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Abstract

Semantic and instance segmentations have revolutionized biomedical image anal-
ysis, playing a crucial role in numerous biological applications. The development of
accurate segmentation pipelines has enabled fast and reliable image analysis. Pre-
vious state-of-the-art methods in cellular biology rely on accurate cell segmentation
without preserving knowledge of overlapping instances. In this work, we first show
that extending the model by introducing multiple decoupled decoders for multi-task
learning greatly helps in scene understanding and results in high-fidelity segmen-
tations. Furthermore, we identify cases of overlap occurrence and construct prob-
ability maps based on cell spatial proximity. Additionally, to overcome the lack of
annotated samples, we introduce a way to synthesize brightfield images and show
that applying overlap-aware weight maps directly to the loss function guides the
model to attend to regions of occluded cells, thus improving segmentation perfor-
mance. We then propose an approach to extend our model to perform instance seg-
mentation. Compared to previous state-of-the-art approaches, we utilize a concep-
tually novel method of learning instance activation maps that highlight informa-
tive regions for different cells for global awareness. Without bells and whistles, we
combine multi-task learning with overlap awareness for instance segmentation, and
show that our approach achieves state-of-the-art results.
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Chapter 1

Introduction

Studying biological systems at the cellular and whole sample levels is critical
to advancing our understanding of complex biological processes. Cell-level studies
focusing on individual cells can reveal quantitative details about numerous cellu-
lar properties such as shape and position and space, signaling pathways, RNA and
protein expressions [5] [4]. In contrast, whole-sample studies, which examine the
collective behavior of cells within a tissue or organism, can provide insights into
higher-level processes such as tissue development. Combining these approaches al-
lows researchers to gain a more comprehensive understanding of biological systems
and to develop effective treatments for diseases such as cancer, Alzheimer’s, and car-
diovascular disease [47]. In recent years, studies of cancer at the cellular level have
led to the development of targeted therapies that kill cancer cells leaving healthy
cells intact [16] [43] [57]. Meanwhile, whole-sample studies have revealed impor-
tant insights into the behavior of tumors in their native environments, paving the
way for new approaches to cancer treatment. Ultimately, advances in cell-level and
whole-sample studies are critical to developing personalized medicine and improv-
ing the health and well-being of individuals worldwide.

As we delve into the exciting field of biomedical imaging, the increasing avail-
ability of large datasets and the growing power of computer hardware have paved
the way for the rise of deep learning models for image segmentation. They are a cru-
cial step in analyzing medical images, enabling researchers to identify and quantify
different structures and features within the images. Convolutional neural networks
(CNNs) have shown to be particularly effective for segmentation tasks due to their
ability to learn complex and hierarchical representations of images.

Applying deep learning models to biomedical imaging has yielded impressive
results, achieving state-of-the-art performance on benchmark datasets and outper-
forming traditional machine learning algorithms and human experts in many cases.

The rise of deep learning models for image segmentation in biomedical imag-
ing represents a notable development in the field, with the potential to significantly
enhance our understanding of disease processes and contribute to developing more
effective treatments. As we continue to explore this exciting field, deep learning
models for image segmentation will likely play an increasingly important role in
advancing our knowledge of the human body and its complex systems.

The use of deep learning models for segmentation has emerged as an important
and vibrant area of research. In tissue analysis, cell segmentation refers to the pro-
cess of identifying and separating individual cells within an image, which is a crucial
step in analyzing microscopic samples and studying the properties and behavior of
cells. Quantitative cell biology requires measurements of different cellular proper-
ties, such as the position and shape of individual cells. To achieve this, one must first
segment the image volume into cell bodies based on cytoplasmic markers.
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Semantic segmentation plays a crucial role in cell segmentation as it involves
labeling every pixel in an image with a corresponding class, such as the nucleus, cy-
toplasm, or background. This approach allows researchers to identify and quantify
different regions of interest within the image, providing insights into the structure
and function of cells in one sample. Nonetheless, despite its effectiveness, this type
of segmentation faces a challenge when it comes to distinguishing between multiple
distinctive objects belonging to the same class. Thus, making it impossible to tell
them apart without additional postprocessing.

