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Abstract

The method of molecular dynamics finds applications in various areas such as
pharmacology, polymer science, nanotechnology, chemical catalysis, and drug dis-
covery. An efficient and fast prediction of positions and dynamics of particles is
of great importance in order to reduce computational efforts. This thesis focuses
on extending the existing SE(3)-transformer-based graph neural network (GNN)
approach proposed by Fuchs et al.[1], which successfully employs a self-attention
mechanism for point clouds to describe dynamics of charged particles. The exten-
sion developed in our study is aimed to improve an accuracy of molecular dynamics
prediction for a more complex system consisting of particles with an orientation-
dependent interaction and rotational degrees of freedom. As an example, a physical
model presented as a fluid of charged particles bearing electric dipoles is examined.
It is shown that our approach, which introduces a new attention mechanism, pro-
vides better accuracy in describing such systems compared to the original approach.
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Chapter 1

Introduction

Molecular dynamics (MD) is a powerful method of computer simulation used for the
description of microscopic properties of various soft matter systems ranging from
simple atomic and complex molecular liquids to systems of branched polymers and
large macromolecules such as proteins. The MD method is based on the numerical
solution of a set of Newton’s equations of motion for interacting particles providing
spatial coordinates and velocities of these particles depending on time. The obtained
particle trajectories are used to calculate the physical properties of the systems under
study. Model representation of a system usually requires consideration of a system
with a large number of particles, and the period of time needed to obtain sufficiently
accurate results can be very long.

Therefore, MD simulation can be very demanding in terms of computing re-
sources and calculation time, which scales proportionally to the square of the num-
ber of particles. There are methods that allow one to significantly speed up such
a calculation (e.g. nearest neighbors list algorithm) or/and one can parallelize the
software code for its execution on multi-core CPU architectures, computing clusters,
and GPUs. However, even this can be not enough, especially when it concerns sys-
tems with long-range interactions, such as systems of charged particles interacting
via Coulomb interaction. Recently, MD acceleration methods using machine learn-
ing (ML) approaches have been considered. The combination of machine learning
with MD simulations has shown promising results in accelerating the calculation of
physical properties, especially for systems with long-range interactions and complex
dynamics. Some algorithms combining ML with MD are already actively used [2],
and some of them still need improvements. One of the promising ML approaches
on the basis of graph neural network (GNN) combined with the self-attention mech-
anism for the points cloud is proposed in [1]. It was reported that this approach
allows one to reach a high accuracy of prediction for the coordinates and velocities
of charged particles with a relatively small training dataset.

In the present thesis, we develop code for complex particle simulating and gen-
eralize the approach described in [1] to the case of a system of particles that, in
addition to charge, also bear electric dipole moments. For this, it is necessary to
take into account, in addition to translational motion, also rotational motion, which
includes the orientation of the particle’s dipole moment vector and its rotational ve-
locity. Since the studied system has additional degrees of freedom, we have to count
that in order to improve the accuracy of the basic algorithm. So we consider an ex-
pansion of the set of weighting coefficients suggested in the original network. The
proposed generalization will be tested on datasets generated by our code for MD
simulation of charged dipolar particles in the rectangular box at different tempera-
tures, similarly as it was done in [3]. Also, we consider the accuracy of predictions
made by our approach depending on the temperature and the number of particles.



2

Chapter 2

Literature Overview and Related
Works

2.1 Computer Simulation of Liquids [4]

Chapter 3, "Molecular Dynamics" holds paramount importance for our bachelor the-
sis, as it covers fundamental principles of molecular dynamics simulation, including
the description of popular integrators for motion, force calculation, and dynamics of
rotational movement. The accurate and effective implementation of an algorithm for
dipole interaction is a crucial component of our thesis.

In order to model the behavior of a system of N particles interacting via a po-
tential energy function V, the equations of motion can be expressed in terms of the
Lagrangian equation of motion. This equation relates the generalized coordinates q
and their time derivatives q’ to the forces acting on the particles:

d
dt

(
∂L
∂q′i

)
− ∂L

∂qi
= 0

where L is the Lagrangian function defined in terms of the kinetic and potential
energies of the particles, and i indexes the particles in the system. The generalized
coordinates, q, can take different forms, depending on the nature of the system being
modeled. For instance, Cartesian coordinates can be used for atoms, while internal
coordinates can be utilized for molecules.

In order to solve the equations of motion, we need to apply an integration algo-
rithm to calculate the positions and velocities of particles at each step. The velocity
Verlet algorithm is the simplest and most widely used method for this purpose. It
updates the position of each particle at each time step as follows:

ri(t + ∆t) = ri(t) + vi(t)∆t +
1
2

ai(t)∆t2 + O(∆t3)

where ri, vi, and ai are the position, velocity, and acceleration of the i-th particle,
respectively, at time t, and ∆t is the time step. The velocity of each particle at time t
+ ∆t is then calculated using the positions at times t and t + ∆t as follows:

vi(t + ∆t) =
ri(t + ∆t)− ri(t)

∆t
+ O(∆t2)

The accuracy of the integration algorithm is crucial for the overall accuracy of the
simulation, and various other algorithms, such as the leapfrog, Runge-Kutta, and
Gear algorithms, can also be used depending on the specific needs of the system
being modeled.
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The calculation of forces is another essential aspect of MD simulation, as the
forces acting on the particles determine their motion over time. In general, the force
acting on each particle is calculated as the negative gradient of the potential energy
function, as given by the following equation:

Fi = −∇iV(r1, r2, . . . , rN)

where Fi is the force acting on particle i, V is the potential energy function of the sys-
tem, and r1, r2, . . . , rN are the positions of all N particles in the system. The potential
energy function can take various forms depending on the nature of the interactions
between particles, such as Lennard-Jones, Coulombic, or dipole-dipole interactions.
The calculation of forces can be computationally intensive, especially for large sys-
tems, and various techniques have been developed to optimize the force calculation
process, such as the use of neighbor lists or cutoff radii to limit the number of inter-
actions that need to be calculated.

