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Abstract

Indoor positioning has many real-life applications and currently is an actively re-
searched topic. Due to the low cost and power consumption of Bluetooth Low En-
ergy (BLE), as well as its prominent usage in common devices, it is an attractive tech-
nology to base localization on. A recent development in this field is a multi-carrier
phase-based ranging solution. This thesis proposes a new positioning system that
uses sensor fusion to combine phase-based BLE ranging data with inertial module
measurements. The system is then tested in the simulated environment, showing
high positioning accuracy.
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Chapter 1

Introduction

Determining a position of a certain device is required in many situations. If the de-
vice is outdoors, GPS is usually the best solution for this. However, inside buildings
cannot provide reliable accuracy, so alternative solutions are required (Huang and
Gartner, 2018). Bluetooth Low Energy (BLE) beacons are an attractive option for
positioning due to their low power consumption, low cost, and ease of installation;
however, the best BLE-based positioning approach is yet to be determined Jeon et al.,
2018. Multi-carrier phase-based ranging is one of the most promising recent devel-
opments in this area, as it provides a reliable and noise-resistant way of measuring
the distance to the beacons (Zand et al., 2019b). However, as of yet, no complete
positioning system has been developed using this method.

1.1 Goals

Create a positioning system using phase-based BLE ranging that works well for in-
door environments.

1.2 Thesis structure

Chapter 2. Related works

In this chapter, an overview of indoor positioning approaches is presented,
with an emphasis on BLE-based positioning. Also, positioning approaches
that incorporate inertial data are investigated.

Chapter 3. Background

Here, the background information related to the proposed system is provided.

Chapter 4. Proposed system

This chapter contains a detailed description of the proposed positioning sys-
tem.

Chapter 5. Evaluation and results

This chapter describes an evaluation setup, and experimental results are pre-
sented.

Chapter 6. Summary

This chapter summarizes the work done and mentions possibilities for further
development.
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Chapter 2

Related Works

2.1 Indoor localisation techniques

As GPS positioning is generally unavailable indoors, many alternative technologies
are being proposed for positioning. This includes visible light fingerprinting (Panta
and Armstrong, 2012), magnetic field sensors (Ouyang and Abed-Meraim, 2022), ul-
trasound (Murata et al., 2014), and others. Radio wave-based systems such as Blue-
tooth, WiFi, and UWB are another prominently used group of technologies that, in
general, provide the best compromise between costs, accuracy, coverage, and power
consumption (Obeidat et al., 2021). As those technologies are all based on the same
physical principles, they share the same main localization techniques listed below
(Yassin et al., 2016).

1. Received Signal Strength (RSS): measurement of the relative strength of the
signal sent from AP to the target device, which is correlated with distance.
However, this requires a consistent signal fading model, so signal reflection
and refraction can severely decrease localization accuracy.

2. RSS fingerprinting: Instead of using a theoretical model, signal strength data,
known as RSS fingerprints, is collected from many locations inside the target
environment beforehand. The RSS data received by the target device is then
compared to those fingerprints to determine the location (Wen et al., 2015).
This method achieves high positioning accuracy but requires time-consuming
work of re-mapping all area when any anchor point is added or removed.

3. Time Of Arrival (ToA): measurement of the time needed for the signal to travel
from the anchor points (AP) with a known location to the target device.

4. Time difference of arrival (TDoA): the difference in the signal travel time from
each pair of APs is measured, thus eliminating the need for the synchronized
time source.

5. Angle of Arrival (AoA): an angle at which the signal arrives to the target device
is measured. This method potentially requires fewer devices, as only two APs
are required for localization (Chen et al., 2012). However, a small error in angle
determination can lead to a large error in the estimated position.

6. Phase-based ranging: the target method of this thesis; distance between APs
and the target device is calculated based on the phase difference between the
emitted and returned signal (Liu et al., 2014).
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2.2 Phase-based BLE positioning

The phase-based ranging system was proposed in (Liu et al., 2014), with frequency-
hopping to increase accuracy and mitigate radio interference. This idea is expanded
on in (Zand et al., 2019b), with the ranging solution that is compatible with the BLE
standards. (Zand et al., 2019a) optimizes positioning using this method by allowing
the simultaneous distance estimation between several devices. In (Lu et al., 2021),
phase-based BLE ranging is experimentally tested for indoor positioning, showing
high localization accuracy.