While semantic segmentation is one approach to cell segmentation, more is needed
to study cell interactions on the instance level. In contrast, instance segmentation
involves labeling every pixel with a class and distinguishing between individual in-
stances of that class. In the context of cell segmentation, instance segmentation is
particularly important for studying cell behavior and interactions on a microscopic
level. This paradigm is essential because cells can exhibit different properties and
behaviors within the same tissue or organism. Analyzing them at the object level
can reveal important insights into biological processes.

Using deep learning models for cell segmentation is crucial as they allow re-
searchers to analyze microscopic samples at the level of individual cells, providing
insights into complex cellular processes that are not easily achievable through clas-
sical approaches.

Nonetheless, instance segmentation is challenging when working with images
of different modalities. In the realm of biomedical imaging, samples are often very
heterogeneous, each presenting unique challenges and opportunities for analysis.
One of the factors that can vary significantly between samples is the object count of
structures present in the image. Additionally, samples may have varying levels of
cell proximity or the degree to which cells cluster together in the image. It is usual
in biological images to encounter multiple overlapping instances; the cells can often
lose contact inhibition and therefore stack up on top of each other, making it difficult
to distinguish between them.

FIGURE 1.1: Examples of brightfield modality focal planes.

Due to the ease of acquisition and versatility, brightfield microscopy has become
a valuable tool for cell imaging [62]. Brightfield domain is a more straightforward
type of cell imaging [44]. The process involves shining a beam of light through a
sample and observing the resulting image. Brightfield imaging can be done with
standard laboratory equipment, such as a light microscope, and does not require
specialized sample preparation or labeling. Additionally, brightfield imaging can
capture living cell images in real time, allowing for dynamic observations of cellu-
lar processes. This ease of acquisition and versatility makes brightfield imaging a
valuable tool for cell imaging and analysis.
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Other types of microscopy, such as phase-contrast, confocal, or electron microscopy,
may require more specialized equipment and training and more advanced image
processing and analysis techniques.

Brightfield microscopy is widely used in biological research and medical diag-
nostics [2] [17] [44] [51], as it allows for the visualization of cells and tissues at high
resolution without requiring complex equipment or techniques. Despite its popu-
larity, the segmentation of brightfield images has received relatively little attention
compared to other imaging modalities, such as fluorescence microscopy. This is
mainly because of the inherent complexity of the input samples, which often con-
tain a vast amount of noise and variability, making it challenging to identify and
segment individual cells accurately.
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Chapter 2

Related works

Semantic segmentation is a vital task in the field of computer vision and serves
as a foundation for many downstream applications. Unlike image classification,
which produces an image-level prediction, semantic segmentation produces a dense
per-pixel category prediction. Accurately segmenting cell structures in images is
one of the most encouraging applications of semantic segmentation. However, cell
segmentation can be challenging in low contrast and high object density cases and
may require sophisticated image processing pipelines.

2.1 Classical Approaches

As we dwell on the history of cell segmentation methods, the classical methods
for processing images were the to-go approaches in the beginning. They all acquired
preprocessing and image manipulation techniques to perform segmentation further
with various hand-crafted algorithms. One of the most widely used techniques is
thresholding, which involves binarizing an image based on threshold values. [71]
suggests applying a straightforward Otsu intensity thresholding [45] with edge de-
tection. Acquiring more complex cell structures requires a more extensive process-
ing pipeline. [32] proposes to use stacked morphological operations traversing from
Gaussian filtering [13] and Canny edge detection [8] and ending with hole filling
and region closing postprocessing steps. Nevertheless, many classical approaches
of such category are sensitive to natural noise. It becomes extensively hard to renor-
malize or preprocess images to fit the gaps of those edge problems. Moreover, it is
a burden for the algorithm to differentiate foreground and background pixels in an
environment with low contrast or uneven illumination.