In addition to the translation of particles, MD simulations also need to take into
account the rotational motion of molecules or other non-spherical particles. The
authors describe two approaches for treating rotational motion: the use of Euler an-
gles or the use of quaternion representations. Euler angles are a set of three angles
that describe the orientation of a rigid body relative to a fixed frame of reference,
and can be used to define the rotational motion of molecules. However, the use
of Euler angles can lead to numerical instability and singularities for certain types
of rotations, such as rotations about the z-axis. Quaternion representations, on the
other hand, are more efficient and numerically stable for describing rotational mo-
tion, and can be used to avoid these issues. Quaternion representations involve the
use of four parameters to describe the orientation of a rigid body, and can be eas-
ily converted to and from rotation matrices, which are used to transform vectors in
three-dimensional space.

The treatment of rotational motion also involves the calculation of angular veloc-
ities and torques. The angular velocity of a particle is defined as the rate of change
of its orientation with respect to time, and can be calculated using the following
equation:

ω(t) = S−1(Q(t))L(t)

where Q(t) is the quaternion representing the orientation of the particle at time t,
S−1 is the inverse of the matrix that converts between the quaternion and rotation
matrix representations, and L(t) is the angular momentum of the particle at time t.
The angular velocity at time t + ∆t is then calculated using the orientation at times t
and t + ∆t as follows:

ω(t + ∆t) = S−1(Q(t + ∆t)), [Q(t + ∆t)− Q(t)]/∆t + O(∆t)

The calculation of torques is also important for describing the rotational motion
of particles. Torques are defined as the rate of change of angular momentum with
respect to time, and can be calculated using the following equation:

τ(t) =
dL(t)

dt

where L(t) is the angular momentum of the particle at time t. The torque acting on
a particle can be calculated as the negative gradient of the potential energy function
with respect to its orientation.
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In summary, Chapter 3 of "Computer Simulation of Liquids" provides a com-
prehensive overview of the fundamental principles of MD simulation, including the
integration of equations of motion, the calculation of forces, and the treatment of ro-
tational motion. The accuracy of MD simulations depends heavily on the integration
algorithm used, the efficiency of the force calculation process, and the treatment of
rotational motion. The use of quaternion representations can provide more efficient
and numerically stable calculations of rotational motion. The principles and tech-
niques described in this chapter are essential for accurate and efficient simulations
of dipole interactions and other complex systems.

2.2 Attention Is All You Need [5]

In this work, the authors investigate the advantages of attention neural networks
compared to recurrent and convolutional networks. They demonstrate that attention
networks offer superior translation quality, higher parallelism, and shorter train-
ing time. To evaluate their models, they conducted experiments on the WMT 2014
English-to-German translation task, achieving a BLEU score of 28.4, surpassing ex-
isting results by more than 2 BLEU. Remarkably, their model also achieved a new
state-of-the-art BLEU score of 41.0 on the WMT 2014 English-to-French translation
task. Furthermore, besides the improved accuracy, the attention network demon-
strated a significant reduction in training costs compared to previous state-of-the-art
models in the literature.

They conducted the comparison between self-attention, recurrent, and convo-
lutional layers for sequence transduction tasks, taking into account three criteria:
computational complexity, parallelization, and path length between long-range de-
pendencies. Results showed that a self-attention layer has a constant number of op-
erations connecting all positions, while a recurrent layer requires O(n) operations. It
was found that self-attention is faster when the sequence length is smaller than the
representation dimensionality, which is usually the case for state-of-the-art models.
On the other hand, convolutional layers require a stack of O(n/k) layers to connect
all input and output positions, increasing the length of the longest paths. Addition-
ally, self-attention could provide more interpretable models as attention distribu-
tions display behavior related to sentences’ syntactic and semantic structure.

2.3 SE(3)-Transformers: 3D Roto-Translation Equivariant At-
tention Networks [1]

The authors of this study conducted research that is similar with the objectives and
focus of our thesis and a major part of our study is based on their work and code.
They used SE(3)-equivariant attention network to predict dynamics of charged par-
ticles. While their simulation code focuses solely on the Coulomb interaction be-
tween particles, our code takes into account also a core repulsion in the form of
truncated and shifted repulsive part of Lennard-Jones force (known as WCA type
of interaction). This inclusion ensures a more accurate and realistic representation
of the intermolecular forces, making our code more corresponding with physical
principles. The authors claim that the integration of attention networks with SE(3)-
equivariance is highly effective. By leveraging self-attention, the SE(3)-Transformer
model demonstrates high performance in handling large point clouds and graphs
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with varying numbers of points saving reliability and consistency even when the
input undergoes specific transformations.

2.4 Tensor field networks: Rotation- and translation- equiv-
ariant neural networks for 3D point clouds [6]

The paper introduces a novel family of neural networks called tensor field neu-
ral networks that exhibit richer equivariance to the symmetries of 3D Euclidean
space. While convolutional neural networks are translation-equivariant and have
contributed significantly to their widespread success, tensor field networks are lo-
cally equivariant to 3D rotations, translations, and permutations of points at every
layer, making them more efficient than data augmentation to obtain 3D rotation-
invariant output, and naturally encoding geometric tensors, which transform pre-
dictably under geometric transformations of rotation and translation.