2.3 Usage of filters for localisation

(Yim et al., 2008) is one of the first to use an extended Kalman filter for WLAN-
based indoor positioning to increase positioning accuracy without fingerprinting.
(Ye et al., 2019) uses a fusion algorithm based on the Kalman filter to combine AoA
and RSS BLE methods with inertial sensor data to achieve positioning with only one
anchor device. Many similar solutions utilize Pedestrian Dead Reckoning (PDR)
(Kang and Han, 2014): human walking models that use IMUs to estimate the number
and length of steps a person is taking to determine their movements. This data
is then fused with other localisation technologies such as BLE for higher accuracy
(Ciabattoni et al., 2019; Liao, Chiang, and Zhou, 2016; Zuo et al., 2018).
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Chapter 3

Background

3.1 Phase-based localisation

3.1.1 Basic Idea

When traveling from one device to another, a phase shift of the radio signal is deter-
mined as follows:

ϕ(x) =
2π

c
f x (mod 2π)

where x is the traveled distance and f is the signal frequency. Thus, for a signal with
the known frequency fi, the traveled distance can be determined from its phase shift
ϕi

x
(

mod
c
fi

)
=

cϕi

2π fi

The distance can only be determined up to the signal wavelength c
fi

(≈ 12.5cm for
2.4GHz BLE uses), so communication over multiple frequencies is needed for rang-
ing over larger distances.

3.1.2 Combining multiple frequencies

Let us suppose that f is continuous over some interval [ f0; f0 + ∆ f ]; then, for a fixed
distance x, the received signal value is:

I( f , x) = A sin(ϕ( f , x)) = A sin
(

2π

c
x ∗ f

)
.

In frequency domain its graph is a sine wave, with frequency Ff (x) = x
c (Figure 3.1).

So, if phase shift data is available for a sufficient number of frequencies, a value
of Ff can be obtained using the Fourier transform over the signal in frequency, and
then the distance is calculated as x = cFf m.

3.1.3 Speed estimation

If a target is moving, received signal value changes over time as

I( f , t) = A sin
(

2π f
c

x(t)
)
= A sin

(
2π f

c
υx ∗ t

)
where υx is a target velocity x-axis projection relatively to the anchor point. Thus,
target velocity can be estimated using Fourier transform over the signal in time.
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I(f, x)

f, s 1

f0 f0 + f

FIGURE 3.1: Signal in frequency domain with fixed x.

3.1.4 Multipath

In the indoor environment, a multipath effect is introduced: due to the reflection and
refraction of the radio signals, the same packet from one device can reach the other
via several paths of different lengths. In this case, the resulting signal is simply a
sum of the signals from all paths.

I( f , x) = ∑
i

Ai sin
(

2π

c
xi ∗ f

)

0 x0/c x1/c x2/c
Ff, s

FIGURE 3.2: Fourier transform over f in case
of multipath.

Fourier transform of this signal over
f will result in a set of spikes, each cor-
responding to the length of one of the
signal paths, with amplitudes propor-
tional to the signal’s amplitude. Usu-
ally, the direct path is the shortest and
has the highest amplitude.

Similarly, Fourier transform of the
signal over time will result in a set of
velocities, each corresponding to length
change speed of one of the signal paths.

3.2 BLE

Bluetooth Low Energy (BLE) is a low-
power wireless technology for short-
range communication (Gomez, Oller, and Paradells, 2012). It was first introduced
in 2009 in the Bluetooth Standard 4.0 (Woolley, 2019) as an energy-efficient alter-
native to the standard Bluetooth. While Bluetooth and BLE share many common
characteristics, they are not mutually compatible.
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3.2.1 Physical layer

BLE operates with a base frequency of 2.4 GHz, divided into 40 channels, each 2
MHz wide. Out of them, three (channels 37, 38, and 39 with frequencies 2402MHz,
2426MHz, and 2480MHz, respectively) are defined as advertising channels used for
device discovery, connection, and broadcasting. Other 37 channels are used for com-
munication to connected devices. To minimize signal interference, the frequency
used for communication periodically changes, using an adaptive frequency-hopping
algorithm.

