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Abstract

In this thesis, we propose and develop an approach to a myoelectric (EMG-driven)
control of an upper limb orthosis. This orthosis is intended for patients, who are
unable to flex their arm at the elbow joint at will (i.e., due to traumatic injuries of
the brachial plexus), but can extend it. The flexion of the orthosis is thus controlled
indirectly –– by rotating the patient’s head to the right (or just tensing the left ster-
nocleidomastoid muscle). In contrast, during extension, orthosis reacts to signals
from the arm (more precisely, from the triceps brachii muscle); this way, it does not
resist the extension of the patient’s arm.

In the scope of the thesis, we focus on the development and testing of an ap-
proach to myoelectric control, including signal preparation, processing, and detect-
ing target muscle activity in a noisy EMG signal from sensors placed on the Stern-
ocleidomastoid muscle and Triceps brachii muscle and also designing experiments
for data gathering and its analysis.

The injuries of patients for whom this orthosis is developed are considered irre-
versible and completely prevent forearm flexion and the restoration of that move-
ment. Because of this, the orthosis is meant more for assistance than rehabilitation.

The idea, concept, and mechanical part of the orthosis were developed over the
course of a few years by a team of researchers, mechanical and hardware engi-
neers, and surgeons. The team also oversaw the development of myoelectric con-
trol, recorded experimental data, consulted on various issues, and assisted over the
whole course of this thesis work.

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
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Chapter 1

Introduction

FIGURE 1.1: Overview of the approach to the orthotic control. In-
cludes a sketch of the orthosis prototype. The orthosis is mostly lo-
cated at the posterior side of the arm, so the sketch is partly semi-

transparent/striped.

1.1 Motivation

Various courses of action exist for patients whose musculoskeletal system function-
ality is limited: surgical interventions, different treatments, rehabilitation, etc. When
there is no foreseeable possibility of returning the patient’s ability to move, another
option exists – external movement assistance. This includes, for example, using an
orthotic device. In our case, patients of the Romodanov Neurosurgery Institute (The
State Institution of National Academy of Medical Sciences of Ukraine), for whom
the orthosis is developed, are unable to flex their arms at elbow joints as a result of
traumatic injuries of their brachial plexus. A team of various professionals (includ-
ing surgeons, engineers, and researchers) has been working on this orthosis for the
last couple of years. In this thesis work, we will focus on the part of research and
development responsible for the myoelectric control of the orthosis.
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1.2 Goals

• Research options for the control of the orthosis: including which muscles to
monitor, which movements to choose for control, and other details

• Develop and test an algorithm of real-time pre-processing and onset detection
in EMG signals for our task

• Provide customization capabilities so that the algorithm can be adjusted for
different patients

• Final aim: prepare our myoelectric control approach for use in the orthosis

1.3 Structure

Chapter 2: Background Information
This chapter introduces the reader to the biological and medical aspects of the task
and provides general overviews of prosthetic and orthotic devices and myoelectric
signals.

Chapter 3: Related works
In this chapter, we will discuss literature related to the processing of myoelectric sig-
nals, motion detection in them, and usage of such signals for prosthetic and orthotic
control.

Chapter 4: Datasets
This chapter describes the datasets we used during the algorithm development and
some observations from the obtained data.

Chapter 5: Proposed approach
In this chapter, we introduce and describe our approach1 to myoelectric control of
an elbow orthosis, including the choice of muscles for control, sensors setup, and
EMG processing pipeline with motion detection.

Chapter 6: Experiments
In this chapter, we will describe the most significant experiments conducted during
algorithm development and testing. We will also compare our approach of onset
detection to others found in various libraries.

Chapter 7: Summary
Last but not least, in this chapter, we will summarise the results of the work and
achieved goals, and discuss improvement needs and future plans in general.

Without further ado, let’s begin.

1The repository with implementation is currently not public. Access can be granted after a request
followed by an agreement of non-disclosure of the data from the repository because, at the time of
writing this thesis, the work on the orthosis is in progress. For the same reasons and the privacy of the
volunteers, EMG datasets are not disclosed or present in the repository.
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Chapter 2

Background information

FIGURE 2.1: Anatomical illustration with bi-
ceps and triceps brachii, and radial nerve
(Carter, 1858a). By Henry Vandyke Carter,

Public domain, via Wikimedia Commons.

Before diving deeper into this thesis’s
primary task, let’s discuss its biological
and medical aspects. This includes the
injury which leads to the need for or-
thotic assistance of the upper limb, the
muscles we will use for orthotic control,
a general overview of the development
of orthotics and prosthetics, and myo-
electric signals.

2.1 Biomedical background:
arm flexion, brachial plexus
injuries, and muscles in-
volved in the orthotic control

As mentioned before, the orthotic de-
vice, for which we are developing an
EMG-driven control, is intended to as-
sist people with traumatic injuries of
the brachial plexus. In our case, these
injuries affect the musculocutaneous
nerve, which originates in the brachial
plexus, and prevent patients from con-
trolling their elbow flexion. Moreover,
such damages in our case do not allow us
to directly predict the patient’s intention
of arm flexion via EMG because there is
no signal passing through the musculo-
cutaneous nerve to muscles, which we
could record and process.

Let’s briefly discuss the work of the
musculoskeletal system and the upper
limb in particular. Arm flexion, like
most other movements of the human
body, happens through muscle contrac-
tion. When muscles contract, move-
ments only happen in cases when the
muscle connects different bones at a
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FIGURE 2.2: Cadaver dissection, which shows biceps brachii and
musculocutaneous nerve (Halga, 2011). By Adrian Halga, (“CC BY-

SA 3.0”, n.d.), via Wikimedia Commons.

joint. In our case, for the arm flexion, movement happens at the elbow joint through
Biceps brachii muscle contraction. The contraction is prompted by a signal from
somatic motor neurons (the cells which carry myoelectrical signals from the CNS to
muscles) of the musculocutaneous nerve, which innervates that muscle and is re-
sponsible for bending and flexing the elbow. (Achudhan Karunaharamoorthy, 2023;
Houten et al., n.d.)

Thus, movements can be affected by different injuries to the bones, connecting
muscles, supplying vessels (i.e., blood vessels –– the triceps brachii is supplied by the
deep brachial artery and superior ulnar collateral artery), and the nervous system (in
our case –– the brachial plexus and musculocutaneous nerve).

FIGURE 2.3: Cadaver dissection, which shows the distal part of the
brachial plexus, including the radial nerve (Anatomist90a, 2011). By

Anatomist90, (“CC BY-SA 3.0”, n.d.), via Wikimedia Commons.

The brachial plexus consists of different nerves which supply the shoulders, up-
per limbs, and chest. They are formed from root nerves, which, for example, include:
C5, C6, and C7 (lateral cord), that form a terminal branch called the musculocuta-
neous nerve (K. L. Moore & Agur, 2007), that innervates muscles responsible for
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FIGURE 2.4: Anatomical illustration of neck muscles, including Ster-
nocleidomastoid (Carter, 1858b). By Henry Vandyke Carter, Public

domain, via Wikimedia Commons.

the flexion motion and anterolateral forearm skin. These, and other root nerves,
in different combinations, form different branches that innervate a lot of muscles
and other anatomical structures. So, any injury that somehow damaged any of the
roots or branches themselves will affect the motion capacity of the shoulders, up-
per limbs, or chest. In some cases, the injury can heal without additional help over
time, while in others, it can lead to paralysis and might need surgical intervention
and rehabilitation (“Brachial plexus injuries - orthoinfo - AAOS”, n.d.). If an injury
severely affects the musculocutaneous nerve, the nervous system is unable to pass a
myoelectric signal to muscles, which would have caused their contraction. That, in
turn, prevents patients from flexing their arms, thus creating a need for a support-
ing or rehabilitation device such as an orthosis. This way, our orthosis assists in the
movement for which the biceps brachii muscle is responsible. At the same time, our
patients can extend their arms. The extension is performed through contraction of
the Triceps brachii muscle, which is in turn innervated by the radial nerve (Sendić,
2022). While patients can control this movement, we need to make sure that the or-
thosis does not resist because it would require more force not only to extend the arm
but also to extend the orthosis, which is holding it in the flexed position. To achieve
this, we monitor the myoelectric activity of the Triceps brachii and detect its activa-
tion through EMG recordings. After we detect such activations, we order orthosis to
extend.

Regarding flexion, we would like to control our orthotic device by a head rotation
motion or, more precisely, tension of the muscles which take part in that motion. For
this, we will assess neck muscles, which contract during head motions and neck
tensing in general. We use only signals produced by this tension, sifting out other
motions, such as forward and backward bends of the neck.

To detect neck movement, we will use EMG (discussed in the following subsec-
tions) sensors, which will record the activity of the Sternocleidomastoid muscle.
The Sternocleidomastoid is a large visible muscle on two sides of the neck. The Ster-
nocleidomastoid contracts during such neck movements as the head-turning to left
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and right (one opposite side contracts), head turning up and down (both sides con-
tract), and neck tensing (contraction depends on which side is tensed). Considering
that we are interested in head rotation to one side to control elbow flexion by the or-
thosis, we need to detect exactly that motion from the recorded signal. That muscle
is situated relatively close to the heart muscle, which causes the appearance of ECG
artifacts in the recorded signal.

2.2 Orthotics and prosthetics: overview

As mentioned above, to assist patients with traumatic injuries of the brachial plexus,
we decided to use an orthotic device. To give a general understanding of how such
devices work, we will discuss them and prosthetics, considering that they are closely
related.

The history of prosthetic devices goes back to ancient times. It was depicted
in ancient pottery (i.e., dating back to 300 B.C.) and described in historical works
(i.e., “History” by Herodotus from 484 B.C. tells about a Persian with a wooden leg
replacement). There is a preserved mechanical hand from the fifteenth century, now
displayed in a museum in Florence. An artificial foot from the 1800s served as a
base for the “American leg,” which later was improved and continues to be a basis
for prosthetics development even now. Both prosthetics and orthotics development
came to a turning point and started quickly progressing after the American Civil
war and First and Second World wars, as a result of injuries suffered by soldiers and
numerous amputation cases (Craelius, 2022).

FIGURE 2.5: Prosthetic toe from Ancient Egypt (Bodsworth, 2007). By
Jon Bodsworth, Copyrighted free use, via Wikimedia Commons.

Prosthetic and orthotic devices are mostly meant for the musculoskeletal system,
and even though they have other application areas (i.e., cochlear implants and bionic
eyes), in our study, we focus more on support for the limbs. While prosthetics serve
as replacements for missing body parts such as limbs or their sections, orthotics are
external devices, which do not replace body parts but support them, enhance their
functionality, provide various types of rehabilitation, etc (Prosthetics and orthotics —
Vocabulary — Part 3: Terms relating to orthoses, 2020). That is why in our case, we will
use an orthosis –– because our target patients can move their arms, it is just that the
movement is limited due to injury and require external assistance.

