, short-term attention, and long-term attention mechanisms to
distill features from input imagery. Here, long-term attention gathers data from ex-
tended memory frames, while short-term attention disseminates information from
the preceding frame. The outputs from both long-term and short-term attention
units are integrated in a feed-forward network, which conveys information to the
decoder that subsequently yields the mask estimation for the current frame.

FIGURE 3.2: AOT [40] method architecture overview. The ob-
ject mask information is encoded to the embedding space with the
identity assignment procedure. Each object is associated with ran-
dom vector form learnable identity bank. The mask embedding is
then combined with frame’s visual representation and propagated
through time with Long Short-Term Transformer (LSTT) block. LSTT
block adopts two separate attention matching branches whose pre-
dictions are further fused and passed to a feed-forward network. Im-

age taken from [40].
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Moreover, AOT employs a synergistic architecture that integrates an attention
map for the attention blocks and a 4D correlation volume, as seen in the RAFT ar-
chitecture [31], to compute the equivalent spatial correlation between frames. The
short-term attention in AOT and the 4D correlation volume in RAFT both determine
the correlation between features from successive frames, which can be consolidated
in the shared section of the joint architecture as a cohesive motion representation.

3.2.2 DeAOT

Building upon the hierarchical propagation concept introduced in AOT, DeAOT
[41] (Decoupling Features in Hierarchical Propagation for Video Object Segmenta-
tion) presents an advanced method for semi-supervised video object segmentation.
DeAOT separates the hierarchical propagation of object-agnostic and object-specific
embeddings into two distinct branches to avoid the dilution of object-agnostic visual
data in deeper propagation layers. To offset the increased computation stemming
from dual-branch propagation, DeAOT debuts a Gated Propagation Module that is
meticulously designed with single-head attention. Experimental results illustrate
that DeAOT surpasses AOT in both precision and efficiency, setting new SoTA in
several benchmarks, including YouTube-VOS, DAVIS 2016, and DAVIS 2017.

3.2.3 XMem

FIGURE 3.3: XMem [7] method architecture overview. Sensory
memory is updated with every new frame and used for short-term
propagation. Working memory keeps a fixed number of previous
frames. The most important features from working memory are
added to long-term memory via memory consolidation procedure.

Image taken from [7].

XMem [7] is a Video Object Segmentation (VOS) architecture that’s specifically
designed for long videos. Its key innovation lies in the application of the Atkinson-
Shiffrin memory model to develop an architecture with multiple independent, yet
deeply interconnected feature memory stores. The system incorporates a rapidly
updated sensory memory, a high-resolution working memory, and a compact, sus-
tainable long-term memory. A memory potentiation algorithm is employed to regu-
larly consolidate actively used working memory elements into the long-term mem-
ory, helping to avoid memory overload and minimizing performance degradation
for long-term prediction. Alongside a novel memory reading mechanism, XMem is
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FIGURE 3.4: ISVOS [35] method architecture overview. Instance
Segmentation branch predicts instance segmentation masks given the
set of learnable queries. Transformer decoder’s output queries are
further refined with Query Enhancement block and considered as fea-

tures for VOS temporal-spatial matching. Image taken from [35].

able to significantly outperform state-of-the-art techniques on long-video datasets,
while maintaining competitive performance on short-video datasets.

3.2.4 ISVOS

The paper ISVOS [35] further highlights the importance of instance understanding in
VOS. While recent memory-based methods have achieved impressive results in VOS
through dense matching between current and past frames, these methods often falter
when confronted with large appearance variations or viewpoint changes caused by
object and camera movements. To mitigate these issues, the authors propose a two-
branch network for VOS, which incorporates a query-based instance segmentation
(IS) branch to delve into the instance details of the current frame. This approach
allows the integration of instance-specific information into the query key, facilitating
instance-augmented matching. These works collectively underscore the importance
of instance understanding in VOS and propose solutions that effectively integrate
this concept into existing VOS methods.

