
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

News search by region and visualisation
on a map

Author:
Mykyta SAMOVAROV

Supervisor:
Dmytro PRYIMAK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Mykyta SAMOVAROV, declare that this thesis titled, “News search by region and
visualisation on a map” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

News search by region and visualisation on a map

by Mykyta SAMOVAROV

Abstract

Nowadays, people are flooded with news - many news providers constantly create
articles. For a person who wants to read about a specific region in a country, it will
be tough to segment the news by region manually. This project aims to segment
Ukrainian news by region and project it into a website with an interactive map. For
usability, users would also have the ability to select a specific period to get even
more segmented data. In order to achieve this, it would require writing the whole
workflow: from writing connectors to each news provider, creating a dataset, search-
ing for keywords, storing article data, aggregating it and finally projecting data on a
map.

Here is a link to the GitHub repository: link.
Here is a link to the website: link.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/Voravomas/newsmap
https://newsmap-web.lm.r.appspot.com/

iii

Acknowledgements
I would like to thank my supervisor Dmytro PRYIMAK for his help in this project
and our collaboration in sync-up driven development.

I also want to thank all Ukrainian guardians for their service in defending territory
from the enemy.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Problem . 1
1.2 Goal . 1
1.3 Constraints . 1

2 Related Works 2
2.1 Live Universal Awareness Map . 2

3 Backend 3
Why Python . 3

3.1 Crawler . 4
3.1.1 General algorithm . 4
3.1.2 Classes . 4

Database . 4
News provider . 5
Article . 6

3.1.3 Word dictionary . 7
Dictionary types . 7
word_list_v1.json . 7
all_words.json . 7
word_info.json . 8
words_cases_to_main.json . 8
Dictionary sources . 8

3.1.4 Keyword searcher . 9
Keyword searcher v1 . 9
Keyword searcher v2 . 9
Analyser . 10

3.1.5 Crawler script . 10
Main . 10
Crawler . 10

3.2 MongoDB . 11
3.2.1 Reason for choosing MongoDB 11
3.2.2 Collections . 11

NewsProviders . 11
Articles . 11

3.3 API . 12
3.3.1 Reason for choosing REST . 12

v

3.3.2 Reason for choosing FastAPI . 12
3.3.3 API paths . 12

Index . 12
Get total articles . 12
Validation . 13
Get articles by region . 13
Validation . 14

4 Web UI 15
4.1 Why React JS . 15
4.2 Highcharts Map . 15
4.3 Structure . 16

4.3.1 Main panel . 16
Top panel . 16
Map container . 16

4.3.2 Side panel . 16
Region name with page buttons 16
Articles . 16

5 Experiments 18

6 Summary 19
6.1 What to improve and develop . 19

Bibliography 20

vi

List of Figures

3.1 Backend structure: Crawler, MongoDB, API 3
3.2 Crawler algorithm: from raw page to region list 4

4.1 Web UI structure: Web, API . 15
4.2 Web design: Expected and actual result 16

vii

List of Tables

3.1 List of methods in Database class . 4
3.2 List of methods in NewsProvider class 5
3.3 List of class variables in NewsProvider class 5
3.4 List of methods in Article class . 6
3.5 List of class variable in Article class . 6

viii

List of Abbreviations

API Application Programming Interface
JS JavaScript
JSON JavaScript Object Notation
HTML HyperText Markup Language
REST REpresentational State Transfer
URL Uniform Resource Locator
UI User Interface

ix

Dedicated to someone who makes me wake up every day and
enjoy my life. Someone who never betrayed me and always

leads out of uncertainty to understanding.

1

Chapter 1

Introduction

1.1 Problem

The usual practice of getting information about what is happening in the world
today is reading a list of article headlines, sometimes with an image and tapping on
them if interested.

However, there is a problem with searching for something specific for people
who do not have time to read through every headline. When reading an article,
the first question is ’Where does it happen?’. The reader is interested in how far the
event happened, or maybe he or she wants to search for the news in a specific region.