The authors highlight three key advantages of equivariance: improved efficiency
in achieving 3D rotation-invariant output, enhanced interpretability through consis-
tent filter usage across different orientations and locations, and inherent encoding of
geometric tensors for predictable transformation under rotation and translation.

The paper highlights three notable distinctions between tensor field networks
and conventional CNNs. Firstly, tensor field networks utilize continuous convolu-
tions on point clouds, considering both 3D coordinates and associated features. Sec-
ondly, the filters in these networks are determined by a combination of a learnable
radial function and a spherical harmonic. Thirdly, the network’s design is specifi-
cally developed to align with the algebraic properties of geometric tensors.

The authors show the versatility of tensor field networks in solving diverse tasks
in geometry, physics, and chemistry. Originally developed for deep learning on
atomic systems, these networks also offer potential for processing 3D images with
rotation and translation equivariance. The paper presents a novel and promising ap-
proach to neural networks with wide-ranging applications across multiple domains.

The authors concentrate on a specific group of symmetry operations encompass-
ing 3D space isometries and point permutations. They provide separate demon-
strations of permutation, translation, and rotation equivariance, which collectively
establish the network’s equivariance to the different groups of transformations. The
paper outlines the prerequisites for achieving permutation and translation equivari-
ance, affirming that all introduced layers inherently possess these properties.

The authors introduce the group of 3D rotations, SO(3), parametrized by 3 num-
bers, and define its irreducible representations with dimensions 2l + 1 for l ∈ N.
They establish "rotation order" as the term for l, where orders l = 0, 1, 2 correspond
to scalars, vectors, and symmetric traceless matrices. They achieve local rotation
equivariance by employing specific convolution filters and decompose represen-
tations into irreducible representations for simplified analysis, utilizing Wigner D-
matrices to map SO(3) elements to (2l + 1)(2l + 1)-dimensional matrices.

2.5 Learning Small Molecule Interaction[7]

In this study, the authors address a problem similar to ours but with a slightly differ-
ent approach. Instead of predicting particle positions and velocities, they focus on
predicting forces and energies using the SE(3)-Transformer model adapted from [1].
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While it is possible to calculate energies and forces from predicted positions and ve-
locities using formulas, directly predicting these values in molecular dynamics sim-
ulations offers several advantages. Firstly, it simplifies the overall process by elimi-
nating the need for additional calculations or formulas, streamlining the workflow
and reducing computational complexity. Secondly, direct prediction allows for the
utilization of more sophisticated models, leading to improved accuracy and better
capturing of the underlying physics. Furthermore, the direct prediction of energies
and forces enables the model to learn complex patterns that may be difficult to cap-
ture using explicit formulas, resulting in more robust and reliable predictions. Also,
some researchers propose an alternative approach where they predict only energies
and then calculate the forces as the negative gradient of energies. The characteris-
tics of the models may vary depending on the problem which has to be solved. In
their study, the authors also explored various modifications of their initial model
and found that deeper networks with additional SE(3)-Transformer layers exhibited
the best performance.
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Chapter 3

Methodology

3.1 Molecular dynamics and model system

Molecular dynamics is used to calculate positions (coordinates) and velocities of
particles with time. For this purpose, the Newton’s equations of motions are to
be solved and the corresponding coordinates r⃗i(t) and velocities (⃗vi(t)) for each of
particles i can be calculated:

F⃗i (⃗ri) = m
d2⃗ri

dt2 ,

where
d⃗ri

dt
= v⃗i – the velocity of particle and

dv⃗i

dt
=

F⃗i (⃗ri)

m
= a⃗i is the acceleration

of particle. The force acting on particle i is calculated as the sum of all pair forces
acting between particle i and other particles in the system:

F⃗i (⃗ri) =
N

∑
i ̸=j

F⃗ij (⃗rij),

where r⃗ij is the vector-distance between particles i and j. In order to calculate forces
the potential of pair interactions U(⃗r) are required:

F⃗ij (⃗rij) = −
dU(⃗rij)

d⃗ri
,

where r⃗ij = r⃗i − r⃗j and rij =| r⃗ij |. According to the third Newtons’s law F⃗ij (⃗rij) =

−F⃗ji (⃗rij).
In the case of orientation-dependent interaction, such as dipolar particles, pair

potential is dependent not only on coordinates r⃗i and r⃗j, but also on unit vectors of
orientation of particles u⃗i and u⃗j, i.e. U(r⃗ij, u⃗i, u⃗j). And instead of force, a torque has
to be calculated:

T⃗i = I⃗αi,

where I is moment of inertia and α⃗ – angular acceleration.
A choice of the pair potentials of interaction determines a physical model of

the system under study. In this thesis, a variation of the classical model of Stock-
mayer fluid [8] is considered one of the most popular theoretical models applica-
ble to fluids with point electric dipoles. Besides the dipole-dipole interaction, we
introduce the Coulomb interaction because of the particle charges (positive or neg-
ative). Finally, a soft repulsion at small distances equal to the size of particle core
σ is taken into account via the Lennard-Jones (LJ) potential truncated and shifted
at rcut = 2(1/6)σ (also known as the WCA potential). A similar model of charged
dipolar particles was studied recently in [9]. The total pair potential between two
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particles (see Fig. 3.1), which includes all terms of interaction, is the following:

U(r⃗ij, u⃗i, u⃗j) = UWCA
(
rij
)
+ Ucc

(
rij
)
+ Udc

(
r⃗ij, u⃗i

)
+ Udd

(
r⃗ij, u⃗i, u⃗j

)
,

where UWCA
(
rij
)

– the core-repulsive term (WCA potential), Ucc
(⃗
rij
)

– charge-charge
interaction (Coulomb potential), Udc

(⃗
rij, u⃗i

)
– dipole-charged (or charge-dipole) in-

teraction and Udd
(⃗
rij, u⃗i, u⃗j

)
– dipole-dipole potential (Stockmayer potential). The

detailed description of each of the terms of interaction, as well as the corresponding
forces and torques are presented in the following Section ??.