3.2.5 Segmnet Anything

The Segment Anything [18] provides a crucial advancement in the field of image
segmentation and, by extension, Video Object Segmentation (VOS). The authors de-
veloped an efficient model, the Segment Anything Model (SAM), that was trained
on the largest segmentation dataset to date, consisting of over 1 billion masks on 11
million licensed, privacy-respecting images. The model was designed to be prompt-
able, enabling it to perform zero-shot transfer to new image distributions and tasks
with impressive performance, often matching or exceeding prior fully supervised re-
sults. In the context of VOS, the SAM’s feature encoder can be employed to enhance
instance understanding, thus addressing a critical challenge in VOS – the ability to
discern between instances of objects with similar appearances but different temporal
and spatial contexts.
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FIGURE 3.5: RMNet local-to-local matching. In the case of presence
of several similar looking objects global-to-global matching fails to
correctly distinguish them while local-to-local matching ensures tem-

poral consistency. Image taken from [36].

3.3 Optical Flow-based Video Segmentaiton

Optical flow-based Video Object Segmentation has progressed substantially over
time. One of the early works in this domain, MaskTrack [17], combined object
segmentation and tracking by employing optical flow for object mask propagation
and refining the results using a convolutional neural network (CNN). Building on
this foundation, OSVOS [4] further enhanced segmentation performance. More ad-
vanced methods like PDB [42] and RVOS [33] emerged, employing multi-stage frame-
works and recurrent neural networks, respectively, while still leveraging optical
flow.

The Efficient Regional Memory Network (RMNet) [36] has emerged as a com-
pelling method for video object segmentation, showcasing its efficacy in addressing
this challenging task. With a focus on efficiency, RMNet leverages a regional mem-
ory mechanism to capture and retain relevant information across frames. This ap-
proach enables the network to effectively handle long-term dependencies and com-
plex object interactions, leading to accurate and robust segmentation results. RMNet
stands out in the landscape of video object segmentation methods by striking a bal-
ance between accuracy and computational efficiency, making it suitable for real-time
or resource-constrained applications. By incorporating regional memory, RMNet
demonstrates its ability to leverage temporal cues and spatial context, empowering
it to excel in various scenarios and significantly advance the field of video object
segmentation.

We build on these foundational works in our proposed method, utilizing op-
tical flow for short-term frames and attention mechanism for long-term frames to
enhance the segmentation process.
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Chapter 4

Method

4.1 Background

Video object segmentation is a challenging task that often involves tracking multi-
ple objects of interest in a single video. Previous approaches to this problem have
focused on matching and propagating a single object, requiring independent match-
ing and propagation of each object in multi-object scenarios [34]. This can result
in increased GPU usage and inference time, hindering the efficiency of the overall
pipeline.

To address this challenge, AOT proposed an identification mechanism for em-
bedding masks of any number into the same high-dimensional space, enabling multi-
object scenario training and inference as efficient as single-object ones [40]. This
mechanism involves creating a predefined set of M trainable vectors, known as the
identity bank, and picking a vector from this bank for each pixel corresponding to
a specific class. During training, the vector corresponding to each class is randomly
selected to ensure uniform training of the identity bank. To add object-specific infor-
mation to the feature maps in our architecture, which are at the 1

16 spatial size of the
input video, we adopt a patch-wise identity bank strategy similar to AOT [40]. This
involves dividing the input mask into non-overlapping 16 × 16 patches, matching
each pixel in the patch with the corresponding vector from the identity bank, and
obtaining the final result for the identity bank by summing the values for the pixels
inside the patch. This operation also encodes some geometry inside the patch and
can be implemented as a single 16 × 16 convolution.

4.2 Warp Refinement Transformer

The straightforward approach for VOS uses optical flow to propagate masks from
the previous frame to the current frame. However, occlusions and optical flow im-
perfections can lead to errors in mask propagation, degrading the quality of the
propagated mask with each frame. Additionally, this approach cannot handle newly
appeared parts of an object. Our proposed method, WarpFormer, aims to refine the
estimated mask using semantic information, which is easier to interpret after motion
was decoupled. The overall architecture of WarpFormer is shown in Figure 4.1.