The problem with local news of the desired region is, in most cases, their speed
and correctness. Events are published with a delay and sometimes contain spelling
mistakes. Article tags in global news are subjective if labelled by an editor (or even
forgotten). Another problem is that a person who may not know the name of a small
village where the event happens or by duplication of names could think of a place
in another part of a country.

1.2 Goal

The main goal of this project is to create a website that would allow its users to see
the news more conveniently. It would be a visual map that divides the country by
regions and contain news for each separate region. Also, a time field will filter news
by time.

This website will require a robust API that processes articles and stores them in
a database.

1.3 Constraints

In a place where this project interacts with the user - the UI part should be minimal
and intuitive. So, there should be only a map and a period selector. When the user
clicks on region, he or she should see a list of hyperlinked article headlines.

The following constraint is the number of news providers. It is limited because it
requires writing a script to extract each web page type from different news providers.

Another constraint is refresh time. To not be banned as a bot and not get the same
pages a dozen times, the script should wait some time for a new article to appear.

Lastly, and most importantly, news to region mapping correctness. It will be a
custom algorithm and an amateur database of keywords. It will not guarantee 100%
correctness. For controversial cases, there should be a special flag.

2

Chapter 2

Related Works

2.1 Live Universal Awareness Map

““Live Universal Awareness Map"(“Liveuamap”) is a leading independent global
news and information site dedicated to factual reporting of a variety of important
topics, including conflicts, human rights issues, protests, terrorism, weapons de-
ployment, health matters, natural disasters, and weather-related stories, among oth-
ers, from a vast array of sources.” [4]

This service was started in 2014 by two Ukrainians. Currently, the whole project
suggests maps for Ukraine, the USA, Russia and Syria and other countries. Their
website is well-developed: there is an option for a custom legend, language, and
time.

Liveuamap has its API, a website that uses it and a team of managers that man-
ually approve news. Website scrapes Ukrainian data from Twitter and Telegram
sources only.

The NewsMap solution loses in suggested maps to users and in the number of
features that the map provides.

However, NewsMap may win in two cases. The first win, the news will appear
faster on the map than in Liveuamap because first does not require human interac-
tion. The second win is news variety: script scrapes news sources from websites but
not Telegram channels.

https://me.liveuamap.com/about

3

Chapter 3

Backend

FIGURE 3.1: Backend structure: Crawler, MongoDB, API

As a backend, there are three parts:

• Crawler - An automated script that goes every N minutes over news provider
websites and sends processed articles to the database.

• MongoDB - Non-relational database containing processed articles and last ids
of news per news provider.

• API - FastApi tool that aggregates articles from MongoDB and sends them to
Web UI.

Why Python

This project, apart from the web part, is written in Python. This programming lan-
guage has the advantage of many libraries for different purposes. Here used libraries
are: requests, BeautifulSoup, pymongo, and fastapi.

Chapter 3. Backend 4

3.1 Crawler

Crawler is an automated script that iterates over news providers, checks if new arti-
cles were already added and if not, then collects them into a database.

3.1.1 General algorithm

FIGURE 3.2: Crawler algorithm: from raw page to region list

Crawler’s primary goal is to extract regions from an article. There is a raw page
in the input. Then script pulls from it only text. After that, the program searches
for the keywords in the geographical location dictionary, including only cities or
villages, and deletes other text. Finally, script maps found words with the dictionary
of word to region relation.

3.1.2 Classes

All class methods use an approach of class methods, which allows not to initialise
variables but instead logically separate them.

Database

Database class contains a number of useful methods:

Database class
Name of method Explanation
get_client A method that connects to Mongo client and re-

turns it.
get_collection A method that returns a specific collection from

Mongo client.
load_documents A method that loads a number of documents

into a specific collection.
get_news_providers_data A method that gets data from NewsProviders

collection.
update_news_providers_ids A method that sets new ids to the specific news

provider.