While classical methods for cell segmentation have been extensively studied,
their performance is often limited by the complexity of biological images. In re-
cent years, convolution-based deep-learning methods have emerged as a promis-
ing choice for biomedical segmentation, achieving state-of-the-art results on various
benchmarks as they can learn compound feature representations from data. Never-
theless, deep learning-based methods often require vast amounts of annotated data
to achieve high performance, which can be time-consuming and expensive. There-
fore, developing effective methods for segmentation that can operate with limited
annotated data is an active area of research in computer vision.

2.2 Semantic Segmentation Using U-Net

While Fully Convolutional Network (FCN) [41] architecture was one of the first
widely used neural network architectures for semantic segmentation, it only relied
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on an encoder network to downsample the input image and a decoder network to
upsample the feature map to obtain the segmentation map.

On the other hand, U-Net [50] is a symmetric encoder-decoder approach, where
the encoder and decoder simultaneously learn to capture the image’s context and
spatial features. The U-Net model comprises encoder-decoder "U-shaped" archi-
tecture. It downsamples the convolutional maps several times via a contracting
pathway which captures the contextual information, and upsamples in a mirror-
symmetric fashion using expanding pathway that facilitates accurate localization.
The encoder network consists of several convolutional layers that reduce the input
image resolution and extract features from the input image. The decoder network
then takes the output from the encoder and produces a segmentation map by upsam-
pling and concatenating feature maps from the encoder. One of the novel features
of the U-Net model is its use of skip connections between the encoder and decoder.
These skip connections enable the model to recover fine-grained details in the seg-
mentation map that may vanish during the down-sampling process.

The strategy thoroughly relies on solid data augmentation to alleviate and help
the model generalize on a small dataset. The U-Net model has been shown to be
very effective in handling complex object representations in biomedical image seg-
mentation tasks.

2.3 Instance Segmentation

As a step towards further segmentation acquisition, instance segmentation has
surfaced as a powerful technique in computer vision. In recent years, the instance
segmentation paradigm has become one of the crucial problems in machine learn-
ing. Unlike semantic segmentation, where each pixel is assigned to a unique class
type, instance segmentation distinguishes between different instances of the same
class. With the rise of deep learning and the availability of large annotated datasets,
instance segmentation has become increasingly accurate and widely used in various
fields, including medical image analysis, autonomous driving, video analysis, and
robotics. With its relevancy and usefulness, many subsequent approaches have been
proposed to increase the performance of segmentation algorithms in many domains.

2.3.1 MaskRCNN

Proposal-based methods have emerged as a popular choice for instance segmen-
tation in natural images, where Mask R-CNN [23] is considered a base approach.
Mask R-CNN is a baseline representative method that extends Faster R-CNN [48]
by adding a mask prediction branch for a robust end-to-end instance segmentation.

2.3.2 YOLOv5

YOLOv5 [31] was introduced in May 2020 as a better successor to the previous
v4 generation architecture. It uses a two-stage detector. The backbone of YOLOv5
proposes a Cross Stage Partial Network (CSPNet) [61] and a Spatial Pyramid Pool-
ing network (SPP) [24], which enable dynamic input sizes and robustness against
object deformations. The CSPNet strategy enables partitioning the base layer’s fea-
ture map into two parts and then merging them through a cross-stage hierarchy. In
parallel, the SPP block is used to enlarge the receptive field and segregate the most
relevant context features. It aggregates the information received from the inputs
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and returns a fixed-length output. Thus it has the advantage of significantly increas-
ing the receptive field and segregating the most relevant context features. The head
of YOLOv5 uses a feature pyramid network idea via Path Aggregation Network
(PANet) [40] for instance segmentation.