FIGURE 3.1: Model of dipolar charged particles (|pi| ,
∣∣pj
∣∣≪ |rij|).

3.2 Model potential, forces and torques

3.2.1 WCA potential

The repulsive term of the pair potential of interaction is represented as repulsive part
of the Lennard-Jones potential, which respectively cut and shifted as the following:

UWCA
(
rij
)
=

 4ε

[(
σ
rij

)12
−
(

σ
rij

)6
]
− 4ε

[(
σ

rcut

)12
−
(

σ
rcut

)6
]

, rij ≤ rcut

0, rij > rcut rcut = 21/6σ

where σ is the diameter of particle core. This kind of potential is also known from
the literature as the WCA pair potential.

The force corresponding to this term is:

F⃗WCA
ij

(⃗
rij
)
=

 24ε
r2

ij

[
2
(

σ
rij

)12
−
(

σ
rij

)6
]

r⃗ij, rij ≤ rcut

0, rij > rcut

F⃗WCA
ij

(⃗
rij
)
= −F⃗WCA

ji
(⃗
rij
)
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3.2.2 Charge-Charge Interaction

The charge-charge interaction is described by the well-known Coulomb interaction:

Ucc
(⃗
rij
)
=

qiqj

rij

Then the expression for force is

F⃗cc
ji
(⃗
rij
)
=

qiqj

r3
ij

r⃗ij,

Fcc
ji
(
rij
)
= −Fcc

ij
(
rij
)

where qi and qj – the charges of particles i and j respectively. The charges can be
negative or positive.

3.2.3 Charge-Dipole and Dipole-Charge Interaction

The charge-dipole interaction depends not only on the distance between particles,
but also on the orientation of one of the particles having a dipole moment. This
dipole moment is oriented along a unit vector u⃗i or u⃗j.

Udc
(
r⃗ij, u⃗i

)
=

µiqj

r3
ij

(
u⃗i · r⃗ij

)
Ucd

(
r⃗ij, u⃗i

)
=

µjqi

r3
ij

(
u⃗j · r⃗ij

)
where qi and qj are charges, µi and µj – dipole moment magnitudes, symbol “c”
denotes charge and “d” denotes dipole.

The corresponding expressions for forces can be calculated as

F⃗dc
ij

(
r⃗ij, u⃗i

)
=

µiqj

r3
ij

u⃗i −
3µiqj

r5
ij

(
u⃗i · r⃗ij

)
r⃗ij Fcd

ij
(
rij
)
= −Fdc

ji
(
rij
)

The torque for one of the particles (with dipole moment) is

T⃗di
ij
(
r⃗ij, u⃗i

)
=

µiqj

r3
ij

(
u⃗i × r⃗ij

)
Vector of dipole moment in the model of a point dipole (see Fig. 3.1):

µ⃗i = ziep⃗i = ziedi
p⃗i

|pi|
= µiu⃗i

p⃗i - the distance between side charges in the original dipole.
di - the distance between charges in the original dipole.
µi - the scalar value of dipole moment.
u⃗i - unit vector of dipole (particle) orientation.



Chapter 3. Methodology 10

3.2.4 Dipole-Dipole Interaction

The dipole-diple interaction is used for modeling an interaction between two point
dipoles. It is taken in the conventional form as

Udd
(
r⃗ij, u⃗i, u⃗j

)
=

µiju⃗j

r3
ij

[(
u⃗i · u⃗j

)
−

3
(
u⃗i · r⃗ij

) (
u⃗j · r⃗ij

)
r2

ij

]

where u⃗i and u⃗j are unit vectors of orientation of dipolar particles i and j respectively.
The forces F⃗ and and torques T⃗ for the dipole-dipole interaction can be obtained

as following:

F⃗dd
ij

(⃗
rij, u⃗i, u⃗j

)
=

3µiµj

r5
ij

(
u⃗i · u⃗j

)
r⃗ij −

15µiµj

r7
ij

(
u⃗i · r⃗ij

) (
u⃗j · r⃗ij

)
r⃗ij F⃗dd

ij
(⃗
rij
)
= −F⃗di

ji
(⃗
rij
)

+
3µiµj

r5
ij

[((
u⃗j · r⃗ij

)
u⃗i +

(
u⃗i · r⃗ij

)
u⃗j
]

T⃗dd
ij
(⃗
rij, u⃗i, u⃗j

)
= −

µiµj

r3
ij

(
u⃗i × u⃗j

)
+

3µiµj
(
u⃗j · r⃗ij

)
r5

ij

(
u⃗i × r⃗ij

)

T⃗dd
ji
(⃗
rij, u⃗i, u⃗j

)
= −

µiµj

r3
ij

(
u⃗j × u⃗i

)
+

3µiµj
(
u⃗i · r⃗ij

)
r5

ij

(
u⃗j × r⃗ij

)
3.2.5 Torque and rotational accelation

For the description of rotational motion one needs the expression for rotational ac-
celeration:

α⃗i =
1
I

(
G⃗i − u⃗i

(
u⃗i · G⃗j

))
− u⃗i · w⃗2

i

G⃗i = ∑
i ̸=j

gij = −∑
i ̸=j

Udd
(
rij, ui, uj

)
du⃗i

T⃗i = u⃗i × G⃗i = I ¨⃗ϕi

˙⃗ui =
˙⃗ϕi × u⃗i

˙⃗ϕi = u⃗i × ˙⃗ui

(
˙⃗ϕi

)2
= w2

i =
( ˙⃗ iu
)2

I - momentum of inertia, ϕi - angular velocity, αi - angular acceleration
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3.3 Integrator of Equations of Motion

For integration of equations of motion we used the velocity Verlet algorithm [4],
because it is the simplest and most widely used method for this purpose. It updates
the position, velocities, orientation and angular velocity of each particle at each time
step as follows.
Translational motion:

r⃗i(t + δt) = r⃗i(t) + v⃗i(t)δt +
ai(t)

2
δt2

v⃗i(t + δt) = v⃗i(t) +
1
2
(a⃗i(t + δt) + a⃗i(t)) δt

Rotational motion:

u⃗i(t + δt) = u⃗i(t) + w⃗i(t)δt +
1
2

α⃗i(t)δt2

w⃗i

(
t +

δt
2

)
= w⃗i(t) +

1
2

α⃗i(t)δt

The rotational acceleration:

α⃗i(t+ δt) =
1
I

[
G⃗i(t + δt)− u⃗i(t + δt)

(
u⃗i(t + δt) · G⃗(t + δt)

)]
− u⃗i(t+ δt) · w⃗2

i

(
t +

δt
2

)

The angular velocity:

w⃗i(t + δt) = w⃗i

(
t +

δt
2

)
+

1
2

α⃗i(t + δt)δt

3.4 Simulation

Computer simulations were performed in the cubic box at the constant volume V =
L3 and temperature T. The size of the box is set equal to L = 8.0σ in all simulations.
To control temperature the procedure of direct rescaling of particle velocities was
applied every 100 simulation steps.

The boundary conditions are presented as repulsive (elastic) walls at the edges
of the simulation box along all axis directions (no periodic boundary conditions). To
describe collision of particles with the walls, a simple mirror reflection is used.

At the beginning of the simulation, we initialize the system by randomly assign-
ing positions and orientations to the particles using a uniform distribution. Special
care is taken to ensure that no overlap occurs between particles due to the strong
repulsive force at distances less than particle diameter σ. Then, we uniformly dis-
tribute the velocities and angular velocities of the particles and rescale them during
the simulation run to achieve a total system energy consistent with the desired tem-
perature. Time step was set to 0.001 Employing the velocity Verlet integrator and
utilizing the pair forces and torques described above, we calculate the total force
and torque to determine the particle characteristics at each simulation time step. The



Chapter 3. Methodology 12

programming code was written by us in Python language on the basis of the code
of Fuchs at al. [10]. In order to optimize the computation time of the simulation,
we had to rewrite some functions of the numpy library, such as the cross product
or dot product of vectors, because for a small number of particles, in our case, it is
less than ten, direct multiplication functions work faster than similar functions from
numpy which raise large functions for checks and optimization. This improvement
allowed decreased time for simulation by 40 percent. The recorded system data in-
cludes particle positions, velocities, charge values, indications of wall reflections,
angular velocities, and orientations. As the characteristics of consecutive frames are
highly similar, we store information at regular intervals, in this case, every 100 time
steps. Consequently, a simulation spanning 5000 steps results in only 50 entries in
the output file.

3.4.1 Thermostat

Thermostating of the system is peformed using the velocity rescaling scheme. For
this, the kinetic energies of translational and rotational motion have to be calculated:
K = Kt + Kr

Translational motion: Kt =
1
2 ∑N

i=1 miv2
i = 3

2 NkBTt

Rotational: Kr =
1
2 ∑N

i=1 Iiω
2
i = NkBTr

Rescaling of translational and angular velocities:

βt =
(

3
2

NkBT
Kt

) 1
2

βr =
(

NkBT
Kr

) 1
2

βtv → v βrw → w

3.4.2 Reduced units

All quantities used in this thesis are presented in reduced units:

Mass: M
m → m Time: t

√
ε

mσ2 → t Charge: q 1√
4π ò σε

→ q

Distances: r⃗
σ → r⃗ Velocity: v⃗

√m
ε → v⃗ Dipole: µ 1√

4πòσ3ε
→ µ

Density: ρσ3 = N
V σ3 → ρ Torque: T⃗

ε → T⃗ Force: F⃗ σ
ε → F⃗

3.5 Benchmark

To validate the correctness and accuracy of the results proven by our code, we per-
formed simulations using the widely-used LAMMPS molecular dynamics software.
We utilized OVITO visualizations to provide a three-dimensional view of the sys-
tem. Our comparisons were based on simulations involving four dipoles with tem-
perature: T = 0.1 and timestep δt = 0.001 everywhere.

The trajectories of particles obtained by our code were compared with the analo-
gous simulations performed using the LAMMPS package. While we observed some
minor discrepancies in results after approximately 10, 000 steps, these differences
may be attributed to variations in the algorithm of reflection from the walls. We can
neglect this diverging considering that the original project only utilizes 5000 steps
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by default, so our model works the best it can. The picture below presents a com-
parison between a LAMMPS simulation of four dipoles with 10, 000 steps (left) and
our simulation (right).