TABLE 3.1: List of methods in Database class

Since there is only one instance of a database, this class is not inherited.

Chapter 3. Backend 5

News provider

A news provider is an abstraction of a website that posts news articles and has a web
page with the most recent news articles.

It is worth mentioning what the id and the last processed id are.
The id is the unique string of every article.
The last processed id is the id of the last processed article. NewsProviders

Mongo collection contains a list of last processed ids.
A news provider may publish links to more than one article website. For example

website "Pravda" streams articles from itself, "LifePravda", "EPravda", and others.
Because of this, there is a mapping of a link to an article.

The Python NewsProvider class contains the following methods:

NewsProvider class
Name of method Explanation
fetch_new_links This method takes as an argument list of the

last processed ids. After that, it requests a web
page of the most recent news articles and re-
turns links only to those articles that were not
processed yet.

identify_article A method takes a link to a web article as an ar-
gument and returns its Python class represen-
tation.

process A general method for full news provider
pipeline: Request to get new article links, itera-
tion over them and processing one by one.

form_last_article_ids A method that pushes new article ids to old
ones and cuts them by limit.

extract_new_ids A method that returns only those ids that were
not processed yet.

get_links_to_download A method that returns links from ids.
links_to_ids A method that converts a link to id.
get_all_links A method that requests news provider web

pages of most recent articles and returns links.
This is the only method that is custom to every
news provider.

TABLE 3.2: List of methods in NewsProvider class

This class also have class variables:

NewsProvider class
Name of class variable Explanation
LINK_TO_ALL_ARTICLES A link to a web page that contains a list of most

recent news articles.
LINK_TO_CLASS_MAPPING A dictionary that has a mapping from article

URL to article class.
BASE_ARTICLE_CLASS A general article object of news provider. It

generates an id from the link.

TABLE 3.3: List of class variables in NewsProvider class

Chapter 3. Backend 6

Every new news provider class will use NewsProvider class methods and class
variables.

Article

An article abstraction is an interface for how to process an article from the same
website.

In order to parse raw web pages easily, the script uses a library called Beautiful-
Soup. It parses HTML page into its abstractions.

Script also uses the Datetime module and its format to keep articles publish dates
in the same type and for sorting purposes in future. When sorting dates, it is much
faster to convert them to UNIX timestamp - the number of seconds since 1970. The
basic article class contains the following methods:

Article class
Name of method Explanation
get_beautiful_page Scrape the raw page and transform it into a

BeautifulSoup object.
extract_date_published A method that extracts in-article date represen-

tation.
convert_date A method that converts in-article date repre-

sentation into commonly used Datetime for-
mat.

extract_title A method that extracts article title from BS rep-
resentation.

extract_text_body A method that extracts article body from BS
representation.

extract_tags A method that extracts article tags if they exist
from BS representation.

get_page_data A method extracts the date, title, and body from
the article.

decompose_page_by_kw This method decomposes page contents into
“places” keywords via kwsearcher and anal-
yser.

link_to_id A method that extracts page id from page link.
to_json A method that converts page content into dic-

tionary type to put this data into a database.

TABLE 3.4: List of methods in Article class

Article class also contains next class variables:

Article class
Name of class variable Explanation
NEWS_PROVIDER_NAME The name of news provider to which the article

belongs.
ARTICLE_TYPE The name of website that is part of news

provider.
LANGUAGE The language of the article.

TABLE 3.5: List of class variable in Article class

Chapter 3. Backend 7

Every kind of article in the news provider inherits and overrides methods and
class variables from the base Article class.

3.1.3 Word dictionary

In the Ukrainian language, nouns have different endings depending on the case of
the word. Due to this, word dictionaries have become much larger.

Dictionary types

A dictionary is a set of community names. There are four different types of them.
One for kwsearcherv1 and three for kwsearcherv2.

word_list_v1.json

Single dictionary used for kwsearcherv1. Schema is:

{
"OBLAST_NAME": { // Name of oblast in Ukraine.