2.3.3 YOLOv8

Following the older YOLOv5 version, the new and better YOLOv8 model was
introduced recently as a state-of-the-art for segmentation and object detection. As
it presents new features and improvements, the model brings gains in COCO [39]
Mean Average Precision (mAP) scores compared to its ancestor variants. The recent
YOLOv8 is starting to revert to the residual blocks with new modified types of con-
volutions. The old main building C2f block (CSP Bottleneck) [61] was replaced with
a modified C3 version. Following the C2f version, all the outputs from the 3x3 con-
volutions (Bottlenecks) were concatenated. In contrast, the new C3 block exploits
only the final output. The Bottleneck itself adopted 3x3 convolutions replacing the
old 1x1.

Regarding the training process, the YOLO family exploits a unique and robust
data augmentation scheme. The image transformation comprises a Mosaic Augmen-
tation [21], which is a beneficial part of the model. This approach involves stitching
four images together, pushing the model to learn objects in new locations, with dif-
ferent levels of occlusion, and in different environments.

2.3.4 CellPose

CellPose [53] is a recent and promising addition to cell segmentation methods. It
offers a general approach by generating topological maps using a simulated diffu-
sion process. The authors train a U-Net [50] architecture neural network to predict
the horizontal and vertical gradients of the topological maps, as well as a binary
map of cell pixel predictions. The predicted gradients are used to construct a vector
field for a prediction, thus, assigning the direction of every foreground pixel to some
local sink point, defined as mask center-of-mass. Through gradient tracking [37], all
pixels belonging to a given cell can be routed to its center. Thus, the algorithm re-
covers individual cells by grouping pixels that converge to the same point. Further,
the cell shapes are refined by removing redundant pixels that were predicted by the
neural network to be outside of cells.

Recently, many approaches have employed single-stage detectors, particularly
anchor-free detectors. Unlike traditional bounding-box-based detectors, these ap-
proaches represent objects by center pixels and perform segmentation using the cen-
ter features. This method is favorable as it does not rely on the accuracy of the initial
proposals, unlike approaches that segment instances using object detections. The
quality of the initial proposals limits such methods and cannot recover from errors
made by the initial detector.



7

Chapter 3

Problem Formulation

Microscopy segmentation from microscopy images presents a significant chal-
lenge. The brightfield modality is complex, and cell specimens appear with other
problems, such as overlapping instances and highly dense samples.

We focus on solving the problem with overlapping cells. We aim to train the
model to produce distinct representations of overlapping regions. In natural con-
ditions, overlapping cells are common. Thus, locating them can be a crucial step
toward a more accurate instance segmentation of cells.

Segmentation and object detection have been the two most widespread prob-
lems in computer vision over the past many years. Converting semantic segmen-
tation results into instance segmentation is crucial for biomedical studies focusing
on individual objects. Proposal-based methods such as Mask R-CNN are popular
ways to perform instance segmentation of natural images. Complications arise from
differences between the domain of natural and microscopic images. While objects
in natural images are typically either vertically or horizontally aligned, objects in
microscopy generally acquire complex, non-convex shapes which are randomly ori-
ented. Additionally, these models usually require a pre-trained backbone network
and have difficulties segmenting such uniquely shaped objects. Hence, methods that
employ axis-aligned bounding boxes perform poorly [18] [34].

In this work, we primarily focus on developing a method for robust cell segmen-
tation on brightfield images. To support our idea of strong instance segmentation,
we additionally attend to solving the problem of occluded cells by first explicitly
segmenting overlap regions between them.

We start with a U-Net-based model and extrapolate more morphology-based in-
formation to enhance the performance of the segmentation network. We scale our
model by introducing decoupled decoder branches for more auxiliary outputs. The
new multiheaded methodology enables us to construct more accurate and reliable
predictions.