There are various benefits to using prosthetic and orthotic devices. They include
but are not limited to gaining independence in daily life in general for people with
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FIGURE 2.6: Prosthetic Arm by Open Bionics (StarWarsRey, 2015). By
StarWarsRey, (“CC BY-SA 4.0”, n.d.), via Wikimedia Commons.

limb losses, soothing phantom pains (usage of prosthetics devices, especially the
ones which provided sensory feedback, for limbs was shown to decrease phantom
pains of patients (Dietrich et al., 2012)), acquiring freedom of movement and mobil-
ity back, achieve a positive impact on users mental health and well-being in general,
etc.

Nowadays, there are various cases in which patients might need orthotic or pros-
thetic devices. For example, these might include amputations due to diabetes, frost-
bite, various injuries, or, sometimes, people are born without some or all of the limbs.
There are cases that I would like to highlight –– limb losses during wars. Since the
russo-Ukrainian war started in 2014, a lot of Ukrainians suffered limb losses either
in battles or during various attacks and tortures by russians. Currently, there exist
a lot of initiatives that help to provide them with the most advanced prosthetics de-
vices. This serves as one of the main motives why prosthetics and orthotics should
be developed, made low-cost or completely free, and as comfortable and useful as
possible –– for these people to be able to continue living without limits to their mo-
bility.

Prosthetic and orthotic devices can be purely mechanical; that approach is one
of the oldest and most commonly used. Currently, it is especially well-developed
for lower limb prosthetics. Then, there are other options, like neuroprosthetics
(i.e., robotic arms), which use information from biosensors (i.e., myoelectric signal
recordings –– EMG). In the following subsections, we will shortly discuss EMG for
the control of orthotics, which is one of the primary themes of this thesis.

Moving on to modern prosthetics and orthotics development, let’s discuss a cou-
ple of examples.

OpenBionics is a widely known bionics company, with one of their most famous
prosthetics being the Hero Arm meant for below-elbow amputees. Recently they
started creating these devices for Ukrainian veterans (T. Moore, 2023). Hero Arm is
a bionic prosthetic arm that uses myoelectric signals. This custom prosthetic allows
multi-grip functionality and proportional control of movements. In most cases, it
uses two EMG sensors for control purposes. This prosthetic reacts to tension in
muscles, which are responsible for the hand opening and closing movements, and,
depending on the selected grip mode, it performs appropriate motion (i.e., various
pinches, fist, hook, and wrist rotation). It also has a feedback system, for example,
vibrations (Bionics, 2021; “The Hero Arm is a prosthetic arm made by Open Bionics”,
2023).
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There are also many open-source prosthetics, for example, the one described in
(Liarokapis et al., 2014) for partial hand amputations. The authors of the paper dis-
cuss various aspects of the design of robotic fingers, for example, control strategies,
such as myoelectric interfaces which use signals from the user’s forearm, predictions
based on flexion of the intact fingers, etc. Here the emphasis is on the affordability
and personalization of such prosthetics because amputations, especially such partial
ones, are unique and require a custom approach. By designing separate fingers, they
allow the required extent of personalization. As the research shows, different control
strategies might suit better for different amputation cases, which also indicates the
importance of personalization for such types of devices.

Moving on to orthotics, here is, for example, a paper about exo gloves (Gerez et
al., 2019), controlled by myoelectrical signals. These orthotics are meant to enhance
the grasping capabilities of the user, either a healthy one or one whose grasping ca-
pabilities are lowered due to paralysis or stroke. The authors describe two versions
of such tendon-driven devices: body-powered and motorized. In both cases, the
part which assists in grasping resembles a glove and is an exoskeleton-like solution
for the task, and the only difference is in the power source.

In (Rzyman et al., 2020), authors provide an overview of bionic orthoses for up-
per limbs. They state that EMG should be used as a solution for orthotic control
because it can be used for intuitive and simple interfaces and can be accompanied
by machine learning techniques. It is also emphasized that bionic orthotics usage
is beneficial for rehabilitation purposes and treatment of the limbs. It also stated
that the personalization of orthotics is important, but the optimal solution should be
between personalized and universal, which would be more affordable.

According to (Gopura & Kiguchi, 2009), another important aspect of orthotic de-
velopment is safety because orthotics closely interact with the (in our case, human)
body. They also state that this development is a complicated task due to various re-
quirements that should be considered and investigated (i.e., regarding biomechan-
ics).

The field of prosthetics and orthotics is rapidly growing and developing. For
example, researchers from VA (U.S. Department of Veteran Affairs) currently work
on high-functional artificial limbs, Ukrainian startup Esper Bionics is developing a
bionic self-learning hand prosthesis, and so on.

Although we mentioned different aspects of orthotics and prosthetics develop-
ment, we should note that this thesis work is focused mainly on the EMG-driven
control of an already created hardware device by a team of specialists who worked
on it before the start of this thesis writing. The team also closely participated in the
development of EMG-driven control and mentored the whole process.

2.3 Myoelectric signals and EMG: overview

As already mentioned, to control the flexion of the orthotic device, we decided to
use the motion of the neck (rotation, if more precisely). For extension, we detect
the elbow extension itself. To detect these motions, we used the myoelectric signal
from one of the neck’s most noticeable muscles – the Sternocleidomastoid, and the
Triceps brachii, accordingly. In this section, we will go over myoelectric signals and
the electromyography technique.

Electromyography is a technique for recording myoelectrical signals (elec-
tromyogram, abbreviated EMG) (Whittlesey et al., 2014). In short, these are electri-
cal signals produced by the muscle cells in response to the control from the central
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FIGURE 2.7: Raw EMG recording from the Sternocleidomastoid mus-
cle.

nervous system, which passed through the peripheral nervous system to skeletal
muscles. This causes muscles to contract, thus producing motion, essentially con-
trolling the body’s movement. Hence, decoding the myoelectric signal allows ex-
tracting information about muscles’ contraction and, by doing so, it allows tracking
or predicting movement, depending on the task (Konrad, 2005).

EMG, which essentially records action potentials at the membranes of muscle
fibers, is typically performed using a couple of electrodes (one being the referential
one and the other recording from the muscle of interest). Usually, the EMG signal
is processed (i.e., rectified, filtered, etc) before being involved in any further appli-
cations because the shape of myoelectric spikes is of random nature and can be less
informative in the raw form. Another reason for processing is noise, which can be
produced by muscles cross-talk (i.e., in our case, we had ECG spikes in EMG record-
ing of the neck due to its proximity to the heart), skin-related factors (i.e., tempera-
ture and thickness), external noises from electrical devices, etc (Konrad, 2005).

Another important notion that can be addressed in the context of this work is a
motor unit. This is the smallest structure responsible for myoelectric control of the
movement. The motor unit includes the motor neuron and the muscle fibers, which
are innervated by it through its axon branches (Konrad, 2005).

There are various types of EMG sensors. For example, there are invasive –– for
iEMG (intramuscular EMG) and non-invasive –– for sEMG (surface EMG) ones. As
their names suggest, for iEMG, a needle (fine wire electrode) is inserted into the
muscle body, and thus it allows to precisely record the myoelectric signal passing
through it; sEMG, on the other hand, is recorded from the skin surface, which is a
less invasive technique but leads to a more noisy signal. In our case, we chose sEMG
due to its non-invasive nature.

Another type of EMG recording is an HD-sEMG (high-density surface EMG).
HD-sEMG usually records a relatively high number of muscles simultaneously,
while regular EMG focuses on a single muscle. HD-sEMG does not give informa-
tion about each muscle from the recorded group separately, so if this information
is needed, it must be extracted from the whole recording using methods such as
wavelet analysis, ICA, PCA, etc (Drost et al., 2006).
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Chapter 3

Related works

In this thesis, the main focus is on the processing of the myoelectric signals, detecting
control movements in them, and using them to control an arm orthosis, so in related
works, we will review approaches to these tasks.

3.1 EMG processing techniques

To detect neck motion, we will not just use raw EMG recording because the shapes of
its spikes have random nature, and the signal is subject to noise and artifacts –– so we
will first process it. Considering that EMG is widely used in both scientific research
and development, there exist a lot of studies on its preparation and processing. We
will discuss some of them.

As one of the main sources on EMG, its processing techniques, and applications,
we used (Konrad, 2005). According to it for quantitative amplitude analysis (which
we partially use for motion detection in our algorithm), there are specific processing
steps, which include: full wave rectification, smoothing, digital filtering, amplitude
normalization, and ECG reduction.

Rectification can be performed by taking absolute values of the signal.
For smoothing, the authors offer two algorithms: moving average and root mean

square. The smoothing is required due to randomness of inference –– the same
movements do not produce the same spikes, but the smoothing allows to asses of
an overall shape produced by some window used in these algorithms.

Alternatively, instead of Movag and RMS, a digital filter can be used. For ex-
ample, authors of (Konrad, 2005) recommend a low pass filter at 6 Hz for creating
envelope (in general) and high pass filters at 20-25 Hz to reduce artifacts (in case of
using fine ware electrodes for iEMG). At the same time, it is not recommended to
use notch filers, for example, on 50-60 Hz, because these will remove much of the
EMG signal itself.

Amplitude normalization is applied to reduce variance in different conditions
of signal recording or even just from subject to subject, but it is said to be time-
consuming and demanding. In our approach, we do not apply that step since we
aim for customization for different patients.

Another crucial step is ECG artifact removal because they can affect amplitude
assessment. This can be achieved, for example, through filtering.

The authors of (Chowdhury et al., 2013) reviewed EMG preprocessing and pro-
cessing techniques, stating that overcoming noise in such signals is an important
step to achieving a better quality of EMG and its further applications. They conclude
that the optimal solutions would be the wavelet transform and using higher order
spectra to both reduce noise and extract valuable information from EMG signals.

In (Parajuli et al., 2019), authors discuss real-time pattern recognition in EMG for
prosthetics control. There, as a preprocessing step, they use ICA and CSP on the
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signal. Later, after feature extraction, they also use dimensionality reduction. They
state that preprocessing step is needed due to noises that can appear in the EMG as
a result of electromagnetic disturbances, the motion of cables and electrodes, signal
instability, etc.

3.2 Motion detection in myoelectric signals

For the task of motion detection itself, we again refer to the (Konrad, 2005). There, in
the scope of EMG processing and analysis discussion, authors provide information
on onset and offset detection in EMG and muscle activity analysis in general. In our
case, we are interested in the onset the most.

Among the approaches offered for this task, there is, for example, using standard
deviation, which is firstly calculated on a baseline (where there is no muscle activity)
and then scaled (i.e., by a factor of 2 or 3) and compared with further muscle activity.
The moment the SD of activity exceeds the scaled SD of the baseline, it is considered
to be the onset. It is also important to remember that there can appear random spikes
of artifacts, which will affect the onset detection. Thus the muscle activity should
stay over the threshold for some period of time. Another method is assessing the
percentage of peak activation and choosing a threshold appropriately. We can also
just use a certain amplitude threshold, exceeding which will signify the onset.

The authors of (Vannozzi et al., 2010) describe another approach for detecting
muscle activations in the sEMG. This method is based on finding discontinuities in
the wavelet domain and is said to be beneficial, for example, in case of usage by an
unskilled operator, because, unlike the single threshold method, it does not require
choosing that threshold by the operator.