"misto": List[str], // Cities of this oblast.
"rayon": List[str], // Districts of this oblast.
"selo": List[str], // Villages of this oblast.
"general": List[str], // Other names that refer

// to this oblast.
}

}

all_words.json

Dictionary used for kwsearcherv2. Schema is:

{
"words": List[str] // All community names

} // in lower case in all cases.

Chapter 3. Backend 8

word_info.json

Dictionary used for kwsearcherv2. Schema is:

{
"COMMUNITY_NAME": List[object] // Name of community

} // capitalised in general case.

Object structure is:

{
"oblast": str, // An integer in string form.

// It shows to what region this name belongs.
"type": str // Type of community name:

} // "selo", "rayon", "misto", "general"

The reason for using a list of objects is because of duplicating names across regions.

words_cases_to_main.json

Dictionary used for kwsearcherv2. Schema is:

{
str: List[str]

}

Here the key is community name in any form. Value is the name in the general case.
It is in a list because different community names may be equal in some cases.

Dictionary sources

General cases of community names were taken from UkraineCitiesAndVillages open
repository in GitHub from user Adushar. Every object in the source JSON file had
irrelevant data, like level_* and object_code.

Word cases were taken from dict_uk open repository in GitHub from user brown-
uk. Unfortunately, this repository is more about all Ukrainian word cases, not com-
munity names specific. That is why it contains much unneeded data and not all
community names.

Another part of word cases collected from lcorp.ulif.org.ua website. Under the
hood, this website uses data from the “Ukraine Dictionaries online” CD version.
Unfortunately, the CD version is unavailable on the web. The website also is quite
old and does not use requests to get source data.

The only way to extract data from the lcorp website was to search every word
manually. Fortunately, a tool called Selenium exists. This service’s primary purpose
is browser automation. It also has a Python library that automates some simple
browser operations.

With Selenium second part of cities was found and a big part of villages. There
are approximately 270 cities and 30000 villages in the Adushar JSON file. At the

https://github.com/Adushar/UkraineCitiesAndVillages
https://github.com/Adushar
https://github.com/brown-uk/dict_uk
https://github.com/brown-uk
https://github.com/brown-uk
https://lcorp.ulif.org.ua/LSlist

Chapter 3. Backend 9

moment, all cities’ names cases exist in the dictionary. Village names repeat, and out
of 17000 unique names, more than 15000 exist now. Other 2000 village names are
searched only in the general case.

3.1.4 Keyword searcher

Keyword searcher (kwsearcher) is functionality that searches for community names
inside raw text. There are kwsearcherv1 and kwsearcherv2.

Keyword searcher v1

This script uses word_list_v1.json dictionary. It is inefficient, finds names only in the
general case, and skips all villages’ names.

The algorithm is the following:

1. Join title and body via new line.

2. Filter only those words that start from a capital letter and clear them from text
symbols like comma, dot, and quotation symbols.

3. Join the capital words into one sentence by space.

4. Go over each word inside the word dictionary and see if it appears in a filtered
text.

Keyword searcher v2

This version uses all_words.json, word_info.json, and words_cases_to_main.json dictio-
naries by loading them once and using as a variable.

For better efficiency additional script called an analyser exists.
The algorithm of kwsearcherv2 is the following:

1. Join title and body via new line.

2. Lower the first letter after the new line, dot or quotation symbol. This will
skip those words that are not names but are just written at the beginning of a
sentence and therefore start from capital letters.

3. Filter only those words that start from a capital letter and clear them from text
symbols like comma, dot, and quotation symbols.

4. Lowercase found words.

5. For every word that exists, add it to the filtered word list with the next word
joined with a space. This will allow finding community names that consist of
two words.

6. Convert the resulting list to a set and find an intersection with all_words.json.
The result will contain words that are confirmed community names.