Primarily, we use our hand-labeled dataset, described in Section 4.1, to solve the
problem of amodal perception. With such a small dataset, we show that handling
overlapping regions between the cells is hard. Thus, we additionally exploit the
use of a generative adversarial network (GAN) model for generating high-fidelity
brightfield planes by incorporating conditional phase-contrast information. After,
we perform the domain translation to create a large-scale dataset from our minimally
annotated data while focusing on overlap criteria. In parallel, we further suggest
an intuitive loss function to guide our model into outputting better overlap region
estimates by incorporating information about the shape of the cell and its proximity
to the neighboring cell structures.
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We additionally put forward an approach to enhance the U-Net-based model to
leverage instance-level predictions by comprising a sparse set of instance activation
maps that serve as an object representation. We later discuss the ideas of guiding
the instance segmentation process by incorporating additional information on over-
lapping cells, thus creating a better cell reconstruction with conditional knowledge
about the cell intersection parts.

In the context of this study, the following contributions of this work are:

– Constructing a small-scale instance segmentation dataset by hand labeling all
cell bodies in multiple samples.

– Enhancing the U-Net-based model by incorporating multiple decoupled aux-
iliary branches for multi-task learning.

– Solving the problem of detecting overlaps between cells in a small dataset by
introducing a loss penalty term.

– Creating a method for high-fidelity brightfield image generation and augmen-
tation.

– Exploiting instance segmentation using a U-Net-based model via learning object-
wise instance activation maps.

As a part of our research project, we have also received positive approbation
from the scientific community at the Institute of Computer Science at the University
of Tartu.
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Chapter 4

Method

To approach the whole cell segmentation problem in the brightfield domain, we
start with semantic segmentation. We modify the baseline model to support decou-
pled scene-informative predictions (cytoplasm, nuclei, border, background). Next,
we adopt the watershed transform [49] for cell separation based on predicted cyto-
plasm and nucleus. Nonetheless, we obtain overlap-agnostic instance predictions,
leading to many incorrect pixel assignments when cells overlap. To further target
the problem, we start by predicting the overlap regions. Mainly we focus on leverag-
ing our small dataset with weak overlap annotations by generating a new synthetic
dataset of brightfield images using phase contrast information. Later we describe
the proposed method to boost the overlap localization significantly. With this in
mind, we propose a box-free modified U-Net model to perform efficient instance
segmentation.

4.1 Labeling the Dataset

We start by introducing a new dataset produced by the PerkinElmer company.
The dataset comprises 11,808 images of 6 different cell lines of brightfield modality.
Each image is acquired at x63 magnification level and constitutes a pair of lower and
higher brightfield planes. Along with the brightfield images, we had access to the
same amount of corresponding phase-contrast and fluorescent images. All the nuclei
in the images were semi-automatically pre-segmented using a proprietary classical
algorithm. To access accurate instance-level cell annotations, we manually labeled a
portion of the dataset. We utilize the LabelStudio software [58] to label every fore-
ground instance separately, as shown in Figure 4.1. Mimicking the approach used in
the original U-Net paper, we strive to annotate a rather small portion of the original
data to show that our approach can produce high-fidelity results with even a small
number of images.

FIGURE 4.1: LabelStudio mask annotations. Every mask describes a
polygon with multiple connected node points surrounding a single

cell instance.
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Naturally, the phase-contrast images have a much higher signal-to-noise ratio,
thus, they become the basis for data labeling. We set up our annotation pipeline
by expanding a preprocessing strategy for more visual context solely for annota-
tion purposes. First, we throw away samples with a high density of stacked and
occluded cells, as they tend to be increasingly hard to annotate. We then utilize an
adaptive histogram equalization technique for image level correction. This help to
make cells more visible by increasing the brightness and contrast of a sample. Addi-
tionally, we attend to the fluorescence data to provide a more feasible visualization
of cell instances. We superimpose both phase and fluorescence channels and apply
additional coloring to the fluorescence. The resulting visuals (Figure 4.2) provide
additional insight into the position and distribution of nuclei within the cells. We
find this to be a crucial step in a robust cell annotation pipeline.