To achieve this, some previous frame Ik and mask Mk is used as a reference point.
Our method calculates optical flow using a given Flow Estimator:

fk→t = FlowEstimator(Ik, It)

To estimate the current frame mask, the following equation is used:

Mwarp
k = Warp(Mk, fk→t)
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FIGURE 4.1: The overview of the WarpFormer architecture. Best
viewed in color. Optical flow branch takes the current and previ-
ous frames to compute motion fields. Sensory memory branch warps
both previous images and predicted masks to the current frame do-
main. Both long-term and short-term images and masks are trans-
formed to the common embedding space with feature encoder and
identity assignment mechanism. Subsequently, latent memory rep-
resentations are passed to Refinement Transformer which performs
long-term and short-term matching. Finally, matching results are
fused together and passed to the decoder which reconstructs the orig-
inal spatial resolution and outputs the predicted segmentation mask.

The method then warps the previous frame Ik using the same optical flow fk→t to
obtain Iwarp

k . Next, the features Xt and Xk are extracted from the current frame It and
Iwarp
k using a Feature Encoder and embedding Yk of our mask Mwarp

k is formed from
an identity bank. Similarly, we create features Xm and identification embedding Ym
from the long-term memory frames Im with masks Mm. The resulting information is
fed into our Refinement Transformer Block, which outputs the refined mask M̂t. Fi-
nally, the decoder upsamples the refined mask estimation to the spatial dimensions
of the current frame.

4.3 Refinemenet Transformer Block

Many recent cutting-edge VOS methods have utilized the attention mechanism and
have demonstrated promising results. To define the attention mechanism formally,
we consider queries (Q), keys (K), and values (V). The attention operation can then
be defined as follows:

Attn(Q, K, V) = Corr(Q, K)V = softmax
(QKT
√

C

)
V,

where C is the number of channels.
In our method, we incorporate the identification embedding into the attention

operation for mask refinement as follows:
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FIGURE 4.2: The overview of the WarpFormer modules. Best viewed
in color. Firstly,the current image features are passed to self-attention
block. Subsequently, features are used for short-term and long-term
matching implemented with windowed cross-attention and global
cross-attention respectively. Finally, the matching outputs are added
and processed with another self-attention. Every attention module is

equipped with layer normalization and a skip connection.
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AttnID(Q, K, V, ID) = Attn(Q, K, V + ID)

Following the common transformer blocks, our Refinement Transformer Block
(RTB) first employs a self-attention layer on the features of the images to learn the
association between the targets within our frames (Figure 4.2a). Our RTB, similarly
to the AOT[40], is then divided into two branches: long-term and short-term.

The long-term branch (Figure 4.2c) is responsible for aggregating information
from long-term (reference) memory frames. It utilizes simple cross-attention, de-
fined as:

CrossAttn(Xt, Xm, Ym) = AttnID(XtWk, XmWk, XmWv, Ym),

where Xm and Ym are the features and masks embeddings of the long-term mem-
ory frames. Besides, Wk and Wv are trainable projections for matching and refine-
ment, respectively.

The short-term (sensory memory) branch (Figure 4.2b) propagates information
from the previous frames by taking a look at only some neighboring patches to ap-
ply matching. Since image changes between consecutive frames are smooth and
continuous, this approach is only more powerful as we convert our previous frames
to the current frame domain after warp. The short-term branch utilizes windowed
cross-attention:

WindowedCrossAttn(Xt, Xl , Yl |p) = CrossAttn(Xp
t , XN(p)

l , YN(p)
l ),

where Xl and Yl are the features and masks embeddings of warped previous
frames, Xp

t - feature of Xt at location p and N(p) is a λ × λ spatial neighborhood
centered at location p, where λ is window size. We implement windowed cross-
attention by including a relative position bias B:
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WindowedCrossAttn(Q, K, V) = softmax
(QKT
√

C
+ B

)
V

Finally, the outputs of the long-term and short-term branches are combined to-
gether in one more self-attention layer.
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Chapter 5

Implementation Details

5.1 Network details

To study performance capabilities and contributions impact we introduce two vari-
ants of network architecture. Namely, WarpFormer-S (Small) is an efficient imple-
mentation of the proposed method, which adopts MobileNet-V2 [27] as encoder
backbone, only a single reference frame is exploited for long-term memory. Al-
ternatively, WarpFormer-L (Large) is a large-scale implementation, for which we
adopt cutting edge transformer-based encoder Swin-B [20]; following [40], we ap-
pend every 2nd frame to long-term memory bank for training and every 5th frame
for evaluation. For both architecture variants we use FPN decoder with Group Nor-
malization [19]. We employ Global Motion Aggregation (GMA) [16] as an optical
flow estimating network for both WarpFormer-S and WarpFormer-L.