In the (Allison, 2003), authors discuss the detection of trunk muscle onset in the
EMG signal, which is highly affected by ECG artifacts. There were two algorithms
present in the study: Shewhart and integrated protocol. The results have shown
that muscle fatigue highly affects the baseline variance for such muscles and that the
integrated protocol method was shown to be more robust in such conditions. It was
also stated that threshold methods should consider such variances in the baseline
and ECG artifacts to detect activation effectively and without delays.

The authors of (Drapała et al., 2012) propose a two-stage activation detection
method. This way, at first, the region of interest is approximated globally on the
whole signal, and afterward, the algorithm searches for the activation only in that
approximated region.

Three preprocessing algorithms for online movement prediction are discussed in
(Tabie & Kirchner, 2013). Methods include Teager Kaiser Energy Operator (TKEO),
using variance and using standard deviation. They are compared in terms of predic-
tion time, which was stated to be highly affected by the speed of movement itself.
Authors conclude that VAR and SD methods are more optimal for online predictions
in embedded systems because they are 1.5 faster than TKEO. For all preprocessing
methods, authors use an adaptive threshold method for onset detection.

3.3 EMG-driven control of orthotics and prosthetics

Now that we have processed EMG and are ready to detect control movements, we
need to learn how to use that information for the control of orthotics. In this section,
we will discuss different ways which can be used for that.
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In (Geethanjali, 2016), authors provide descriptions of the state-of-art strategies
of myoelectric control for assistive devices such as orthotics and prosthetics. These
strategies include and are not limited to: on/off, proportional, direct, FSM, PR, re-
gression, and posture.

The on/off control is also called a binary control, and it provides two degrees of
freedom. As the name suggests, it can involve the detection of onset/offset and use
this information for control at some constant speed.

In proportional control, on the other hand, the speed or the degree of the move-
ment of the device is proportional to, for example, the intensity of the signal.

Direct control involves monitoring different EMG sites for controlling separate
units of the device (i.e., separate fingers of a hand prosthetic).

Another type of control involves finite state machines, so every movement or
position of the device is regarded as a predefined state, and the transition between
them is also controlled in a predefined manner. For example, different inputs can be
mapped to different grips of a prosthetic hand.

In pattern recognition, some features are extracted from the input EMG signal,
and these features are used to, for example, predict the movement and, in this way,
control an assistive device.

Posture control involves mapping input EMG signals to a PCA domain.
With regression, the control involves using simultaneous signals to obtain differ-

ent positions of parts of the device.
The last mentioned control strategy in this work is closed-loop control. The loop

is closed in the sense that not only do users provide signal input for the device, but
they also get sensory feedback from it. It is also quite a promising area of study.

An example of using myoelectric control of a low-cost prosthetic device is de-
scribed in this (Nguyen, 2018) thesis work. This work involves a whole development
cycle of a prosthetic hand and thus involves a description of how EMG signals from
the forearm were used for that. There, different sequences of the forearm move-
ment were mapped to six hand prosthetic states. This involves EMG preprocessing
and classification steps. Raw signal undergoes such processing steps: amplification,
rectification, and integration (by MyoWare sensor), Movag filter, and Steady-State
and Transient Savitzky-Golay filter (in software). Afterward, three EMG signals are
put through a threshold, which determines the flexion or relaxation of muscles, and
based on these three values, the classification determines which state the prosthetic
will enter.

Authors of (Pulos et al., 2021) describe a myoelectric elbow orthosis, which is
meant for patients with traumatic injuries of the brachial plexus (which resembles
our task), and the benefits of using it. The study shows considerable improvement
in strength and function and reduction of pain when using myoelectric orthosis for
most of the patients who took part in it. The authors describe MyoPro –– an orthotic
device used during the study. This orthosis detects weak myoelectric signals in tar-
get muscles, such as the Biceps brachii, amplifies them, and accordingly augments
the movement intended by the patient. MyoPro uses proportional control, so the
flexion strength depends on the EMG signal, too.

Taking discussion of MLOs (myoelectric limb orthoses) for elbow function even
further, authors of (Anderson et al., 2020) present case series in their work. They
state that using MLOs for patients with traumatic injuries of the brachial plexus is
a relatively novel approach. The special feature of such orthoses is the fact that pa-
tients can initiate and control the movement with their muscles. The patients, who
took part in the study, reported positive results after using MLOs in therapy and
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functional recovery, and it also gave them additional independence. In the conclu-
sion of this study, it was shown that such orthoses could potentially improve the
quality of life of patients of that category. Among the limitations to using MLOs for
patients with brachial plexus injuries, there are the cost and heaviness of orthoses,
so there is space for improvement in that field.



14

Chapter 4

Datasets

One of the difficulties with our task was the need to create custom datasets ourselves,
which involved EMG recordings in the Romodanov Neurosurgery Institute and later
using the AD8232 sensors (Single-Lead, Heart Rate Monitor Front End, 2020), which
were chosen for the orthosis itself. There were multiple iterations of EMG recordings
over the course of almost one year, which resulted in the creation of multiple datasets
involved in this thesis. All the recordings were made using surface electrodes (non-
invasive, also called sEMG).

4.1 Tentative dataset
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FIGURE 4.1: Sample from the tentative dataset: a recording from the
Biceps brachii muscle.

The first dataset was recorded in the Romodanov Neurosurgery Institute under
the supervision of medical professionals. In code, the tentative dataset is sometimes
referred to as the “summer” dataset or “31_08_2022”. It was used in the early stages
of our algorithm development and during getting acquainted with EMG recordings
of various muscles in general. There are various muscles in the dataset because, at
that time, it was not completely decided which movement would be used for the
control of the orthosis. Details about the data:

• Sampling frequency: 20000 Hz

• Number of subjects: 3 (healthy, not target patients)

• Muscles: Sternocleidomastoid, Biceps brachii, Trapezius, Orbicularis oculi

• Number of channels: 1

• Overall duration: 7.8 minutes

Here are some of the observations from the data:
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• For the Sternocleidomastoid muscle: Periodic pulsations are present in the
signal even during the rest period, when the neck is not moved, which we
consider to be ECG artifacts (carotid pulsations). EMG recording from this
site shows a very high activity rate during neck muscle tensing and rotation
movements, which is expected. There are visible noises, for example, on the
baseline. Lateral flexion and extension, which are not our control movements,
still produce some activity but visibly less than rotation.

• For the Trapezius: Likewise, periodic pulsations are present in the signal. In
a sitting position, shoulder lifting produces the most activity in these EMG
recordings, slight lifting produces much less activity, and tension looks almost
the same as the baseline noise. In a standing position, shoulder lifting produces
abrupt high activity with high spikes. Another important observation in a
standing position occurred during the recording procedure: sensors are prone
to falling off during such movements, so it should also be considered during
orthosis design (even though Trapezius is not among the muscles used for our
orthosis).

• For the Biceps brachii: Flexion of the shoulder and forearm produced very
high activity with high amplitude. During the rest period, a slight stable noise
was present with a couple of spontaneous activations (possibly cable move-
ment artifacts or other externally induced noises). As mentioned before, it is
the movement produced by this muscle that we are trying to achieve with an
orthosis.

• For the Orbicularis oculi: Closing the eyelids produces high activity with high
amplitude. Rapid blinking also produces high amplitude but with shorter ac-
tivity periods. Winking-like motions produced smaller activity with smaller
amplitude.

One of the reasons why these EMG signals are so prone to noise is that the sen-
sors could register the electric potential of a couple of microvolts, which is less than
the noise.

4.2 Experimental dataset 1
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FIGURE 4.2: Sample from the Experimental dataset 1: a recording
from the Triceps brachii muscle.

As well as the tentative dataset, the experimental dataset №1 was recorded at
the Romodanov Neurosurgery Institute. This time it involved experiments design
created beforehand: for the Sternocleidomastoid, there were recordings of rotating
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head to the right (which is the control movement for orthosis and hence our target) at
slower and faster speeds (i.e., 60 and 100 bpm of a metronome) and turning head to
left/up/down (also at different speeds); for the Triceps brachii there were recordings
of arm extension movement at slower/average/faster speeds (i.e., 12, 24, 60 bpm).
The plan was created for further testing and improvement of the algorithm. Details:

• Sampling frequency: 20000 Hz

• Number of subjects: 2 (healthy, not target patients)

• Muscles: left Sternocleidomastoid, left Triceps brachii (approximately from the
middle part of the muscle)

• Number of channels: 1

• Overall duration: 53.9 minutes

Here are some of the observations from this data, too:

• For the Sternocleidomastoid muscle: there are very prominent carotid pul-
sations this time, which are noticeable in the signal recording. Even though
we expect very high activity from the left Sternocleidomastoid muscle during
right rotation only, for one subject, there was a quite high activity for left rota-
tion, too, making the task of control movement detection more difficult. Dur-
ing turning the heart up and down (extension and flexion of the neck), activity
also was present, but on a smaller scale.

• For the Triceps brachii: There were no visible artifacts (for example, from the
Biceps brachii). Another important observation is that t turns out that during
regular extension movement, there might be no activity present in the signal,
so the orthosis will be controlled more by the tension of the muscle (for flexion
control, we expect more tension of the Sternocleidomastoid, too). Thus, during
recordings, subjects tried to extend the elbow with a resistance (for example,
another person’s hand placed on the forearm).

4.3 Experimental dataset 2
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FIGURE 4.3: Sample from the Experimental dataset 2: a raw recording
from the Triceps brachii muscle, which was interfered with by apply-

ing pressure on electrodes.

At this stage, data was recorded not in the RNI but using the AD8232 sensors
(Single-Lead, Heart Rate Monitor Front End, 2020) and SkinTact F-261 ECG electrodes
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(“Skintact ECG electrodes”, n.d.), intended for the orthosis. Initially, the recordings
involved a lot of experiments regarding referential electrode placement, so there are
present a lot of variations in the dataset. Afterward, experiments were more focused
on preprocessing the signal to achieve standard spectra and to reduce noises and
artifacts. Details:

• Sampling frequency: 500 and 1000

• Number of subjects: 1 (healthy, not target patient)

• Sensors: AD8232

• Electrodes: SkinTact F-261 ECG electrodes

• Muscles: Sternocleidomastoid, Triceps brachii

• Number of channels: 1

• Overall duration: 13.25 minutes

As we saw from this dataset, recordings can be hugely affected by a computer’s
power cable and other electronic devices. This dataset also showed that limiting the
signal spectrum to the standard one for EMG significantly improves signal quality
and filters out some of the noises and artifacts. More observations for this and other
datasets will also be discussed in the Experiments section.

4.4 Experimental dataset 3
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FIGURE 4.4: Sample from the Experimental dataset 3: a raw recording
from the Triceps brachii muscle, before which electrodes were staying

on skin for 34 hours.