Adaptive frequency hopping algorithm recursively calculates the next active chan-
nel index ci as ci = (ci−1 + h)mod 37, where ci−1 is the index of the previous ac-
tive channel, and h is an integer between 5 and 16, that is constant for the dura-
tion of the BLE connection (Sarkar, Liu, and Jovanov, 2019). To prevent overlaps
with other devices, another parameter mc called channel map is used, which is
set by the master device, and can be updated in the middle of connection using a
(LL_CHANNEL_MAP_REQ) packet. It is a 40-bit value, that classifies each chan-
nel as ”used” or ”unused”, depending on the wireless environment. If calculated
channel ci is ”unused”, the effective channel c′i is computed as (ci)mod nc-th ”used”
channel, where nc is a number of ”used” channels in mc. However, the calculation
of the next channel ci+1 still depends on the ci and not c′i, so as to preserve the recep-
tivity of channel selection.

3.2.2 Link layer

BLE communication can be carried out in two modes: advertisement and connec-
tion. In advertisement mode, one device (the advertiser) periodically broadcasts
packets using one of the three advertising frequencies. It is most commonly used
for device discovery, but it is also possible to perform positioning entirely in the ad-
vertising mode. Bluetooth 5 specification (Woolley, 2019) introduces a new advertis-
ing mode, that allows periodical advertisement packets AUX_SYNC_IND, hopping
over 37 data channels. The scanner device can then reply to those packets with a
SCAN_REQ command, thus enabling phase shift measurement and distance calcu-
lation (Zand et al., 2019b).

BLE device enters a connection mode when a listening device (called initiator)
detects an active advertiser and sends a CONN_REQ command, establishing a two-
way communication session with it. After the connection is established, communi-
cation between master and slave is divided into short time blocks called connection
events. Each connection event is initiated by the master device and consists of one
or several packet exchanges, during which both devices stay on the same frequency.
At the start of a new connection event, both master and slave choose a new channel
using a common pseudo-random algorithm. The time interval between two consec-
utive connection events (and thus between two frequency hops) is configured by the
master device and can vary from 7.5ms to 4s. Thus, exchanging signals for all 37
data channels takes at least 277.5 ms for each device pair.

3.3 Sensor fusion

3.3.1 Overview

Sensor fusion is the process of combining information from multiple sensors, possi-
bly of different nature, to obtain better results than each sensor could have provided



Chapter 3. Background 7

independently (Gustafsson, 2010b). In the case of position estimation, this is usu-
ally achieved using the Bayesian approach – a probabilistic framework in which
data from each sensor is used to update the estimated probability distribution of the
tracked parameters, like target position or speed. Classical Bayesian fusion algo-
rithms include:

• Kalman filter: the most basic algorithm that recursively updates probability
distributions for linear Gaussian systems. For linear systems with additive
Gaussian noise, it is proven to be the optimal estimator (Ribeiro, 2004).

• Extended Kalman filter: an application of the Kalman filter for non-linear mod-
els. It can produce good results for some non-linear systems but is not optimal
in general.

• Unscented Kalman filter models the target probability distribution by updat-
ing a number of deterministically sampled points in the state space and ap-
proximating them by the Gaussian distribution (Wan and Van Der Merwe,
2000).

• Point-mass filter - grids the state space and discretizes the target probability
distribution over this grid (Matoušek, Duník, and Straka, 2019). It can model
any probability distribution but is limited by the memory consumption in the
case of large-dimensional systems.

The features of the positioning system researched in this thesis, however, pose
significant challenges in using this filters. The system is non-linear, as walking speed
and direction may change constantly. The distance is measured to one anchor device
at a time, resulting in non-Gaussian probability distributions; multipath effects and
external interference may further complicate their shape. Luckily, there is another
filter that provides accurate estimates for non-linear and non-Gaussian systems – the
particle filter.

3.3.2 Particle filter

Particle filter (Gustafsson, 2010a) is a Monte-Carlo Bayesian fusion algorithm that
models the target probability distribution using a large number of randomized par-
ticles. This allows the modeling of non-Gaussian distributions while also avoiding
the high memory cost of grid-based approaches.

The algorithm starts by randomly generating a sample of particles. Each particle
corresponds to a specific system state – for example, in the case of position determi-
nation, each particle will contain the target coordinates and moving direction. Each
particle also has a weight variable that represents how well the particle fits the ob-
served data. At the start, particle parameters are generated randomly, while weights
are set to 1. Then, three steps are repeated for each piece of observed data (Fig.3.3).