Following [40], we set the number of identification vectors M to 10 in order to
align it with the maximum object number in most of benchmarks. For encoders and
patch-wise identity bank, their final resolution is 1

16 as of an input image and mask.
For self-attention and cross-attention blocks in Warp Refinement Transformer we use
traditional multi-head architecture [32] with Feed-Forward layer and Layer Normal-
ization. The embedding dimension is set to 256, the number of heads is 8 and the
hidden dimension of Feed-Forward layers is 1024. For windowed cross-attention
used to refine warped sensory memory, we employ original implementation [20]
with relative position bias and additionally equip learned relative positional embed-
ding [28]. The window size is set to 15. We also apply fixed sine spatial positional
embedding to the self-attention following [5].

5.2 Training details

We train both architecture variants in two stages. On the first stage, the model is
trained for 40K optimization steps, while the second stage takes 60K steps. During
the entire training process, we employ a mixture of DAVIS 2017 [25, 4] train and
YouTube-VOS 2019 [38, 39] train datasets in 5 : 1 proportion. Additionally, we study
adopting MOSE 2023 [8] as additional training data, in which case we apply DAVIS,
YouTube-VOS and MOSE mixture with proportion 5 : k : p where k + p = 1. Initial
value of kstart = 0.5 linearly decays during the training to a final value kend = 0.25.
More detailed description of datasets is presented in Section 6.1. For both stages we
use curriculum sampling strategy [23]. Notably, ground truth memory masks are
used for temporal-spatial matching during the first stage, while second stage only
implies an utilization of the first reference mask providing better supervision for
inference setup. Identity banks are frozen after the first stage following [40].
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We adopt AdamW optimizer [21] with a one-cycle learning rate schedule. Initial
learning rate of lrstart = 3 × 10−4 declines to a final value of lrend = 2 × 10−5 in
polynomial manner with 0.9 decay factor. We also use learning rate warm-up [10]
for 3000 steps. In order to prevent overfitting, we set the learning rate for the encoder
to 0.1 of the overall learning rate. Following [7], we use bootstrapped cross entropy
and dice losses with equal weighting. For both stages, we use a batch size of 8.
WarpFormer-L model training is distributed across four RTX 3090 GPUs, while for
WarpFromer-S we use only two RTX 3090 GPUs. The entire training process takes
around 40 hours for the large model and 35 hours for the small one.

5.3 Video augmentations

We employ a variety of video augmentations to prevent overfitting on the seen data.
Specifically, we apply random scaling followed by object-balanced random crop-
ping to the sampled sequence. Additionally, color jitter, random Gaussian blur and
random grey-scaling are applied to RGB images.

5.3.1 Dynamic merge augmentation

In order to better adapt our model to a multi-object scenario, we adopt dynamic
merging augmentation. To enrich generated sequence with more objects, we gener-
ate another sequence of the same length from a different video clip and overlay it on
the top of the first one. In details, the merging process is as follows: for pair of cor-
responding frames from the first and second sequence the resulting frame at pixel
(x, y), denoted by Imerge(x, y), is set to I1(x, y) if no objects from the second image
are present at that pixel, and I2(x, y) otherwise.

For both training stages we employ the full set of augmentations, for the DAVIS
and YouTube-VOS dynamic merge augmentation is applied with probability 0.4,
for MOSE merge augmentation is not used since it already features complex multi-
object scenes.
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Chapter 6

Experiments

6.1 Evaluation

6.1.1 Metrics

In order to evaluate our models we use traditional VOS metrics as proposed in [25].
J score for region similarity evaluation. J score (Jaccard index) is defined as

the intersection-over-union (IoU) rate of the predicted and ground-truth segmenta-
tion mask. Given a predicted mask M̂ and ground-truth mask G:

J =
|M̂ ∩ G|
|M̂ ∪ G|

F score for contour accuracy evaluation. To estimate contour matching accu-
racy, one finds the contour-based precision Pc and recall Rc between the boundaries
of the predicted and ground-truth mask. Subsequently, one computes a F1-score as
a simple harmonic mean:

F =
2PcRc

Pc + Rc

Scores are averaged on whole video clip separately for each object. J &F score
is the average of J score and F score presenting a good trade-off between boundary
quality and region matching.