For this dataset, data was again recorded using AD8232 and F-261 electrodes.
These recordings were used for improvement of the onset detection algorithm, test-
ing various methods for spectra limiting, checking whether the duration of electrode
usage affects the detection results, comparing noisy incorrect data to correct EMG
recordings, etc. Details:

• Sampling frequency: 1000 Hz

• Number of subjects: 1 (healthy, not target patient)

• Sensors: AD8232

• Electrodes: SkinTact F-261 ECG electrodes
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• Muscles: Sternocleidomastoid, Triceps brachii

• Number of channels: 1

• Overall duration: 31.22 minutes (if counting muscles separately)

4.5 Experimental dataset 4
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FIGURE 4.5: Sample from the Experimental dataset 4: a raw recording
from the Sternocleidomastoid muscle.

This dataset was also recorded with sensors intended for the orthotic device it-
self. This time it involved new subjects, so it was used to test the customization
of the algorithm and its robustness, and during the development of the automatic
parameter tuning. Details:

• Sampling frequency: 1000 Hz

• Number of subjects: 8 (healthy, not target patients)

• Sensors: AD8232

• Electrodes: SkinTact F-261 ECG electrodes

• Muscles: Sternocleidomastoid, Triceps brachii

• Number of channels: 1

• Overall duration: 32.01 minutes (if counting muscles separately)

During development, we simulated real-time EMG recording flow in the soft-
ware to make sure that the algorithms would be later successfully used in the or-
thotic device without additional modifications. As mentioned before, more observa-
tions from the datasets will be discussed in the Experiments section in greater detail.
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Chapter 5

Proposed approach

FIGURE 5.1: Overview of the pipeline of our approach.

In this chapter, we will discuss our approach to myoelectric control of orthosis.
A brief overview of the approach is the following:

1. Sensors setup:

(a) Connect sEMG sensors to the Sternocleidomastoid muscle and the Triceps
brachii muscle

(b) Start recording the myoelectric signal and its transmission to the process-
ing unit
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2. First test recordings

3. Checking if test signals were recorded correctly

4. Tuning the algorithm’s custom parameters based on the test recordings

5. Orthotic control starts

6. Real-time EMG signal processing:

(a) Preparation for processing

(b) Limiting the spectrum of the signal to the standard EMG spectrum

(c) Rectification and digital filtering of a portion of the signal

(d) Detection of target muscles activations (onsets) using cumulative sum al-
gorithm

7. Sending the orthotic device appropriate signal on detected muscle activation

(a) Prompting orthosis flexion on Sternocleidomastoid muscle contraction

(b) Prompting orthosis extension on Triceps brachii muscle contraction

Now let’s discuss the steps in more detail.

5.1 Choice of muscles for orthosis control

In our case, the orthosis is controlled by myoelectric signals, which are involved in
the contraction of the Sternocleidomastoid muscle and the Triceps brachii muscle.
Thus, sensors are connected to them.

We chose the Sternocleidomastoid for flexion control because it is one of the most
superficial and prominent muscles in the neck, and it will not be complicated to
attach electrodes to it. It is also easily activated by neck tension and leads to high
EMG activity during that tension; thus, the control would be rather easy to learn. We
considered other options for flexion control, for example, Orbicularis oculi muscle
activation. However, considering that it is involved in eyelids movement and can be
accidentally activated with facial expression, we opted for the Sternocleidomastoid.

At the same time, for extension control, we chose the muscle directly responsible
for the extension at the elbow joint –– Triceps brachii. The reason is that patients can
control it, so it would be more intuitive during orthosis usage. Moreover, the ortho-
sis is not meant to completely reproduce and replace the patient’s elbow extension,
but rather to react to it and stop blocking it by reducing resistance to the patient’s
movement.

Just like for the last datasets, we used AD8232 sensors (Single-Lead, Heart Rate
Monitor Front End, 2020) and SkinTact F-261 ECG electrodes (“Skintact ECG elec-
trodes”, n.d.) to record EMG signals for orthotic control. Electrodes are connected
to the muscles, discussed above. At the time of writing this thesis, the processing
pipeline was not yet integrated into the orthotic device, so there will be no further
details on the hardware setup.

5.2 First test recordings

Before the orthotic control starts, we take the first test EMG recordings from the user.
Test recording with target activations includes the following:
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1. Approximately 10-second rest period when the user does not perform any tar-
get movement. This will allow us to see the baseline of the EMG signal.

2. Three consecutive tensions of the Sternocleidomastoid muscle. The user is re-
quired to tense the side of the neck, which was chosen for orthotic control. Rest
between tensions does not need to be too long: approximately 5 to 15 seconds.

3. Three consecutive tensions of the Triceps brachii muscle. The user is required
to tense the Triceps of the upper limb, to which orthosis is connected. Likewise,
rest between tensions is not required to be very long.

Next, we need approximately 30 seconds of non-target movements to ensure that
our algorithm will not produce spontaneous activations later. This includes slow
head and upper limb movements, standing, sitting, or other daily activities that are
not supposed to affect the orthosis.

5.3 Checking EMG signal quality

Before proceeding with orthotic control, we need to check if the EMG signal is being
recorded correctly (i,e., if the electrodes are appropriately connected to the user’s
skin, if they work properly, and if there are not too many external noises, etc). We
need to ensure that everything works correctly because we do not want to allow any
False Positives or False Negatives during detection. This might lead to spontaneous
activation of the orthosis, which can cause harm and discomfort to the user.

At the time of writing this thesis, the signal quality is checked visually. Hence,
the process requires a person who would be able to look at the test signals and deter-
mine if the activations are present and if there is not too much noise interference. In
future work, we plan to automate that process by finding and using features and/or
correlations in data among well-recorded cases and those affected by noises or in-
correct electrode placement. This must be done automatically so the user can start
up and use the orthosis independently.

5.4 Tuning parameters of the algorithm

Various parameters affect the algorithm. Two of them are custom for each user of the
orthosis (“words in quotation marks” are names of according variables in the code):

1. Threshold of the minimum relative difference between cumulative sums for
onset detection (“onset_relative_threshold”). During the detection of the tar-
get muscle activity, we compare cumulative sums of two windows of the EMG
signal: the current/most recent window and the window before that. By com-
parison, here we mean calculating the relative difference. Then we check if this
difference is greater than the threshold. If it is, we consider that the activity in-
crease in the current window is greater than in the previous window enough
to assume that a muscle activation has happened.

This parameter is individual for different patients because EMG activity highly
depends on various aspects, such as muscle mass, strength, age, various health
conditions, and just individual muscle features. The same movement may pro-
duce different activity levels for different people relative to their EMG baseline
and spontaneous activations. Moreover, different conditions affect EMG sen-
sors and electrodes, thus affecting the recording of the signal: body and envi-
ronment temperature, sweating, the thickness of skin and other tissues below
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it, etc. To ensure that the algorithm works properly, we need to adjust this pa-
rameter for different orthosis users. Usually, during experiments, this param-
eter ranges from 1.5 to 4 for Sternocleidomastoid and from 1.5 to 2 for Triceps
brachii.

2. Minimum amplitude of the target muscle tension (“mini-
mum_aplitude_of_target_muscle_tension”). Even if the algorithm detects a
muscle activity, if its (preprocessed) amplitude is smaller than this parameter,
we ignore it to skip non-control movements. The reason is that our target
muscles are involved not only during their tension but also in many other
movements. This creates muscle activity, but its amplitude is usually smaller.
So, by setting a minimum amplitude, we can weed out muscle crosstalk,
spontaneous activations, etc.

For the same reason as the previous parameter, this one is individual for differ-
ent patients. Usually, during experiments, this parameter falls in a range from
0.15 to 0.3 millivolts for Sternocleidomastoid and from 0.05 to 0.2 millivolts for
Triceps brachii.

To tune them, we use the test recordings (if, during the previous step, it was
decided that the recording was performed correctly and includes EMG signal), we
perform the following steps:

1. We use a method based on a bisection.

2. The method takes as input an EMG recording with target muscle activations
and another recording without them.

We try to achieve such parameters, which will lead to the correct number of
detected activations in the first recording (usually 3 activations) and will not
lead to any activations in the second recording (it contains just daily activities,
which should not affect the orthosis).

3. During bisection, on each step, the method checks if, with current parameters,
we get the correct number of activations for recordings. If the number of ac-
tivations is too high, we randomly choose one of two parameters and make
it stricter (bigger in our case). If the number of activations is too small, we
make the chosen parameter less strict (smaller) and recursively call the method
again.

4. If the method is unable to achieve perfect parameters (i.e., there are not all
activations detected in the “target” recording, and simultaneously there are
detections in the non-target recording –– an overlap of parameters), it tries to
minimize the False Positives because the spontaneous activations of the ortho-
sis can be more harmful.

The method warns the user that it could not achieve parameters that would
fully separate target activations from non-target ones and that the user might
need to tense muscles with greater strength to activate the orthosis.

5. In the end, if the method succeeds, it does not just return the parameters it
got; it checks what was the minimum amplitude among detected activations
and what was the minimum cumulative sum and returns them, slightly scaled
(0.99 scale). This way, it additionally tries to minimize the False Positives in
later recordings.
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6. To ensure that the process of tuning parameters doesn’t take too much time,
the function which is used for detections is, in this case, simplified and not
real-time.

Other parameters, which affect the algorithm the most, but remain constant (or
are derived from constant values) for all users, are:

1. Sampling frequency (“frequency”). This is just the sampling frequency of EMG
recordings. In most cases, it is 1000 Hz because the sensor we use for orthosis
records with this frequency.

2. Rest period after a detected activation (“No_detection_window”). After we
detect a target muscle activation and send the orthosis an appropriate control
signal to either start flexion or extension, for some period of time, we do not
expect to detect additional activations. During testing, this rest period was
usually from 1.5 to 2 seconds (the current constant is 1.8 seconds). Another
reason why we need a rest period is that muscle activity might have different
durations. If it is more prolonged, we might detect the same activation a couple
of times, sending control signals to the orthosis when the user does not intend
it. It also decreases the load on the processing unit and increases the speed by
skipping signal processing for some time.

In visualizations, the rest period is shown in yellow color.

3. Amount of recording units, which are left unit rest period finishes
(“no_detection_recordings_left”). When an activation is detected, this variable
is set to a value equal to the rest period. With every incoming recording unit,
this variable is decreased. This is just a helper variable that controls the rest
period.

4. Size of a signal batch that we keep in the memory (“Sig-
nal_recording_window”). We do not keep all the signals that are received
because the orthosis is intended for hours of usage, and the devices we use
have limited memory. For now, we opted for keeping only the last 10 minutes
of the EMG recording. This also makes the processing faster yet still allows us
to keep some usage history.

5. Size of cumulative sum window (“loop_latency_ms”). This is the size of the
sliding windows, which we use to calculate the cumulative sum during tar-
get muscle activation detection. Through experimenting, we settled for a 0.8-
second window. The bigger the window, the more prominent the difference
between target movement and some spontaneous muscle activations is. At the
same time, a bigger window means that target movements will be detected
with a bigger delay. So, this constant requires to be balanced.

6. The minimum amount of signal for proper processing (“mini-
mum_signal_window_length”). This constant is derived from the previous
one and equals doubled cumulative sum window + 1. This is because we have
two sliding windows during activation detection, so we need to have at least
as much signal to perform it.