1. Predict. Update coordinates of each particle according to the internal model.
In the case of positioning, move each particle by estimated speed multiplied
by elapsed time. To preserve sample variation, also change its orientation and
position by some random values.

2. Update. Update the weight of each particle based on how well they fit the
observed data, using a Bayes theorem. At the k-th step, the weight of i-th
particle is calculated as

wi
k = wi

k−1P(zk|x⃗i
k)
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Predict Update Resample

FIGURE 3.3: Particle filter stages illustration. Particles before each
step are colored blue, particles after are orange. Particle weight is

represented by the circle size.

where P(zk|x⃗i
k) is a probability of obtaining measurement zk given system state

equal to x⃗i
k, and wi

k−1 is particle weight at the previous iteration.

To prevent sample degeneracy (Li et al., 2014), particle re-sampling is pre-
formed when particle weight distribution becomes too uniform. During it,
some particles are dropped, and others are replicated at random, such that par-
ticles with bigger weight are more likely to be replicated, while particles with
low weight are likely to be dropped. This results in a more compact sample,
with more particles meaningfully contributing to position prediction.

3. Estimate Compute estimates for each parameter in the system by taking the
weighted average of all particles.

µ⃗k =
1
N

N

∑
i=1

wi
k x⃗i

k
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Chapter 4

Proposed system

4.1 Phase-based ranging

The basics of phase-based distance determination were laid out in the Background
chapter. However, there still are some issues to be addressed.

Firstly, distance determination requires simultaneous data from all 37 channels,
but due to the BLE constraints, phase shift data for each consecutive frequency is
obtained with a 7.5ms delay after the previous one. Signal interpolation could miti-
gate this issue, but because of the small number of samples, it does not result in an
accuracy improvement. On a small scale, phase shift linearly depends on the speed
of a target device relative to the anchor (see 3.1.3), so system knowledge can be used
to provide better interpolation; however, this is beyond the scope of this thesis.

Besides that, due to the adaptive frequency-hopping algorithm, some frequen-
cies may be missing entirely. Luckily, the measurement density in the frequency
domain is high enough for interpolation to be possible. At reasonable distances (0.5
- 10m), only two or less periods fit into the used frequency band (Fig. 4.1), so tra-
ditional signal interpolation techniques do not perform well. Instead, smooth cubic
spline interpolation was used (Dierckx, 1995).

2402MHz 2432MHz 2462MHz 2480MHz

Unused frequencies band

Ideal
Received
Interpolated

FIGURE 4.1: Frequency interpolation example at 5.1m distance. Fre-
quencies from 2432MHz to 2462 MHz are considered "unused" be-

cause of the external interference.

Finally, a distance estimation must be computed from a continuous distribution
obtained after the Fourier Transform. This can be done in several ways:
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1. Largest peak: select the distance corresponding to the highest magnitude in
the distribution. It is the easiest method that performs well enough in most
situations. However, it has some important limitations. Firstly, in the presence
of noise, the highest value can be shifted from the middle of the corresponding
peak, resulting in lower difficulty. Moreover, suppose the direct signal path
is suppressed (for example, by people standing in the way), and the reflected
signals have high enough intensity. In that case, the distance estimation will
be completely wrong.

2. First peak: identify some number of peaks, then select the one corresponding
to the smallest distance. This method should yield better results in environ-
ments with a strong multipath effect as the direct path is the shortest. In the
presence of noise, however, false peaks may be selected.

3. Weighted peaks: instead of only one distance, output several distances, with
probabilities corresponding to their amplitudes. This method may better syn-
ergize with a particle used in the following steps, but the weight determi-
nation algorithm needs careful consideration: shorter distances must be pre-
ferred while also taking into account peak amplitudes and ignoring the base-
line noise.

0 5.1m 10.4m 14.4m

FIGURE 4.2: Three peaks selected,
each corresponding to different

paths.

Out of those, the first peak method was used
in the system. First, a moving average filter
is applied to the data to reduce noise. Then,
peaks are found as continuous sequences with
magnitudes larger than the baseline. Finally,
the largest value of the first detected peak is se-
lected.

4.2 IMU

IMU is primarily used for detecting direction
changes and estimating walking speed.