7. Next, for every found word, search a word in the general case for it via
word_cases_to_main.json.

8. Finally, for every found word in the general case, add information about this
word via word_info.json to returning list.

Chapter 3. Backend 10

This script converts raw text into a list of found community names and information
of them.

After this, data from the article title and body, along with article tags, if they
exist, go through the analyser.

Analyser

The primary purpose of the analyser is to transform found community names and
information about them into belonging to a specific region and confidence in it.

Currently, confidence is 0.5 for villages and 1 for cities.
An analyser goes over tags, and if it appears to be the name of a region, it adds

it to the dictionary of region, confidence, and places.
The same algorithm processes words from kwsearcherv2 but does not check

them since they are already processed.
It is essential to say that if an article had confidence in region 0.5 because of the

found village and then a city in this region is found, then the overall confidence in
the region is 1.

3.1.5 Crawler script

Crawler script file contains of two functions called crawler and main.

Main

Main is a function that never ends (in while True cycle). First, it gets the Mongo client
and extracts news providers’ names and last article ids from the NewsProviders
collection. Then it executes crawler and gets processed article data and new last
article ids from it. After that, it loads documents into Mongo collections. Finally, it
halts for some amount of time.

Crawler

Crawler goes over each news provider with their last article ids. It executes the
process method via already defined Python classes. Then it adds processed articles
to the general list and adds updated last article ids to the defined news providers.
Finally, it returns both variables.

Chapter 3. Backend 11

3.2 MongoDB

3.2.1 Reason for choosing MongoDB

A non-relational database was selected for this project because of its speed and adap-
tivity to quickly changing schema.

3.2.2 Collections

NewsProviders

This collection contains data about sources where data is collected.
Schema for documents is:

{
"_id": id, // id of document.
"news_provider_name": str, // A name of a news provider.
"news_provider_ids": List[str] // A list of N last article ids.

}

News providers may delete an article. Because of this database saves a list of the last
articles ids.

Articles

This collection contains articles. Schema for documents is:

{
"_id": id, // An id of document.
"article_id": str, // An id of an article in form

// {news_provider_name}_{id}.
"title": str, // A title of the article.
"news_provider_name": str, // A name of news provider.
"article_type": str, // A sub type of news provider.
"link": str, // A link to the article.
"time_published": str, // The time when article is published.
"published_timestamp": int, // The time when article

// is published in form timestamp.
"time_collected": str, // The time when article was “scraped”
"text_language": str, // The language of article.
"tags": List[str], // Tags of article.
"regions": Object

}

Chapter 3. Backend 12

where “region” is:

{
str: {

"confidence": float, // A confidence belonging to region.
"places": List[str] // Locations found in article.

}
}

Schema with “regions” is more complex. This project uses only 25 regions of Ukraine.
Dictionary data type shows the association of article and region. Python dictionary
has keys and values, where keys should be unique and hashable.

The script uses mapping from region name to its number in alphabetical order
for memory efficiency.

Since MongoDB uses BSON, it does not allow for keys to be numbers. That is
why in the current implementation, keys are integers cast to a string.

3.3 API

3.3.1 Reason for choosing REST

This architectural style perfectly fits fast and small applications.

3.3.2 Reason for choosing FastAPI

FastAPI is a modern Python library for building its REST APIs. It is lightweight,
fast, has descriptive documentation and has a large community.

3.3.3 API paths

Index

• Type of request: GET

• Path: "/"

• Returns: {"message": "It works!"}

Developers use this path for debugging to understand that API is running.

Get total articles

• Type of request: GET

• Path: "/articles/total/{from_time}/{to_time}"

• Returns: Dict[str, Dict[int, int]]

Web UI uses this request to get total amount of articles per region filtered by
period. It shows a number on a map under every region.