6.1.2 DAVIS 2016

DAVIS 2016 [24] is a single-object VOS benchmark containing 20 video sequences.
Even though single-object scenario is significantly less complex then the multi-object
setup, the benchmark features various challenging scenarios including heavy occlu-
sions, objects changing in shape, scale and appearance, fast movements and unfa-
vorable environment settings.

6.1.3 DAVIS 2017

DAVIS 2017 [25] benchmark complements DAVIS 2016 with multi-object video clips.
It contains 205 different objects and features a 16.1% disappearance rate [8]. Bench-
mark presents train, validation and test-dev splits containing 60, 30 and 30 sequences
respectively. While validation split doesn’t introduce a high amount of unseen dur-
ing training classes, test-dev is much more challenging featuring complex circum-
stances in most of videos.

We evaluate our method on DAVIS 2016 & 2017 using the default 480p 24FPS
videos, not benefiting from full-resolution details. Also we do not apply any test-
time augmentations like multi-scale inference [6].
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6.1.4 YouTube-VOS

YouTube-VOS [38, 39] benchmark introduces a large-scale VOS dataset covering a
wide variety of in-the-wild videos. YouTube-VOS 2019 training and validation splits
contain 3471, 474 video sequences respectively. Dataset features 91 object categories
(7755 objects in total), 26 of which are not present in training split. The explicit an-
notation of unseen classes is available and the official evaluation tool additionally
computes separate metrics for seen and unseen classes to benchmark the generaliza-
tion power of the approaches. The disappearance rate is only 13% [8], so, in general,
YouTube-VOS implies less challenging circumstances compared to DAVIS.

While evaluating our method on YouTube-VOS 2019 validation split we exploit
all intermediate frames of the videos to benefit from smooth motion implying more
accurate optical flow. Even though we use 24 FPS sequences during evaluation, 6FPS
version is used during training and for metric computation.

6.1.5 MOSE 2023

MOSE 2023 [8] (CoMplex video Object SEgmentation) is a novel VOS benchmark
featuring extreme scenarios of the video sequence which are not handled good enough
by existing VOS methods. The main features of introduced videos include: large
number of crowded and similar objects, heavy occlusions by similar looking objects,
extremely small-scale objects and reference masks covering only a small region of
the whole object. MOSE contains 1507 training and 311 validation video clips with
36 object categories (5200 objects in total). MOSE features overall disappearance rate
of 28.8% which is significantly higher compared to classic VOS benchmarks.

FIGURE 6.1: Sample sequences from MOSE 2023 [8] dataset. The
scenes feature complex occlusions, large number of similar looking

objects and poor quality of reference masks. Image taken from [8].

6.2 Comparison with State-of-the-art Methods

Our method doesn’t adopt complex memory model used in existing methods (XMem
[7]), neither it features special architecture injecting instance segmentation logic to
benefit from better instance-specific understanding (ISVOS [35]). Also both our
small and large models feature only a single transformer block for spatial-temporal
matching while existing methods (AOT [40], DeAOT [41]) use up to three blocks.
Instead, we incorporate additional training data from MOSE 2023, allowing Warp-
Former to tackle scenarios with heavy occlusions, large number of overlapping sim-
ilar objects or objects dramatically changing in appearance and scale.
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TABLE 6.1: The quantitative evaluation on multi-object bench-
marks YouTube-VOS 2019 and DAVIS 2017. * denotes training on

MOSE 2023. Bold denotes the best or three best results.

YouTube-VOS 2019 Val DAVIS 2017 Val DAVIS 2017 Test

Methods Js Fs Ju Fu J &F J F J &F J F J &F FPS

AOT-T 79.6 83.8 73.7 81.8 79.7 77.4 82.3 79.9 68.3 75.7 72.0 51.4
DeAOT-T 81.2 85.6 76.4 84.7 82.0 77.7 83.3 80.5 70.0 77.3 73.7 63.5
WarpFormer-S 79.0 85.1 73.5 82.8 80.1 77.6 84.2 80.9 66.2 76.1 71.1 37.0