Walking speed is estimated using Pedestrian
Dead Reckoning, similarly to (Kang and Han,
2014). Moving average smoothing is used over
acceleration data to reduce noise, and then peaks
in acceleration are detected. Average speed is then computed as step length divided
by the time between two consecutive peaks. For the sake of simplicity, step length
is kept constant; if needed, it can be adjusted using the feedback from the particle
filter.

Small direction changes can be inferred by the particle filter quite well, so only
large changes have to be detected by the IMU. As high accuracy is not required, it is
done using only gyroscope turning data.

4.3 Sensor fusion

To combine data from different sources, a particle filter was used. The high-level
algorithm is as follows:
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Create particles with random position and orientation;
while true do

foreach anchor in anchorSet do
Get signalData from anchor;
// 278 ms
Get speed and turn from IMU;
if turn ≥ 45◦ then

Change particles orientation by turn;
end
Change particles positions using speed;
Estimate anchorDistance using signalData;
Update particles weights according to anchorDistance;
Resample particles;
Estimate position as weighted average of particles;

end
end
The estimated position is updated every time when phase shift data is obtained.

Communicating on all 37 frequencies takes 277.5 ms, which means approximately
three updates per second.
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Chapter 5

Evaluation and results

5.1 Simulator

For testing the algorithm, a Python simulator was developed, covering both BLE and
IMU data simulation. BLE simulation was based on the 1-dimensional MATLAB
version provided by Infineon Technologies.

5.1.1 BLE simulation

BLE communication is modeled every 0.333 s, with one anchor device at a time.
Communication is not instant: scanning each frequency takes 7.5 ms; frequency or-
der is randomized. For each frequency, signal propagation through multiple paths
is simulated and then added to obtain the final result. Signal amplitude is calculated
using a free-space path-loss model: A ∼ 1

fix
(Debus and Axonn, 2006). Reflected

signals additionally have their amplitude decreased by the factor of 0.4 (close to the
empirical value for the concrete reflection coefficient at similar frequencies (Koppel
et al., 2017)).

5.1.2 IMU simulation

IMU acceleration data is simulated based on the walking acceleration pattern shown
in (Kang and Han, 2014). As only the distance between acceleration peaks is used by
the positioning algorithm, the shape of peaks is kept simple: linear with randomized
slopes and additive noise. When the target device changes direction, IMU rotations
are reported to the system, with the added random noise around 30◦.

5.2 Experiment and results

The target device is moving at a constant speed of 1 m/s and a constant height of 1
m in a rectangular room 5 by 6 meters. Both walls and floor reflect RF waves. Four
anchor devices are positioned at the corners, at 2m height. Once every 3 s, a random
interval of frequencies, with length of 5-10 channels, is selected to be "unused". In
addition to signal reflections, a baseline noise is added to the signal data with a
standard deviation of 0.002 (amplitude of an emitted signal at a 10m distance).

Two configurations of the system were tested: with and without IMU integration.
Predicted positions can be seen on [5.1] and [5.3], with prediction errors on [5.4]
and [5.2] (excluding first two predictions without enough information). At the start,
when no knowledge of the system is available, the estimated position is close to (0,0);
once data from enough anchors is received, the system reliably tracks the original
path both with and without IMU, with a mean root square errors of 0.19m and 0.37m
respectively. The main improvement IMU brings to the system is better direction
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change handling. However, experiments with real-world data are needed to verify
this result.

0 1 2 3 4 5 6
0

1

2

3

4

5 Anchors
Real position
Predicted position

FIGURE 5.1: No IMU: predicted positions.
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0.8

FIGURE 5.2: No IMU: positioning error.
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0 1 2 3 4 5 6
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3

4

5 Anchors
Real position
Predicted position

FIGURE 5.3: With IMU: predicted positions.
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FIGURE 5.4: With IMU: positioning error.
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Chapter 6

Summary

A new indoor positioning algorithm was developed by combining phase-based BLE
ranging with IMU pedestrian tracking using a particle filter. The system shows high
positioning accuracy in simulated experiments.

6.1 Future work

• Test the algorithm under real-world conditions.

• Improve IMU integration. Use a better algorithm for step detection and step
length estimation; change estimated speed based on the particle filter feed-
back.

• Use a more advanced peak detection algorithm for BLE ranging. Possibly ob-
tain several distances with different probabilities to use in the particle filter.
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