FIGURE 3.2:
LAMMPS pack-

age.

FIGURE 3.3: Our
code.

3.6 Machine learning

3.6.1 General concept

The major goal of this work is to develop a machine learning approach capable of
predicting molecular dynamics trajectories of interacting particles, on the basis of
SE(3)-transformer concept and self-attention mechanism. The need for extension
arises due to specific characteristics of the model examined in our study, wherein
the particles interact through an orientation-dependent pair potential, i.e. dipole-
dipole interaction. It has been observed that the original formulation of the SE(3)-
Transformer based on Graph Neural Network (GNN) lacks accuracy in predicting
the dynamics of such particles.

A system of N particles is presented as a complete graph with N nodes, each of
them is characterized by such vector features as position, velocity, orientation and
angular velocity, and scalar features – charge (negative/positive), dipole moment
magnitude, collision with the box boundaries. The edges contain the relative dis-
tances between pairs of particles. We consider two cases: 1) charged particles without
dipole moments; 2) charged particle with dipole moments. Using MD simulations
described in Section 3.1-3.4 the corresponding datasets were generated to train the
neural network for different number of particles and at different temperatures.

GNN is deep learning model that processes data in a graph structure. The convo-
lutional operations performed on a graph are similar to those in a convolutional neu-
ral network. In graph neural networks, information passed between nodes similarly
as in a convolutional neural network between adjacent pixels. Following message
passing, the messages are aggregated to update the node data.
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The SE(3)-Transformer architecture is designed to process 3D point clouds and
incorporates the effective self-attention mechanism while maintaining equivariance
constraints. These constraints guarantee that the predictions of network remain con-
sistent under global roto-translational transformations of the input point cloud, lead-
ing to enhanced robustness and overall performance.

In this study, we apply and extend the SE(3)-Transformer architecture introduced
by Fuchs at al. 2020 [1]. In a conventional self-attention mechanism [5], each token
is associated with three vectors: query vector qi ∈ Rp, key vector ki ∈ Rp and
value vector vi ∈ Rr for i = 1, . . . , N, where low dimensional embeddings have
dimensions r and p. These vectors are considered as outputs of learnable functions
applied to the token feature vectors fi ∈ Rd:

qi = hq(fi), ki = hk(fi), vi = hv(fi),

On the basis of these vectors, the attention weights and attention-weighted value
messages can be obtained:

Attn(qi, {kj}, {vj}) =
n

∑
j=1

αijvj, αij =
exp(qT

j )

∑n
j′=1 exp(qT

i k j′)

The behavior of the function being learned remains unchanged or changes ac-
cording to translational and rotational transformations of the inputs. This means
that the function exhibits invariance or equivariance properties with respect to the
SE(3) group of roto-translational transformations. Incorporating symmetry constraints
explicitly into a neural network can be more efficient in terms of the number of learn-
able parameters and amount of data required for training, despite the fact that a
general neural network can still learn to respect these symmetries. One example of
a successful symmetry-aware architecture is the Tensor Field Network proposed by
Thomas et al. [6] in 2018, which can map point clouds to point clouds in 3D while
maintaining SE(3)-equivariance. The SE(3)-Transformer architecture has recently
been extended to include the attention mechanism. In this enhanced architecture,
the input consists of a feature vector field f that maps from R3 (three-dimensional
space) to Rd (a space with dimension d). The feature vector field is defined on a dis-
crete set of points in space, which can be referred to a as spatially distributed discrete
finite point cloud:

f(x) =
N

∑
j=1

fjδ
(
x − xj

)
where δ is the Dirac delta-function, {xj} are the 3D point coordinates, and fj ∈ Rd is
concatenation of vectors fj ∈ R2l+1 of different degrees l of SO(3)-group irreducible
presentations plus channels c:

fj =
⊕

l≥0,c∈Cl

flc
j

3.6.2 SE(3)-Transformer

The SE(3)-Transformer architecture comprises three main components: 1) edge-wise
attention weights denoted as αij, which are SE(3)-invariant on each edge {ij}; 2)
edge-wise SE(3)-equivariant value messages that propagate information between
nodes; 3) a linear/attentive self-interaction layer.
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In this study we extend a new type of attention mechanism by extending the
original SE(3)-kernel attention, initially designed for working with 3D point clouds
and graphs. This mechanism uses specialized attention weights to perform equiv-
ariant kernel conversions between the SO(3) vector types, allowing for the capture
of complex angular relationships in the data.

Wlckd
V (x) =

k+l

∑
J=|k−l|

φlckd
J (∥x∥)Wlk

J

(
x

∥x∥

)
,

where φlckd
J (∥x∥) – completely unconstrained (learnable) radial functions and Wlk

J

(
x

∥x∥

)
is completely constrained angular basis kernels

Wlk
J

(
x

∥x∥

)
=

J

∑
m=−J

YJm

(
x

∥x∥

)
Qlk

Jm,

YJm

(
x

∥x∥

)
– spherical harmonics and Qlk

Jm – Clebsch-Gordan matrices.