7. Frequency of processing the signal (“processing_and_checking_frequency_s”).
To increase processing speed and decrease time delay, we do not perform sig-
nal processing with every received EMG recording unit. We do it, for example,
every 0.1 seconds.
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8. And other helper parameters, which have less effect on the main algorithm’s
functionality.

Some of these parameters will be additionally discussed and put into the appro-
priate context in the following sections.

5.5 Real-time EMG signal processing pipeline

Our approach to real-time EMG signal assessment can be divided into three main
steps: preparation, signal preprocessing, and target muscle activation detection.

5.5.1 Preparation for processing

After the orthosis starts to work, it continuously and in real-time receives and as-
sesses the EMG signals recorded by AD8232 sensors. Firstly, let’s look at its charac-
teristics:

• Number of channels: 1 for each muscle (Sternocleidomastoid and Triceps
brachii)

• Sampling frequency: 1000

As mentioned above, we use 1 channel per muscle. In our system, we aim to process
two muscles simultaneously to control both flexion and extension of the orthosis.

When the EMG signal is received by our algorithm, before starting its processing,
we perform preparations, which involve some of the aforementioned parameters:

1. We update the in-memory signal batch by adding a new recording unit
and removing the last if the size of the in-memory signal exceeds the “sig-
nal_recording_window” parameter.

2. We check if the orthosis is currently not in the “rest period” by checking the
“no_detection_recordings_left” parameter and updating it accordingly. If the
orthosis is indeed in the “rest period” after the previous activation, we skip
signal processing and detection for that recording unit.

3. If the orthosis is not in the “rest period,” we use the “process-
ing_and_checking_window” parameter to control the frequency of processing.
This way, we do not process the signal for every received recording unit but
only with some predefined frequency.

4. Lastly, using the “minimum_signal_window_length” parameter, we check if
we have enough signal for proper processing.

If the signal passes all these steps, we proceed to the signal preprocessing step.

5.5.2 EMG signal preprocessing

On the signal preprocessing step, the received EMG signal passes through the fol-
lowing pipeline:

1. Spectrum limiting. EMG signals lie on a spectrum between 20 and 300 Hz, so
to extract them and filter out noises and artifacts, which may lie beyond this
spectrum, we use bandpass filtering of the input signal. To be precise, we use
a low pass 5th order Butterworth filter at 20 – 300 Hz.
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2. Rectification. It is a standard EMG processing step. The original signal, if
recorded correctly, has a mean value of 0; thus, such characteristics cannot be
used. To make full use of an EMG recording, it is rectified –– all negative values
are turned positive. In short –– we calculate the absolute value of the signal.

3. Digital filtering. Considering that EMG recordings are usually affected by the
noise of various sources (muscle cross-talk, noise from the recording device,
artifacts of cable movement, etc.), before further usage, we need to compute
the envelope of the signal. There are various methods for that task, including
but not limited to Movag, RMS, and digital filtering. In our work, we use the
latter. To be precise, we use a low pass 4th order Butterworth filter at 6 Hz, a
similar filter was recommended in (Konrad, 2005).

Some additional details on the aspects of the signal preprocessing step:

1. The processing happens in real-time. In other words, we continuously receive
new signal recordings and must act accordingly. This includes keeping in mind
the speed of processing because we cannot allow accumulation of delay in our
system, for that would mean that orthosis will not be correctly activated when
needed. Considering that signals are not prepared beforehand, we do not have
any prepared labels which could be used to assess processing and detection
quality on the go. We also must wait before starting signal processing when
the orthosis is just turned on because, for the first couple of seconds, we do
not have enough signal to perform processing properly (i.e., we have windows
“sliding” on the signal, so we must consider their length). This delay of control
start is not a serious problem because we do not expect orthosis activations the
moment it starts to work.

2. The signal processing is meant to be performed in the assistive device itself,
which creates additional memory limitations. To limit memory consumption,
for now, we decided to keep only the last 10 minutes of the recording. So, the
processing of the signal is performed only on this signal segment. At the same
time, method parameters do not take up a lot of memory, so we just store them
in various variables.

3. Speaking about parameters, the method includes many parameters which af-
fect end results (most of them are constants, while some are meant for custom
changes from patient to patient). A significant part of them is time-related.

4. One such important parameter that affects processing speed is the processing
frequency. More precisely, we do not process the signal and try to detect activa-
tions with every incoming recording (single number) because then we would
have an accumulating delay between receiving a recording with target muscle
activation and detecting it and controlling the orthosis. Instead, we do it every
0.1 seconds, which becomes our processing frequency.

After the signal is preprocessed, we proceed to the target muscle activation de-
tection step.

5.5.3 Target muscle activation detection

Right after preprocessing a signal batch, we check if there are target muscle activa-
tions by detecting the onset of the EMG activity. Here is the pipeline:
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FIGURE 5.2: Examples of how an activation (in green color) of the
target muscle, which the algorithm is meant to detect, looks for the
Sternocleidomastoid muscle and for the Triceps brachii (unprocessed

signal above, preprocessed signal below).

1. Rejecting zero values. Firstly, we discard from the signal any values from
the 10e − 4 neighborhood around zero. These are most probably places where
there were some recording failures because the baseline of the EMG signal is
usually non-zero. Such zero recordings could generate False Positives during
activation detection because the change between zero and baseline might be
abrupt enough for detection.

2. Checking if the amplitude meets the minimum threshold. Next, we check if
the current recording’s amplitude is greater than a custom minimum threshold
(“minimum_aplitude” parameter). We reject activation if it is smaller –– this
way, we can additionally weed out some of the other movements which might
affect (i.e., crosstalk) or involve the muscle in question but are not meant to
affect the orthosis.

3. Calculating cumulative sums of two windows. We take the current window
of the signal (i.e., the last 0.8 of the recording in our case) and the same-sized
window which came before that. Windows do not overlap. For each of them,
we calculate the cumulative sum. From each cumulative sum, we subtract
its minimum value –– this way, during comparison, the amplitude would not
matter as much as the speed with which the activity of the signal increases.

4. Comparing these two cumulative sums. It is a relative comparison, not an
absolute one. We divide the last value of the cumulative sum of the current
window by the last value of the cumulative sum of the window before that.

(a) If the relative difference is greater than the custom threshold (“on-
set_relative_threshold” parameter), we consider that an activation hap-
pened. We send the orthotic device an appropriate message about de-
tected activation, prompting its flexion/extension.

(b) Otherwise, we consider that an activation did not happen and return to
the start of the pipeline, waiting for incoming recordings.

Some additional details on the aspects of the target muscle activation detection
step: As mentioned in the descriptions of the parameters, this detection is highly
dependent on customization. There must be an individual approach to different
patients because even people with seemingly similar healthy target muscles may
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have very different EMG signal amplitudes or activity rates during muscle activa-
tions. Various circumstances affect both the EMG signal itself and the sensors that
record it: level of physical fitness, speed of fatigue increase, body and environment
temperature, sweating, skin thickness, the thickness of tissues under the skin, etc.
The muscle activity itself is not reproducible. Due to the random nature of EMG
spikes and the fact that it is impossible to repeat a movement with absolutely the
same speed and power as before, we will still have a variety in muscle activations,
even after the preprocessing step. This is why we were trying to achieve a rather
robust algorithm with an as little amount of custom parameters as possible. There
are also benefits of EMG signal variability: in future work, it can be used to cre-
ate a more adaptive orthosis control (i.e., the intensity of activation might affect the
degree of flexion, etc.).

For the proof-of-concept for our approach, we will have two algorithms (one
with parameters for Sternocleidomastoid muscle and one for Triceps brachii muscle)
running independently to detect activations. The orthosis itself just waits to receive
a control signal from one of them to start flexion or extension of the elbow.

After activation is detected, the algorithm returns to the processing of new in-
coming EMG recordings after waiting for some “rest period.” This completes the
cycle of decoding the EMG signal into the orthosis control signal.
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Chapter 6

Experiments

In this chapter, we will describe the most significant experiments conducted during
algorithm development and testing.

6.1 Experiments on prerecorded signals

In this subsection, we will discuss experiments that were conducted on signals from
the datasets described in previous sections (Tentative, Experimental 1, Experimental
2, etc). This way, the signals were prerecorded, so the experiments were conducted
afterward, not during recording sessions.

The task, that these experiments were meant to solve, was development of an al-
gorithm for processing EMG signals and detecting target muscle activations in them
in real-time setting. To control an orthotic device we need to simultaneously moni-
tor EMG signal which we receive from the Sternocleidomastoid muscle (to prompt
flexion of the orthosis) and from the Triceps brachii muscle (to prompt extension of
the orthosis). This way, in real-time we need to decode EMG signal into orthosis
control signal by detecting onsets, which occur during tension of the muscles that
were chosen beforehand. We aimed to detect such control onsets (examples of how
they look are shown in figure 5.2 in the previous section) with the lowest possible
sampling frequency of the signal, because it gives benefits in terms of the processing
speed and memory, minimises delays and reduces the cost of required hardware.

The experiments are described from the latest to the newest, so You might no-
tice gradual improvements of the algorithm as the descriptions progress toward the
final date. The entries include: Date, Title, Hypothesis, Background, Results and
Observations, and Summary.

6.1.1 Choosing an algorithm for onset detection (amplitude threshold vs.
cumulative sum with static/dynamic comparison).

21 Sep – 19 Oct 2022
Hypothesis: as our first approach was based solely on amplitude threshold, we

wanted to make the algorithm more robust by introducing cumulative sum to the
target muscle activation detection step.

Background: the first approach we used could be considered a quantitative am-
plitude analysis. First, the EMG signal was preprocessed, and then the activations
were detected by checking if the amplitude of the signal was greater than some pre-
defined threshold. This can potentially lead to various mistakes in detection. For
example, it can lead to False Positives in case some artifacts or spontaneous acti-
vation were not completely filtered out during the preprocessing step and have an
amplitude that resembles the one of a target muscle activation. It might also lead
to False Negatives in case the threshold was overestimated, and target movements
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performed by the user of orthosis might produce EMG activity with less amplitude.
Also, over time there can be some changes in a signal, which will change the ampli-
tude but not the relative difference between the baseline and the muscle activation.

FIGURE 6.1: Example of the algorithm using cu-
mulative sum. Shown on a sample (from Stern-
ocleidomastoid muscle) from a recording from

the Experimental dataset 4.

We decided to try an approach that
uses the cumulative sum of a portion
of the signal. Essentially, as we as-
sess an EMG signal, we take the latest
recordings from it (some window with
a predefined size) and calculate its
cumulative sum (afterward, we sub-
tract the first smallest value to make
sure that the result is not affected by
the amplitude with which the window
starts). Then we take the last (so the
biggest) value of this cumulative sum
and compare it:

1. with a predefined cumulative
sum of a baseline noise. This
is a static approach to compar-
ison, because we have a static
value with which we compare
the cumulative sum of the cur-
rent window.