Calculation of this request completes on the side of MongoDB via aggregation.
Aggregation in MongoDB is a series of grouping data, making operations over it and
returning it. Aggregation pipeline is:

https://bsonspec.org/spec.html

Chapter 3. Backend 13

pipeline = [
{"$match": {"published_timestamp": {"$gte": from_time,

"$lte": to_time}}},
{"$project": {"regions": {"$objectToArray": "$regions"}}},
{"$unwind": "$regions"},
{"$group": {"_id": "$regions.k", "count": {"$sum": 1}}},

]

First $match filters only those articles that were published in user-selected timestamp
period. Next $project converts “regions” dict to List datatype. Next $unwind creates
copies of article documents with separate values from unpacked “regions” list. Last
$group maps region number to amount of articles where this number is found.

Validation

For this API path the only custom validation is that from_time should be less than
to_time and from_time should be positive or zero.

Get articles by region

• Type of request: POST

• Path: "/articles/"

• Returns: Dict[str, List[ArticleModel]]

This request returns full articles documents filtered by period and region num-
ber. The request requires a limit and offset because returning all documents at a time
is not memory-efficient.

UI displays articles in chunks. Every time user clicks an arrow for “next page”,
the web sends another request with an offset value.

Calculation of this request requires two MongoDB requests. The first request
returns only article ids. The second request returns full article documents based on
the ids found in the first request.

Aggregation pipeline is:

pipeline = [
{"$match": {"published_timestamp": {"$gte": from_time,

"$lte": to_time}}},
{"$sort": {"published_timestamp": 1}},
{"$project": {"regions": {"$objectToArray": "$regions"}}},
{"$unwind": "$regions"},
{"$match": {"regions.k": {"$eq": str(region)}}},
{"$project": {"regions": 0}},
{"$skip": offset},
{"$limit": limit}

]

Chapter 3. Backend 14

First $match filters only those articles that were published in user-selected timestamp
period. Next $sort sorts articles by time published. Next $project converts “regions”
dict to List datatype. After that $unwind creates copies of article documents with
separate values from unpacked “regions” list. Next $match filters only those articles
where region is as selected by user. Next $project removes “regions” data from every
document, only id is needed. After that $skip alias to offset: skips amount of articles.
Finally $limit limits number of returned documents.

The second request to MongoDB is the following:

collection.find({"_id": {"$in": [elm["_id"] for elm in result]}})

It searches for those articles that have next id’s.

Validation

For this API path the validation is more complex. Apart from validating from_time
and and_time a validation for limit and offset is needed. limit should be positive
excluding zero (specifics of MongoDB) and offset should be positive including zero.

15

Chapter 4

Web UI

FIGURE 4.1: Web UI structure: Web, API

There are two parts for a Web UI:

1. API - FastAPI application described in backend part.

2. Web - Website built on React JS as an endpoint to interact with the user.

4.1 Why React JS

React JS is an open-source library with a component-style interface. This library is
easy to understand and powerful in what it can do. React has a wide community,
and most questions that arise already have answers in web.

4.2 Highcharts Map

Highchats JS is an extensive library for displaying interactive charts. It is highly
configurable and smoothly integrates with React. This project needs a map visuali-
sation, and for it Highchats provides a JSON map of Ukraine. Highchats JS library
becomes a significant component in this project with these advantages.

Chapter 4. Web UI 16

4.3 Structure

FIGURE 4.2: Web design: Expected and actual result

The website should have a minimal interactive design. It also should give an
ability for the user to filter news by time and, most importantly, by region.

Articles with essential information appear when a user selects both variables.
A new tab with content should appear when the user clicks on the selected news

article.

4.3.1 Main panel

The main panel takes up most of the screen and is always visible. It contains filters.

Top panel

The top panel shows the project’s name, start date, end date and search button.
When the user clicks the search button, the system requests API and shows the

number of articles for each region on a map.

Map container

The map container contains an only interactive map with regions and buttons. When
a user filters the date and clicks on the preferred region, the system requests API and
shows a piece of articles on the side panel.

4.3.2 Side panel

The side panel contains articles and buttons for switching between pages. Here page
is a set of articles that fit a screen.