WarpFormer-S* 79.0 85.3 73.1 82.5 80.1 77.8 84.3 81.0 65.9 76.1 71.0 37.0

CFBI+ 81.7 86.2 77.1 85.2 82.6 80.1 85.7 82.9 74.4 81.6 78.0 3.4
RMNet 74.0 82.2 80.2 79.9 77.4 81.0 86.0 83.5 71.9 78.1 75.0 -
STCN 81.1 85.4 78.2 85.9 82.7 82.2 88.6 85.4 73.1 80.0 76.1 19.5
XMem 84.3 88.6 80.3 88.6 85.5 82.9 89.5 86.2 77.4 84.5 81.0 20.2
ISVOS 85.2 89.7 80.7 88.9 86.1 83.7 90.5 87.1 79.3 86.2 82.8 -
Swin-B AOT-L 84.0 88.8 78.4 86.7 84.5 82.4 88.4 85.4 77.3 85.1 81.2 12.1
Swin-B DeAOT-L 85.3 90.2 80.4 88.6 86.1 83.1 89.2 86.2 78.9 86.7 82.8 15.4
WarpFormer-L 83.2 88.9 78.1 84.9 83.8 81.1 88.9 85.0 76.4 84.9 80.6 23.9

WarpFormer-L* 83.3 89.1 78.0 85.0 83.8 82.4 89.3 85.9 76.3 84.9 80.6 23.9

6.2.1 Quantitative comparison.

The comparison of WarpFormer with other state-of-the-art methods on DAVIS 2017
validation, DAVIS 2017 test-dev and Youtube-VOS 2019 validation validation may
be found in Table 6.1. The quantitative comparison with relevant existing methods
on DAVIS 2016 validation are listed in Table 6.2a.

Without training on MOSE 2023, our Swin-B WarpFormer-L achieves state-of-
the-art performance on DAVIS 2016 single-object benchmark scoring 93.0% J &F .
Being evaluated on multi-object benchmarks, model demonstrates highly competi-
tive performance wrapping up with top-ranked scores i.e. 85.0% and 80.6% J &F
on DAVIS 2017 validation and test-dev splits and 83.8% J &F on Youtube-VOS 2019
validation.

Trained only on Youtube-VOS and DAVIS, our MobileNet-V2 WarpFormer-S
outperforms most of its competitors on both single-object and multi-object bench-
marks. Namely, it scores 88.9%, 81.0% and 71.0% J &F on DAVIS 2016 validation
and DAVIS 2017 validation & test-dev. YouTube-VOS 2019 validation score is 80.1%
J &F . We believe that strong and balanced performance under different complex
scenarios, simple architecture and lightweight encoder along with agnosticity of ac-
tual flow estimation method make WarpFormer-S ideal candidate for usage in vari-
ous industrial applications.

6.2.2 Qualitative comparison.

The qualitative comparison of state-of-the-art approaches and our method is visu-
alized in Fig. 6.2. Existing methods fail to reconstruct fine-grained details under
the rapid motion circumstances. In contrast, our method benefits from global mo-
tion field and is much more robust to motion blur. On the other hand, adopting
MOSE as additional training data gives enough supervision to successfully handle
overlapping similar objects without having special architecture design, as instance
segmentation branch [35] or feature decoupling module [41].
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Query Frame Ground Truth RMNet DeAOT XMem Ours

FIGURE 6.2: Qualitative comparison between WarpFormer and sev-
eral state-of-the-art VOS methods. Best viewed in zoom. We don’t
include ISVOS [35] since there is no source code available. For all

methods we used DAVIS2017 val sequences in 480p.

6.3 Ablation study

6.3.1 Training with MOSE 2023

Adopting MOSE 2023 as training data gives a significant boost on MOSE 2023 vali-
dation split so that both our WarpFormer-S and WarpFormer-L models achieve state-
of-the-art performance among competitors, scoring 51.7% and 60.0% J &F respec-
tively. One the other hand, performance on the classic benchmarks experience an
insignificant boost, likely because they doesn’t feature any similar extreme scenar-
ios. However, they focus on circumstances with a large number of object classes and
classes unseen during training, along with a wide variety of challenging environ-
ments, while MOSE 2023 lacks such flexibility. Wrapping up, even minor improve-
ments on classic benchmarks while training with MOSE 2023 indicate the high ro-
bustness and performance capacity of the proposed method. The quantitative com-
parison with other methods on MOSE 2023 validation are listed in Table 6.2b.