2. with the cumulative sum of a
window of the same size that
came right before the last one (so
we have two sliding windows,
as shown in figure 6.1 at page 29)

As we compare two cumulative
sums, we compare the speed with
which EMG activity increases in these
windows. Comparison is relative, and
so is the threshold parameter for it
(i.e., for one user, we expect that tar-
get muscle activity will increase twice
as fast as, for example, just some base-
line noises or muscle cross-talk; while
for another user, it might be not two
but three times faster, etc).

Results and Observations: as we
tried cumulative sum algorithms, we
could see that they worked well for
recordings from the Tentative dataset,
and considering that this comparison
was relative and not absolute (like
in the amplitude threshold approach),
the algorithm became more robust in a
sense that it was both easier to choose
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a parameter for comparison (this parameter for cumulative sums has smaller devia-
tions among different subjects than the parameter of threshold amplitude) and that
speed of activity increase played a bigger role in detection than just amplitude.

Between the two approaches to using cumulative sum, we opted for the one with
dynamic comparison. It made the algorithm more robust in the sense that we do not
need to keep an additional parameter with the cumulative sum of an EMG record-
ing’s baseline (which is individual for different patients and would make parameter
tuning more complicated). Also, this way, activations depend more on a local con-
text, so if the baseline noise increases or decreases over time, it would not matter for
the activation detection, as it would compare only the latest window of the signal
with a window right before that.

Summary: we decided to use a cumulative sum algorithm with dynamic com-
parison (two sliding windows).

6.1.2 Limiting of the frequency spectrum and reducing sampling fre-
quency of the signals from first datasets.

25 Oct 2022
Hypothesis: we expect that limiting the frequency spectrum to a 20-300 Hz range

and reducing its sampling frequency to 1000 Hz will require parameter tuning for
the algorithm, but at the same time, it might make processing much faster.

Background: Regarding the EMG spectrum, the standard spectrum of myoelec-
tric signals is from 20 to 300 Hz, so in the first stages of the algorithm development,
we needed to make sure that the algorithm would work for signals on such a spec-
trum. The same goes for the sampling frequency: usually, it is approximately 1000
Hz, but the first two datasets were recorded in the RNI with a 20000 Hz sampling
frequency. This is quite a big difference and might affect the parameters or the algo-
rithm development itself.

Results and Observations: both limiting the frequency spectrum and reducing
sampling frequency did not affect the algorithm’s quality. Both processing and target
muscle activation detection went as expected. It indeed made the algorithm faster
because the signal sample became 20 times shorter.

Additionally, we tried even smaller sampling frequencies. The algorithm works
as intended starting from 700-750 Hz and higher. In general, such changes required
some parameter tuning, but detection results continued to be reproducible.

Summary: the developed algorithm works well for the expected signal spectrum
and sampling frequency.

6.1.3 Rejecting recording failures during EMG onset detection using cu-
mulative sum.

10 Nov 2022
Hypothesis: if we do not include failed recordings in cumulative sum windows,

the algorithm will not react to them and will not produce False Positives.
Background: during exploration and testing of the data from the Tentative

dataset, we discovered that sometimes there were recording failures on the signal
(small regions where amplitude was close to zero the whole time). The algorithm
with cumulative sum reacted to abrupt change between such failure regions and the
baseline noise and considered them as target muscle activations.

Results and Observations: before comparing two cumulative sum windows,
we excluded all the recordings close to zero (we chose 10e−4 neighborhood, smaller
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ones were not enough). As shown in the figure 6.2 at page 31, this helped to get rid of
a False Positive detection, and all target muscle activations were detected correctly.

FIGURE 6.2: Comparison of target muscle activation detection before
and after excluding signal recording failures.

Summary: excluding recording failures helps to get rid of False Positive detec-
tions.

6.1.4 Reducing ECG artifacts with EMG spectrum limiting.

3 Feb 2023
Hypothesis: considering that ECG artifacts are also produced by the electrical

activity of muscles, but only of the cardiac ones, we do not expect that limiting signal
spectrum to standard EMG spectrum will fully filter out such artifacts, but we hope
that at least they might be reduced.

Background: on a data exploration step of the Experimental dataset 1, we no-
ticed prominent pulsations of the carotid artery in the signal from the Sternocleido-
mastoid muscle. This was expected, as the artery and cardiac muscles are situated in
proximity to the Sternocleidomastoid muscle. Pulsations did not seem to be promi-
nent enough to affect the target muscle activation detection algorithm. Still, they
might be bigger in other recordings and might make parameter tuning more com-
plicated. In the worst-case scenario, they might lead to False Positive detections.

Results and Observations: we tried limiting the spectrum of the signal to the
standard one for EMG (20 – 300 Hz) and, at the same time, changing the sampling
frequency from 20000 to 1000 Hz (this sampling frequency is often used in sensors).

FIGURE 6.3: Reduction of ECG artifacts (pulsations of the carotid
artery).
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This noticeably reduced amplitude of pulsations of the carotid artery (figure 6.3
at page 31).

Summary: limiting signal spectrum to standard EMG spectrum indeed reduces
ECG artifacts, even though not completely, yet this shows another benefit of includ-
ing a spectrum limiting step to our preprocessing pipeline.

6.1.5 Testing how well the algorithm works for (very) fast target move-
ment repetitions.

3 – 6 Feb 2023
Hypothesis: we do not expect this algorithm to work very well for too fast repe-

titions of target muscle activity.
Background: the algorithm incorporates a rest period, so the movements which

repeat earlier than the rest period ends might not be properly detected. Addition-
ally, very fast movements might cause EMG activities to merge, so it will be harder
to differentiate between different movements. Also, the overall amplitude of EMG
might decrease because it will be harder to produce powerful movement in very
short periods of time.

Results and Observations: to express the speed of movement, we use the “beats-
per-minute” (bpm) of a metronome. Subjects performed target movement with
every beat of the metronome. For this experiment, recordings from Experimental
dataset 1 were used. Observations for Sternocleidomastoid:

• At 60 bpm, all the activations were detected correctly.

• At 100 and 150 bpm, there were a lot of False Negative detections.

Observations for Triceps brachii:

• At 12, 20, and 24 bpm, all the activations were detected correctly.

• At 60 bpm for one subject, all the activations were detected correctly, while the
other had some False Negatives.

Summary: the algorithm works well for fast detections, but it fails on very fast
repetitions, especially if the same custom parameters are used. We do not expect the
orthosis to be flexed, extended, and flexed again in such short periods of time, so the
speed that can be well detected with the current algorithm is completely acceptable.

6.1.6 Designing plans for experimental EMG recordings and the test
recording before orthotic control.

3 Feb – 17 Mar 2023
Hypothesis: we expect that the experimental recording and the test recording

will include target and non-target movements to ensure that our algorithm works.
Background: for general experiments and development of the pipeline and the

algorithm, we need various recordings: target and non-target movements, move-
ments of different durations and repetition speeds, different intensities, etc. We also
expect that the test recording will be relatively short, so the users will be able to
use the orthotic device very soon after it. This test recording should be performed
after the user connects to the orthosis and before we check the quality of the EMG
recording and tune custom parameters.

Results and Observations: one of the important observations, which is men-
tioned in the description of the Experimental dataset 1 and some other experiments,
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is the need to tense target muscles more than for usual daily movements. As men-
tioned before, even though we use target muscles that produce some movements,
such as head rotation for the Sternocleidomastoid, we do not need the movement
itself to happen for the orthotic control –– we need only the tension of the muscle.
Users can train to do this by trying to rotate head against some resistance (i.e., by
holding the palm of the hand against the head in the direction of the rotation). Still,
this tension should be enough to differentiate between target and non-target acti-
vations. For example, even though the left Sternocleidomastoid muscle is respon-
sible for head rotation in the right direction, for one subject from the Experimental
dataset 1, it produced high EMG activity even for the rotations to the left. This way,
an intersection of parameters happened, and we either had to sacrifice some target
activations (leading to False Negative detections), or we had to allow non-target ac-
tivations (leading to False Positives). This way, we found that target tension should
be at least slightly more intense than an average movement of the user.

Experimental datasets included such recordings:

1. Target muscle activations with different intensities. We checked how our algo-
rithm works for stronger and weaker movements.

2. Target muscle activations at different speeds. The first objective was to test
how well the algorithm performs when there are a lot of muscle activations in
a row, and the second was to see if the intensity of activations will decrease
due to fatigue or other factors. To control the speed of movements, subjects
performed them with metronome assistance. Results for assessing the record-
ings with fast movements are described in another experiment.

3. Daily movements that are not supposed to affect the orthosis. For example,
sitting, standing, walking, slow head rotations, turning the head up and down,
resting mostly without any movements, etc. We used these recordings to make
sure that the algorithm does not detect anything in them and does not produce
False Positives.

4. Additionally, recordings with different electrode placements, different prior
duration of electrodes staying on the skin, unsticking and falling off electrodes,
recordings affected by electrical appliances near the sensors, etc. Such record-
ings were used to find out how different problems might affect EMG signals
and to check how we can differentiate between correct and incorrect record-
ings.

The test recording, performed before the orthotic control, should include at least
the following:

1. Small period of rest. This way, we can assess the baseline noise of the EMG
recording and ensure that there are not too many artifacts (i.e., from ECG)
and/or that they are successfully filtered out during the signal preprocessing
step.

2. Sternocleidomastoid tensions (i.e., at least three). To make sure that recording
is performed correctly and to tune parameters, we need the user to perform
a predefined amount of the Sternocleidomastoid muscle tension repetitions.
That muscle tension should resemble the one that the user is gonna perform
when activating flexion of the orthosis. So it should be intense enough to dif-
ferentiate between it and daily activities, and, at the same time, it should not
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be too intense to make sure that it will be easy to perform and will not tire out
the user.

3. Triceps brachii tensions (i.e., at least three). Same details as for the Sternoclei-
domastoid muscle, but for a situation when the user would like to perform
orthosis extension.

Summary: we tried to include different scenarios to ensure diverse testing of the
algorithm and, at the same time to make test recording relatively short but informa-
tive (for the algorithm).

6.1.7 Adding minimum amplitude of the target movement to weed out
more unwanted movements.

8 Feb 2023
Hypothesis: setting a minimum amplitude of the target movement might help

our algorithm to ignore muscle activity caused by non-target movement (i.e., during
crosstalk).

Background: in some cases, during cumulative sum comparisons, we might de-
tect some artifacts, unfiltered noises, or non-target movement (which still affect the
muscle of interest), and usually, they have smaller amplitudes than target muscle
activity. To weed them out, we decided to add a custom parameter, which sets the
minimum amplitude of a processed signal during detection. It is custom because,
in our datasets, we observed that in some cases, non-target movements have signif-
icantly smaller amplitudes than target ones, while in other cases, their amplitudes
can get close. Examples of such signals were found in Experimental dataset 1, where
for one of the subjects, the activity of the left Sternocleidomastoid muscle was almost
the same during both rotations to the left and the right (while theoretically, the left
Sternocleidomastoid is mostly responsible for rotations to the right). Another exam-
ple is shown in figure 6.4 at page 34.

FIGURE 6.4: Example of detection without adding a minimum am-
plitude of the target movement parameter to the algorithm (a sample
from Experimental dataset 3). We either allow False Positives or False

Negatives, and even after tuning, we cannot get rid of both.