Region name with page buttons

Region name shows the selected region, two buttons to iterate between pages, and
pages count.

Articles

Showing articles is the primary goal of this project. Information about them should
be descriptive but not contain the article body. That is why the article component
contains the next parameters:

1. Name of news provider.

Chapter 4. Web UI 17

2. Time when an article was published.

3. Confidence that article belongs to a selected region.

4. Article title.

5. Article tags if they exist.

6. Community names found in each article.

18

Chapter 5

Experiments

In this section, potential users express their thoughts about the website.

“I like the way how easy it separates news exactly by region. It looks comfort-
able, and I would use this website for my work. However, it is not clear for me what
are all the list of news sources that provide articles.” - Taras, student of Journalism
Studies.

“Overall good. The whole process requires no human interaction, and as you
said, script checks for new articles every 5 minutes. I want to add that it will be
better if you have more news providers, at least 5. You can also add local news to be
more specific about separate regions.” - Roman, reads news daily.

“I would use it. Why not? The only request from me is to make all news in
Ukrainian language and show only important news.” - Serhii, pensioner.

19

Chapter 6

Summary

From the technical part, this project required thinking about the whole product
workflow: designing architecture, writing and rewriting algorithms for searching
keywords, building a small and efficient database and thinking about how to present
data to the user so that it would be easy to configure and use.

From the real value part, this project gathers multiple popular news providers
into one place and segments news by region. Answers from the "Experiments" part
showed that it appears useful and will save time when users want to check news
from a specific region next time. Respondents suggested improvements that would
make the website more clear and contain more articles.

6.1 What to improve and develop

This project has some things to improve. The "crawler" part needs the development
of requests that bypass bot detection on news websites. This problem became vital
during the production rollout. The database currently saves new article data quickly
but aggregates data on output slowly. It means that writes and quick and reads are
slow. This is not correct and should be vice versa. To solve this problem database
should have either another schema or more specific region-dependent collections.

The "web" part would look better if "buttons" were under each city, not only
region.

Some features can be developed, like adding new article sources, a mobile ver-
sion of a website, and more filters on UI.

20

Bibliography

[1] Datetime - Python library for managing datetime. https://docs.python.org/3/
library/datetime.html.

[2] FastAPI - Python REST API framework. https://fastapi.tiangolo.com/.

[3] Highcharts JS - JavaScript library for visualisation. https://www.highcharts.com/
docs/index.

[4] Liveuamap - An independent global news websiteAPI. https://liveuamap.com/
about.

[5] Logging - Python library for logging. https://docs.python.org/3/library/
logging.html.

[6] MongoDB - non-relational database. https://www.mongodb.com/docs/.

[7] React JS - JavaScript library for building UI. https://reactjs.org/docs/getting-
started.html.

https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://fastapi.tiangolo.com/
https://www.highcharts.com/docs/index
https://www.highcharts.com/docs/index
https://liveuamap.com/about
https://liveuamap.com/about
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://www.mongodb.com/docs/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem
	Goal
	Constraints

	Related Works
	Live Universal Awareness Map

	Backend
	Why Python
	Crawler
	General algorithm
	Classes
	Database
	News provider
	Article

	Word dictionary
	Dictionary types
	word_list_v1.json
	all_words.json
	word_info.json
	words_cases_to_main.json
	Dictionary sources

	Keyword searcher
	Keyword searcher v1
	Keyword searcher v2
	Analyser

	Crawler script
	Main
	Crawler

	MongoDB
	Reason for choosing MongoDB
	Collections
	NewsProviders
	Articles

	API
	Reason for choosing REST
	Reason for choosing FastAPI
	API paths
	Index
	Get total articles
	Validation
	Get articles by region
	Validation

	Web UI
	Why React JS
	Highcharts Map
	Structure
	Main panel
	Top panel
	Map container

	Side panel
	Region name with page buttons
	Articles

	Experiments
	Summary
	What to improve and develop

	Bibliography