By presenting the learnable weight kernel Wlckd
V (x) as a linear combination of

non-learnable angular kernels Wlk
J

(
x

∥x∥

)
and scalar radial function coefficients φlckd

J (∥x∥)
the transformation guarantees equivariance. This approach enables a valid conver-
sion of k-degree vector to a l-degree vector:

flc
out,i = ∑

d∈Cl

wlcld
V fld

in,i +
L

∑
k≥0,d∈Ck

∑
j∈Ni/i

αijlckdWlckd
V
(
xj − xi

)
fkd
in,j,

where αijlckd = αijω – conditioned attention weights

αijω =
exp

(
qT

iωkijω
)

∑j′∈Ni/i exp(qT
iωkij′ω)

qiω =
L̃⊕

l≥0,c∈C̃l

(
∑

d∈Cl

wlcldω
Q fld

in,i

)

kijω =
L̃⊕

l≥0,c∈C̃l

(
L

∑
k≥0,d∈Ck

Wlckdω
K

(
xj − xi

)
fkd

in,j

)

Wlckdω
K (x) =

k+l

∑
J=|k−l|

φlckdω
J (∥x∥)Wlk

J

(
x

∥x∥

)
We use the linear attentive self-interaction, which combines the self-interaction

and non-linearity by replacing the learned scalars weights wlcld
V,i = wlcld

V with atten-
tion weights obtained from a multi-layer perceptron (MLP):

wlcld
V or wlcld

V,i = MLP

 L⊕
l′≥0,c′∈Cl′ ,d′∈C′

l

fl′c′T
in,i fl′d′

in,i


The SE(3)-invariance of these weights is attributed to the invariance of inner prod-
ucts between features, which undergo the same transformation within the given rep-
resentation.
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Chapter 4

Training and Results

4.1 Dataset

For models training we generated 18 datasets, 9 for dipoles and 9 for charges. Datasets
differs by number of particles and temperature of simulation. We considered three
different numbers of particles: 4, 6 and 8; and 3 different values of temperature 0.05,
0.1 and 0.25; so in result we got 9 datasets. Datasets for dipoles have lower number
of simulation becasue their generating were much more time-consuming then for
charges.
Dataset for charged dipoles training:

• Size of train dataset - 10000

• Size of test dataset - 2000

• Timesteps in simulation - 5000

• Timestep - 0.001

• Number of epochs - 250

• Number of particles - 4, 6, 8

• Temperature of the system - 0.05, 0.1, 0.25

Dataset for charges training:

• Size of train dataset - 15000

• Size of test dataset - 2500

• Timesteps in simulation - 5000

• Timestep - 0.001

• Number of epochs - 250

• Number of particles - 4, 6, 8

• Temperature of the system - 0.05, 0.1, 0.25
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4.2 Metrics

As metrics we used MSE for each predicted characteristic, it is worth noting that our
predicted variables as usual, are vectors:

MSE =
∑k

t=1
sum((predictedVariablet−trueVariablet)2)

d
k

where d is the dimensionality of the variable and k is the number of timesteps for
which the variable is predicted.

And for Test loss, we used averaged value of all losses:

TestLoss = ∑n
i=1 MSEi

n

where n is the number of predicted variables.

4.3 Results

We compare results obtained using two schemes. First scheme is the previous ver-
sion of SE(3)-Transformer proposed by Fuchs et al. [1], and we denote it as “single-
alpha”. The second one is the extended version of the SE(3)-Transformer proposed
in the thesis, and it is denoted as “multi-alpha”. To assess the performance of the
model on our datasets, we conducted training using the original Fuchs model [1] on
a dataset for charged particles. The model exhibited excellent performance in pre-
dicting the characteristics, confirming its suitability for more complex datasets and
further experiments.

FIGURE 4.1: Prediction of position and velocities. MSE for one of the
dataset of charged particles.

TABLE 4.1:
Single-Alpha for
charged dipoles

N\T 0.05 0.1 0.25 avg
4 0.0053 0.0108 0.0361 0.0174
6 0.0066 0.0141 0.0448 0.0218
8 0.0081 0.0157 0.0505 0.0248

avg 0.0066 0.0135 0.0438 0.0213

TABLE 4.2:
Multi-Alpha for
charged dipoles

N\T 0.05 0.1 0.25 avg
4 0.0044 0.0099 0.0309 0.0151
6 0.0055 0.0113 0.0341 0.0170
8 0.0063 0.0135 0.0431 0.0209

avg 0.0054 0.0116 0.0360 0.0177

In tables 4.1, 4.2, 4.3, 4.4 there are results of test loss of all experiments. Rows in
the table represents a number of particles and columns represents a temperature.
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FIGURE 4.2: Prediction of positions, velocities, orientations and an-
gular velocities. MSE for one of the charged dipoles dataset.

In the case of dipolar charged particles, one can see from the results that the accu-
racy worsens if to increase the temperature. This is related to an increase in average
particle velocity at higher temperatures, resulting in larger translation distances and
more frequent collisions occurring. Additionally, the test reveals that as the number
of particles increases, there is a slight decrease in accuracy, which was somewhat sur-
prising, because one could expect stronger correlation between test loss and number
of particles.
The primary finding of the study indicates that the multi-alpha model yields signif-
icantly better results compared to the single-alpha model. On average, the multi-
alpha model outperformed the single-alpha model by 17 percent.

TABLE 4.3:
Single-Alpha for

charges

N\t 0.05 0.1 0.25 avg
4 0.0036 0.0097 0.0363 0.0165
6 0.0027 0.0083 0.0309 0.0140
8 0.0026 0.0077 0.0316 0.0140

avg 0.0030 0.0086 0.0330 0.0148

TABLE 4.4:
Multi-Alpha for

charges

N\t 0.05 0.1 0.25 avg
4 0.0036 0.0099 0.0382 0.0172
6 0.0027 0.0084 0.0320 0.0144
8 0.0025 0.0076 0.0325 0.0142

avg 0.0030 0.0087 0.0342 0.0153

Regarding charged particles, the outcomes demonstrate a similar pattern. The
accuracy did not show any significant changes as the number of particles increased,
which may be due to the fact that the interaction of charges is much simpler than the
interaction of charged dipoles.