Results and Observations: during testing on recordings from the experimen-
tal datasets, an additional minimum amplitude parameter improved results and al-
lowed us to decrease the parameter of the relative difference of cumulative sums,
which previously led to False Positives. This way, we could mostly get rid of this
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trade-off between False Negatives and False Positives because the minimum ampli-
tude parameter filtered out the latter (figure 6.5 at page 35).

FIGURE 6.5: Example of detection with adding a minimum ampli-
tude of the target movement parameter to the algorithm (a sample

from Experimental dataset 3).

Summary: as this custom parameter was shown to improve the quality of the
detection algorithm, we decided to use it.

6.1.8 Setting a minimum limit for the rest period.

8 – 20 Feb 2023
Hypothesis: to reduce repeated detections of the same movement, we need to

set a rest period, and we expect that the rest period should be at least the size of one
window of cumulative sum calculation.

Background: to make sure that we do not have multiple detections of the
same target movement (i.e., detecting one Sternocleidomastoid tension two or three
times), we have a rest period, during which we do not perform signal processing
and target muscle activity detection. Sometimes this rest period is too small, and re-
peated detections still occur. This is why we need to set a minimum limit for it, and
we will start testing from the size of one window of cumulative sum calculation. The
rest period should depend on the window for cumulative sum because the detection
happens through a comparison of two cumulative sums on such windows. When a
target activation is detected, it means that activity in the latest window was signif-
icantly higher than in the previous window. If we wait for one window afterward,
a comparison will happen between a newer period and the window which already
had a high activity last time, so this might be used as a minimum limit for the rest
period. However, it needs further testing on real signals.

Results and Observations: during this experiment, we first tested it with the
algorithm that had a 0.4-second window for cumulative sum and later on the im-
proved algorithm with a 0.8-second window (this is the one that You can see on the
visualizations and which was used for results described in the experiment). We tried
different rest periods (visualizations shown in figure 6.6 at page 36):

• 0.5*window. Just in case, we tested a rest period, smaller than one window.
Predictably, there were numerous repeated detections.

• 1*window. There were still repeated detections for a rest period of one window
size. It seems that there were still significant changes between windows.
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• 2*window. Starting from the double-window size, there were no repeated
recordings. This way, windows that took part in cumulative sum comparisons
that resulted in the detection do not intersect with windows during the follow-
ing detections.

• 2.5*window. Just in case, we checked an even bigger rest period. There were
no repeated detections, just like for double-window size.

FIGURE 6.6: Comparison of different sizes of rest period relative to
the window for cumulative sum calculation (on a signal sample from

Sternocleidomastoid muscle from Experimental dataset 4).

Summary: as a minimum limit for the rest period, we chose a double size of the
cumulative sum detection window.

6.1.9 Checking how different placements of the reference electrode, prob-
lems with electrodes, and computer power cable noise affect the
EMG recording.

15 Feb – 20 Mar 2023
Hypothesis: we expect to be able to see the effects of incorrect reference electrode

placement, problems with electrodes, and contamination with computer power ca-
ble noise visually and also on the signal spectrum, which might later be used to
automatically detect such problems and warn the orthosis user about them.

Background: as we previously observed from recordings from Experimental
datasets 2 and 3, incorrect placement of the reference electrode, unsticking and
falling off electrodes, as well as noise from such appliances as a power cable, affect
EMG recordings in different severity. Such problems with the EMG recording might
cause False Positive and False Negative target muscle activation detection during
the usage of the orthosis. We need to explore the characteristics of such signals and,
for example, their frequency spectrums, so we can later use this information to de-
velop some tools or functions which will automatically detect these problems and
alert the user of an orthotic device about it (i.e., after the placement, one of the elec-
trodes started unsticking from the Triceps brachii muscle area, but the user did not
notice it, etc).

Results and Observations: here we will have a list of findings from the experi-
ment:

1. One of the main observations during this experiment was that even when the
signals seem to be contaminated by noise (not as severe as noise from the
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power cable), extracting and using only recordings which fall into the stan-
dard EMG spectrum at the preprocessing step helps to get rid of most of the
noise and leave EMG signal of good quality. So, at this point, we decided to
keep this standard EMG spectrum extraction in the preprocessing step of the
pipeline.

2. The best results were produced when the reference electrode was near the mus-
cle, from which we needed to record activity, yet it was in a place that was not
as much affected by target motions. The examples of how different reference
electrode placements affect EMG signal recording can be seen in figure 6.7 at
page 37.

FIGURE 6.7: Comparison of effects of different reference electrode
placements when recording signal from the Sternocleidomastoid
muscle (raw signals above and signals in standard EMG spectrum

below, samples from the Experimental dataset 2).

3. We noticed that ECG artifacts sometimes appeared on recordings from the Tri-
ceps brachii, too. They had very small amplitudes and did not intervene with
the algorithm.

4. Noise from the computer power cable had very significant effects on EMG
recording quality. Signals affected by that noise could not be used for target
muscle activity detection even after extracting standard EMG spectrum and
preprocessing in general (figure 6.8 at page 38). This noise appeared because,
during recordings, the sensor was in proximity to the computer that was con-
nected to the power cable. For proper EMG recordings, sensors should be
isolated from devices connected to 220V.

5. Using EMG signals from the Experimental dataset 3, we compared their spec-
trums (figure 6.9 at page 38). Before comparison, we extracted standard EMG
spectrums so that we could compare on a limited range of frequencies. As
we observed, unsticking and falling off electrodes produced a spectrum very
close to the correct one but with mostly slightly bigger amplitudes. At the
same time, noise from the power cable led to a spectrum much different from
the correct one and with much higher amplitudes. However, each recording,
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FIGURE 6.8: EMG recording that was affected by noise from the com-
puter power cable (raw recording to the left, recording in the stan-
dard EMG spectrum to the right). This recording was supposed to
have target muscle activity, but it is not present even after standard

spectrum extraction.

even for the same subject, had very noticeable variations in the amplitude of
spectra, which led to intersections between correct and incorrect recordings in
that regard, so using only amplitude analysis might not be enough to detect
problems with EMG recordings.

FIGURE 6.9: Comparison of frequency spectra of a couple of sam-
ples from Sternocleidomastoid of (1) properly recorded EMG, (2) sig-
nal recorded with unsticking electrodes, and (3) signal contaminated
with noise from the power cable. All of them were limited to the

range of the standard EMG spectrum before visualization.

6. Additionally, we extracted and compared various features of such signals us-
ing a correlations heatmap (figure 6.10 at page 39). We tried to find some
features that correlated the most with EMG recording problems. List of fea-
tures for consideration and partially code for computing them was taken from
(Gambera, 2021).

We compared different muscles separately. For Sternocleidomastoid, the most
correlations were between noise from the power cable and maximum and peak
(absolute maximum) values of the signal. For Triceps, the most correlations
were also for noise from the power cable. It correlated the most with kurtosis
and kurtosis in the frequency domain (after FFT).
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FIGURE 6.10: Correlations of features of the signals. Only shown
correlations more than 0.6 in absolute values.

It should be noted that the Experimental dataset 3 is relatively small and
includes only 15.6 minutes of recordings from the Sternocleidomastoid and
15.6 from the Triceps brachii, so the correlations might not be representative
enough.

Summary: we observed that extracting the standard EMG spectrum is a signifi-
cant part of the preprocessing step. We also chose the most advantageous reference
electrode placement and compared correct and incorrect EMG recordings.

6.1.10 Checking whether the duration of electrodes contact with skin af-
fects the results of processing and detection.

15 – 17 Mar 2023
Hypothesis: we expect that after staying on the skin for some long periods of

time, electrodes will not produce proper EMG recordings.
Background: considering that the orthosis is continuously controlled by EMG

signals and that users would want to use the orthosis in daily life and not only for
small durations of time, we need to check how much the electrodes will be affected
from staying on skin for long durations of time. They might start unsticking or
falling off, and they might produce EMG with more noise or just of less quality if the
gel starts to dry or if the body sweat affects them, etc.

Results and Observations: here are the observations from recordings, which
were made with electrodes that stayed on the skin for different durations of time (in
a row):

• Fresh, 1 and 12 hours (figure 6.11 at page 40). Electrodes, which were freshly
attached to the skin, or stayed on it for 1 – 12 hours prior to the recording ses-
sion, produced recordings of high quality, on which the processing and target
muscle activation detection algorithms worked well.

• 24 hours. Recordings from the Sternocleidomastoid muscle were noticeably
affected but still contained enough information for target muscle activation
detection. Recordings from Triceps seemed to be unaffected.
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FIGURE 6.11: Samples of recordings with electrodes that stayed on
the skin 24 hours prior to the recording session. Slightly affected
recording from the Sternocleidomastoid to the left and proper record-
ing from the Triceps brachii to the right. Upper visualizations are of

raw recordings, while lower are preprocessed.

• 34 hours (figure 6.12 at page 40). After staying on the skin for 34 hours in a row,
some electrodes started to unstick (this led to the appearance of False Positives
when using the same parameters that worked well previously) from the Stern-
ocleidomastoid muscle and eventually started falling off (which resulted in no
detections at all and EMG activity stopped being noticeable in the signal). On
the other hand, there were no such problems with Triceps. Recordings from it
continued to be properly processed using the same parameters as before.

FIGURE 6.12: Samples of recordings with electrodes that stayed on
the skin 34 hours prior to the recording session. Unsticking and
falling of electrodes from the Sternocleidomastoid to the left, and

again proper recording from the Triceps brachii to the right.

These signals are from the Experimental dataset 3.
Summary: in some cases, prolonged electrode usage might lead to such prob-

lems as them unsticking or even falling off, so they should be well-fixed on the users’
skin and renewed after some periods of time.
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6.1.11 Choosing methods of limiting signal spectrum (fixing false posi-
tives occurrences due to filtering artifacts)

17 Mar 23

FIGURE 6.13: False positive occurrences in an
EMG recording from Sternocleidomastoid. Below
is the interval before the False Positive raw and af-

ter the spectrum limiting step using RFFT.

Hypothesis: replacing RFFT in
the spectrum limiting function by
FFT or a bandpass filter might help
to get rid of False Positives in the
signal, which were caused by filter-
ing artifacts.

Background: during testing
EMG signals from Sternocleido-
mastoid (Experimental dataset 3),
which were recorded using elec-
trodes that stayed on the skin 24
hours before the recording session,
there occurred a couple of False
Positive detections seemingly with-
out causes in the signal. As we do
not want spontaneous activations
of the orthosis, we need to get rid
of False Positives.

Results and Observations:
when observing the signal on
different stages of preprocessing
on the interval right before False
Positive detections showed that
after the spectrum limiting step,
there appeared peaks on the ends

of the interval (figure 6.13 at page 41). It seems that these are filtering artifacts. They
caused cumulative sum growth in these regions, so it was decided to either modify
or replace the spectrum limiting function.