TABLE 6.2: Additional Quantitative comparison. * denotes training
on MOSE 2023. Bold denotes the best result.

(A) The quantitative evaluation on DAVIS 2016.

Methods J F J &F

AOT-T 86.1 87.4 86.8
DeAOT-T 87.8 89.9 88.9
WarpFormer-S 87.2 90.5 88.9

RMNet 88.9 88.7 88.8
STCN 90.8 92.5 91.6
XMem 90.4 92.7 91.5
ISVOS 91.5 93.7 92.6
Swin-B AOT-L 90.7 93.3 92.0
Swin-B DeAOT-L 91.1 94.7 92.9
WarpFormer-L 90.7 95.3 93.0

(B) The quantitative evaluation on MOSE 2023.

Methods J F J &F

STCN 46.6 55.0 50.8
RDE 44.6 52.9 48.8
SWEM 46.8 54.9 50.9
WarpFormer-S* 47.7 55.6 51.7

XMem 53.3 62.0 57.6
Swin-B AOT-L 53.1 61.3 57.2
Swin-B DeAOT-L 55.1 63.8 59.4
WarpFormer-L* 55.1 64.9 60.0
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6.3.2 Optical Flow benchmark

We benchmark different optical flow estimation methods during evaluation on DAVIS
2017. As our architecture is completely agnostic to the actual implementation of
the flow estimator, we test various approaches in terms of performance / resource
requirements trade-off. For RAFT-based models [31, 16, 12], we also try various
numbers of iterative flow updates. To demonstrate the impact of flow-warped win-
dowed attention refinement, we also include "zero-flow", which implies identity
transformation; in this case, our sensory memory processing degenerates to sim-
ple windowed attention similar to [40]. The quantitative comparison may be found
in Table 6.3.

The results indicate that our model is indeed optical flow agnostic, and its perfor-
mance is directly proportional to the quality of the flow. Additionally, for iterative-
based optical flow approaches, we observed that a smaller number of iterations was
sufficient to achieve fairly good results. This may be attributed to the model’s ability
to already capture the global motion trend. However, the accuracy of "zero-flow"
deteriorated, as our network was trained solely for refinement, rather than direct
matching.

TABLE 6.3: Optical Flow estimator benchmark. Subscript denotes
the number of flow optimization iterations.

Methods DAVIS 2017 Val: J &F Number of parameters FPS

MobileNet-V2

Zero-Flow 76.1 7.7M 57.8
RAFT-S4 80.5 8.7M 34.7
RAFT4 80.7 13M 33.6
RAFT12 80.7 13M 18.4
GMA1 80.2 13.6M 37.0
GMA4 80.8 13.6M 27.7
GMA12 81.0 13.6M 12.6
GMA32 80.8 13.6M 6.1
FlowFormer 80.7 23.9M 3.9

Swin-B

Zero-Flow 80.7 64.9M 32.2
GMA1 85.0 70.8M 23.9
GMA4 85.7 70.8M 15.2
GMA12 85.9 70.8M 10.0
FlowFormer 85.9 81.1M 3.6
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This work proposes to reuse existing motion understanding knowledge by adopting
optical flow estimation network to support a generic VOS architecture. To integrate
global motion structure we replace propagation with optical flow warping and in-
troduce Warp Refinement Transformer block, which aims to inpaint occlusions and
fuse warped segmentation mask with long-term memory information. Experimental
results show that our method demonstrates strong performance and generalization
capabilities. We believe that combining WarpFormer with complex memory mech-
anisms or specific architecture blocks for instance understanding may further boost
it effectivness.

7.2 Future Works

The main direction of the future work is investigation on more advanced options of
motion context injection. For instance, adopting deformable attention mechanism
for short-term matching implies natural consistency with motion fields, i.e. utiliza-
tion of optical flow as strong prior for learnable offsets.

Another research direction may be focused on exploring powerful yet efficient
options for image encoders and mask decoders in VOS. Large-scale pretrained Seg-
ment Anything ViT-B encoder is supposed to be able of extracting rich instance-
aware features while exhibiting the number of parameters similar to ImageNet1K
pretrained Swin-B encoder used in this work.
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