On the Figure 4.3 the test losses of all experiments of training single-alpha and
multi-alpha models are introduced.
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FIGURE 4.3: Charged dipoles results.
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Chapter 5

Conclusion

In this study, we propose an extension of SE(3)-Transofmer based on Graph Neural
Network and self-attention mechanism to accurately predict translational and rota-
tional dynamics of the charged dipolar particles. The python code was adapted to
perform molecular dynamics by taking into account orientation-dependent interac-
tion and rotational type of motion. Molecular dynamics was performed to generate
a dataset for the training of the neural network. To describe pair interaction between
particles, we applied the conventional charge-charge, dipole-charge, dipole-dipole,
and soft-core repulsive of the WCA-type terms of potential, and the corresponding
forces and torques were calculated. The velocity Verlet algorithm was applied to
integrate the trajectories of particles.

We validated the accuracy of our simulation by comparing it with established
results. We generated diverse datasets with varying temperatures and particle num-
bers for dipoles and charged particles. Subsequently, we trained the SE(3)-equivariant
attention model of two versions: single-alpha, following Fuchs et al. [1], and the one
proposed in the thesis, which is a more complicated modification with the expansion
of the set of weighting coefficients called multi-alpha. The results demonstrated a
high level of accuracy for all predicted characteristics, with an average test loss of
0.0213 for single-alpha and 0.0177 for multi-alpha across all dipolar particle datasets.
Notably, the multi-alpha model exhibited a significant improvement, achieving 17%
percent better results. Moving forward, there are promising opportunities to en-
hance this model by training it on more complex datasets involving a larger number
of particles and more intricate interaction types. The code of the project is available
here.

https://github.com/etamin-code/se3_equivariant-attention_for_dipoles


21

Bibliography

[1] Fabian Fuchs et al. “SE (3)-Transformers: 3D Roto-Translation Equivariant At-
tention Networks”. In: Advances in Neural Information Processing Systems. Vol. 33.
2020, pp. 1970–1981. URL: https://proceedings.neurips.cc/paper_files/
paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf.

[2] Zhenwei Li et al. “Graph neural networks accelerated molecular dynamics”.
In: The Journal of Chemical Physics 156.14 (2022), p. 144103.

[3] Thomas Kipf et al. “Neural Relational Inference for Interacting Systems”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 2688–2697. URL:
https://arxiv.org/pdf/1802.04687.pdf.

[4] Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids. Ox-
ford University Press, 2017. URL: https://levich.ccny.cuny.edu/koplik/
molecular_simulation/AT2.pdf.

[5] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural In-
formation Processing Systems. Vol. 30. 2017. URL: https://papers.nips.cc/
paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

[6] Nathaniel Thomas et al. “Tensor field networks: Rotation-and translation-equivariant
neural networks for 3d point clouds”. In: arXiv preprint arXiv:1802.08219 (2018).
URL: https://arxiv.org/pdf/1802.08219.pdf.

[7] Bryce Hedelius, Fabian B. Fuchs, and Dennis Della Corte. “Learning Small
Molecule Energies and Interatomic Forces with an Equivariant Transformer
on the ANI-1x Dataset”. In: arXiv preprint arXiv:2201.00802 (2022). URL: file:
///home/oleksandr/Downloads/Learning_Small_Molecule_Energies_and_
Interatomic_F.pdf.

[8] WH Stockmayer. “Second virial coefficients of polar gas mixtures”. In: The
Journal of Chemical Physics 9.12 (1941), pp. 863–870.

[9] Cameron J Shock et al. “Solvation Energy of Ions in a Stockmayer Fluid”. In:
The Journal of Physical Chemistry B 124.22 (2020), pp. 4598–4604.

[10] “Implementaion of SE(3)-Transformer”. In: (). URL: https://github.com/
FabianFuchsML/se3-transformer-public.

https://proceedings.neurips.cc/paper_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
https://arxiv.org/pdf/1802.04687.pdf
https://levich.ccny.cuny.edu/koplik/molecular_simulation/AT2.pdf
https://levich.ccny.cuny.edu/koplik/molecular_simulation/AT2.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/1802.08219.pdf
file:///home/oleksandr/Downloads/Learning_Small_Molecule_Energies_and_Interatomic_F.pdf
file:///home/oleksandr/Downloads/Learning_Small_Molecule_Energies_and_Interatomic_F.pdf
file:///home/oleksandr/Downloads/Learning_Small_Molecule_Energies_and_Interatomic_F.pdf
https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/FabianFuchsML/se3-transformer-public

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Literature Overview and Related Works
	Computer Simulation of Liquids CompSimOfLiq
	Attention Is All You Need Attention
	SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks SE3Fuchs
	Tensor field networks: Rotation- and translation- equivariant neural networks for 3D point clouds RotAndTranslEquivar
	Learning Small Molecule InteractionSmallMolEnergies

	Methodology
	Molecular dynamics and model system
	Model potential, forces and torques
	WCA potential
	Charge-Charge Interaction
	Charge-Dipole and Dipole-Charge Interaction
	Dipole-Dipole Interaction
	Torque and rotational accelation

	Integrator of Equations of Motion
	Simulation
	Thermostat
	Reduced units

	Benchmark
	Machine learning
	General concept
	SE(3)-Transformer


	Training and Results
	Dataset
	Metrics
	Results

	Conclusion