The method that we used there for spectrum limiting involved RFFT. We com-
pute the RFFT of the signal and Discrete Fourier Transform sample frequencies and
filter out recording units, which on the spectrum are beyond the standard EMG spec-
trum (from 20 to 300 Hz). Next, we use only the recordings which fall into the ap-
propriate spectrum and perform inverse RFFT. This way, we get the signal on the
standard EMG spectrum. As alternatives to this method, we tried using FFT, mod-
ifying the size of the interval, and finally using a bandpass filter instead. Replacing
with FFT helped to get rid of False Positives for this subject. However, on further
inspection, we noticed that it still left some processing artifacts, which may lead to
False Positives in other recordings or for other subjects. Changing the whole win-
dow size (length of the in-memory signal) only shifted False Positive occurrences in
time. Finally, the best effect was achieved with a bandpass filter (figure 6.14 at page
42). We chose a 5th-order Butterworth filter at 20 – 300 Hz.

Summary: bandpass filter worked the best for limiting the signal spectrum, so it
will be used in the algorithms instead of FFT/RFFT.
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FIGURE 6.14: Comparison of using FFT and a bandpass Butterworth
filter to get rid of False Positives.

6.1.12 Making the algorithm more robust by increasing the size of the
window of cumulative sum calculation

20 Mar 2023
Hypothesis: 0.4-second window size is too small to make the algorithm more

robust in terms of differentiating between the target muscle activity and non-target
movement, crosstalk, and spontaneous activations; thus, a bigger window might
help.

Background: during testing of signals from Experimental dataset 4 (subject 1),
we noticed that it was impossible to choose such custom algorithm parameters
which would ensure that all the target movements are detected while non-target
are left undetected (in other words, we could not get rid of False Positives and False
Negatives). For example, the minimum threshold for cumulative sum differences
for a target movement was smaller than the maximum for a non-target movement,
which creates a parameter-wise intersection between them.

This would mean that we would either have to opt for smaller parameter val-
ues, at the same time allowing False Positives (which is very undesirable for control
of a medical device), or we would increase parameters, and this way allow False
Negatives (which is undesirable, too).

Considering that for movement detection, we use relative comparison between
cumulative sums of two “sliding” windows, we decided to try increasing this win-
dow, so this way, the difference between baseline and muscle activity would be more
noticeable.

Results and Observations: After increasing the window size to 0.8 seconds and
slightly tuning the custom parameters of the algorithm, we achieved improvement
in the performance by reducing False Positives and False Negatives to zero (fig-
ure 6.15 at page 43). We retested the algorithm with this window on Experimental
dataset 3 and observed that the modification did not lead to the appearance of False
Positives and False Negatives. The only downside is that detection now might be
slightly shifted in time, increasing the delay.

Summary: doubling the window size to 0.8 seconds helped to get rid of the
parameter-wise intersection between target and non-target muscle activations, re-
ducing number of False Positives and False Negatives on Experimental dataset 4
(subject 1) to zero.
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FIGURE 6.15: Detection of target muscle activation before and after
increasing the size of the window for cumulative sum calculation (up-
per visualization contains the signal with target muscle activation,

while the lower does not contain them).

6.2 Comparison with other methods of EMG onset detection

We compared our algorithm with non-real-time EMG onset detection implemen-
tations from various Python libraries. These libraries include NeuroDSP (Cole
et al., 2019) (we used the function detect_bursts_dual_threshold for onset de-
tection), NeuroKit2 (Makowski et al., 2021) (we used their preprocessing func-
tions and emg_activation function with different parameters and methods silva,
biosppy, mixture and threshold), BioSPPy (Carreiras et al., 2015–) (for detection
we used following functions: emg, find_onsets, hodges_bui_onset_detector, and
silva_onset_detector).

For evaluation, we used signals from the Experimental dataset 4 and the Exper-
imental dataset 3 (only the signals where the electrodes were not affected by noise
from other electrical appliances). We used both subjects for which target and non-
target activations are easily differentiable and subjects for which there occurred in-
tersections (i.e., same amplitude and change of cumulative sums) between target
and non-target activations –– to test how well will our algorithm (it should opt to
minimize False Positives in such situations) and other methods perform with such
tricky cases. To easier assess such cases, we separated them into two groups.

Details on all of the tested signals (here by a recording, we mean an EMG
recording from one muscle (i.e., only from Sternocleidomastoid or only from Triceps
brachii), but it should be noted that signals from these two muscles were recorded
simultaneously, so the actual number of files is precisely two times less than the
number of separate recordings; same goes for their duration):

• Total number of subjects: 9

• Total number of recordings: 56

• Total duration of recordings: 44.93 minutes

• Included datasets: Experimental datasets 3 and 4

Details on two groups separately:

• Group 1. Easily differentiable cases (here again, we treat signals from differ-
ent muscles as separate recordings, even though they were recorded simulta-
neously):

– Number of subjects: 9
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– Number of recording pairs for Sternocleidomastoid (target + non-target
signals): 12

– Number of recording pairs for Triceps brachii (target + non-target sig-
nals): 15

– Duration of unique recordings: 37.74 minutes

• Group 2. Non-differentiable (or unsatisfactorily differentiable) cases with in-
tersections between target and non-target activations, for example, affected by
electrodes falling off, etc (again, we treat signals from different muscles as sep-
arate recordings):

– Number of subjects: 4

– Number of recording pairs for Sternocleidomastoid (target + non-target
signals): 6

– Number of recording pairs for Triceps brachii (target + non-target sig-
nals): 3

– Duration of unique recordings: 9.64 minutes

Regarding parameter tuning, we tuned parameters in such a way that they
should both detect target activations in a recording with them and, while being the
same, not produce any False Positives in a recording without target activations. This
way, for each evaluation step, we actually used a pair of signals (target and non-
target, sometimes concatenated into one signal), with target signals being unique,
while non-target were sometimes repeated (this is why the duration of all unique
recordings is smaller than the sum of durations of unique recordings inside each
of the groups –– some non-target signals are used more than once). The reason is
that during the parameter tuning step, we need to ensure that there are no False
Positives, which could potentially lead to spontaneous orthosis activations. For our
method, we used automated parameter tuning. For other methods, we either tuned
parameters manually, implemented additional tuning functions, or used the tools
offered by their libraries. If we used parts of our pipeline with other methods, we
specified that in the parentheses after the names of the libraries and methods in the
table.

As evaluation metrics, we used recall (True Positive Rate), precision, and F1-
score (which combines two previous metrics). We do not use, for example, the ac-
curacy metric because it requires the number of True Negatives, which we can not
describe in a discrete manner. Considering that our data was recorded specifically
for that project, it does not come with labels on EMG onsets or noises, so condi-
tions for True/False Positives/Negatives are slightly more relaxed than for labeled
datasets. We consider detection True Positive if it happened during the visible onset
of the activity or close to it (<≈1-second difference); in other cases, these are False
Positives. If the detection did not happen in such a window, we consider it a False
Negative; in other cases, these are True Negatives.

Our method showed competitive results in comparison to various Python li-
braries and methods. It should be noted that most methods from different libraries
also required parameter tuning, so we might not have achieved the best results that
they could offer with our automated or manual tunings. We should also keep in
mind that our method is meant for real-time data processing, while the methods we
compared with are not (they can be modified for real-time processing and incorpo-
rated into the pipeline if needed). In general, if a part of our method (detection of
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(1) Well-differentiable cases (2) Non-differentiable cases
Recall Precision F1-score Recall Precision F1-score

Our real-time method
(automatic parameters
tuning + pre-processing +
onset detection)

0.938 0.968 0.952 0.333 0.5 0.4

NeuroDSP (+ our
pre-processing, parameter
tuning)

0.875 1.0 0.933 0.444 1.0 0.615

NeuroKit2* (silva) 0.156 0.938 0.268 0.111 1.0 0.2
NeuroKit2* (biosppy) 0.896 0.227 0.362 0.778 0.172 0.282
NeuroKit2* (mixture) (+
our parameter tuning)

0.823 0.859 0.84 0.481 0.433 0.456

NeuroKit2* (threshold) (+
our parameter tuning)

0.667 0.97 0.79 0.444 0.6 0.511

BioSPPy* (emg) 0.823 0.632 0.715 0.852 0.59 0.697
BioSPPy* (find_onsets) (+
our pre-processing,
parameter tuning)

0.812 0.897 0.852 0.481 0.867 0.619

BioSPPy*

(hodges_bui_onset_detector)
(+ our parameter tuning)

0.948 1.0 0.973 0.667 1.0 0.8

BioSPPy*

(silva_onset_detector) (+
our parameter tuning)

0.948 1.0 0.973 0.704 1.0 0.826

TABLE 6.1: Comparison of different methods of EMG onset detection.

onset using comparison of two cumulative sums) was to be replaced for the ortho-
sis, it would be replaced by the method from NeuroDSP (example in the figure 6.16
at page 46), for it showed good performance and very good rate of False Positives
and did not require as much additional result processing as methods, for example,
from BioSPPy (example also in the figure 6.16 at page 46). Other parts of our pipeline
would remain mostly the same, only with some modifications (i.e., a bisection-based
method for tuning would be used on one parameter instead of two, etc).

We mostly tested our algorithm in terms of onset detection and its parameter
tuning. We did not evaluate (in terms of comparisons) the preprocessing separately,
because preprocessing is a highly specific task, and its results can be interpreted in
different ways. We also did not evaluate (again, in terms of comparisons) our ap-
proach to making that pipeline real-time and also to our approach to the myoelectric
control in general (choice of muscles, choice of the way the orthosis will be acti-
vated, using direct and indirect control, etc), because the task that we aim to use it
for is quite specific and the setting is such, too.

*For these methods, for every onset occurred many detections (i.e., tens or even hundreds), which
were closely situated to each other and mostly covered the region where detection occurred. In order to
not count them as False Positives, for each such group of detections, we counted only one (we skipped
every detection which was less than a second close to the previous detection –– this way, we ensured
that there was at least 1-second (1.5 for BioSPPy’s emg and find_onsets) difference between onsets).
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FIGURE 6.16: A couple of demonstrations of onsets detected by dif-
ferent libraries (visualized using tools from respective libraries).
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Chapter 7

Summary

Conclusions: We proposed an approach to a myoelectric control of an orthosis de-
vice for people with traumatic injuries of the brachial plexus. We proposed, imple-
mented, and tested the pipeline for EMG signal processing and evaluated the part
responsible for the onset detection; we also designed plans for EMG recordings for
the datasets, explored the received signal, and used them for the development and
testing of the algorithm and described the most significant experiments and their
outcomes.

Future work: The work on the thesis comes to an end, but the work on our
method for myoelectric control for the orthosis continues. Here are some of our
plans:

• Adding adaptive control so users can control speed and degree of flexion and
extension, maybe using AI algorithms for this;

• Considering the reaction time, to make sure that there is not too much delay
between muscle activation and orthosis flexion/extension;

• Considering the state of orthosis –– is it currently extended or flexed;

• Automating the step for checking EMG quality;

• Replacing detection, that uses cumulative sums comparison, by the threshold-
based detection from the NeuroDSP library, if further experiments will show
such need;

• Integrating myoelectric control into the orthosis and providing it for testing by
the patients from RNI;

• And so on.
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