FIGURE 4.2: Process of data preparation for more precise labeling.
The labeling pipeline takes a phase-contrast (a) image of x63 magni-
fication level as input. We utilize Adaptive Histogram Equalization
(AHE) and Fluorescent images (FL) to introduce more certainty of cy-

toplasm location.

With the proposed annotation approach, we acquire a set of 28 labeled bright-
field images of size 1080x1080 consisting of individually labeled cell instances. Later
on, we mainly exploit this dataset for various experiments and attend to it as "ex-
haustive".

4.2 Semantic Segmentation

Since the original U-Net [50] model was trained on a similar-sized dataset, we
leverage this type of network and enhance it by incorporating the Squeeze-and-
Excitation blocks (SEU-Net) as a baseline for our segmentation experiments. We
have found from empirical evaluations that the U-Net model, when enhanced with
Squeeze-and-Excitation (SE) blocks [26], exhibits promising potential for semantic
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segmentation of cells in the brightfield domain. This model has shown a state-of-
the-art performance on datasets that the research group from the University of Tartu
has worked on, surpassing the traditional U-Net and other variations such as Pyra-
mid Pooling (PPUnet) [3].

FIGURE 4.3: Dataset and Training Details. We supervise model train-
ing with hand-labeled data from an "exhaustive" dataset. We anno-
tate 28 brightfield images and use lower and higher brightfield focal

planes for training.

4.2.1 Squeeze-and-Excitation Blocks

SEU-Net is a convolutional neural network architecture that combines the advan-
tages of the famous U-Net architecture with the Squeeze-and-Excitation (SE) blocks.
The SE blocks are added to the encoding and decoding pathways of the U-Net to
improve the model’s feature representation by fusing the spatial and channel infor-
mation.

The Squeeze-and-Excite block is a common method used in neural networks to
improve the quality of feature representations. The SE block performs channel-wise
calibration of the output. It generates a weighting vector that is used to scale the
output of the convolutional block. The purpose of this weighting vector is to give
greater importance to more significant features in the input.

The SE block consists of the squeeze and excitation operations. The squeeze op-
eration reduces the spatial dimensions of the input feature map and aggregates the
channel information. This is done by applying global average pooling to the input
features, resulting in a single vector output representing the channel information.

The excitation operation is a non-linear transformation that takes the squeezed
vector as input and generates a weighting vector reflecting each channel’s signifi-
cance in the input feature map. This weighting vector is then used to rescale the
original feature map, resulting in an output feature map with enhanced feature rep-
resentation.
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4.2.2 Adding more morphology-based information

Following the aforementioned segmentation approach of utilizing the Squeeze-
and-Excitation enhanced U-Net model, we hypothesize about improving the score
by providing the model with more descriptive features about the sample. To ele-
vate the problem of adding more contextual representation and reducing prediction
errors, we follow the idea from the original U-Net paper [50]. In addition to only
having one class, we employ border and background classes to reduce the number
of corresponding errors. We add a nuclei class to improve the models’ perception of
cells further. Our experiments which we will discuss later showed that understand-
ing the relationship between the nuclei and the corresponding cytoplasm matter has
elevated the overall performance.

4.2.3 Decoupled Decoders

To enable the model multi-task understanding, we employ the multiheaded ar-
chitecture, extending the decoder with three more auxiliary branches for nuclei, bor-
der, and background predictions. We reason that such modification allows the model
to simultaneously learn representations for the cell interior, the relation of one-to-
one cell-nuclei assignment, cell border, and background, which can help improve
the overall segmentation performance.

(A) Baseline (B) Multi-channel (C) Multi-headed

FIGURE 4.4: This figure illustrates different model variations used
in our study for cell segmentation. We start with the baseline ap-
proach (a) of predicting the cytoplasm channel. Comparably, the
multi-channel approach (b) predicts more classes, including cell nu-
clei, border, and background, for a broader scene understanding.
Moreover, we adopt a multi-headed approach (c) that simultaneously
learns representations for the cell interior, one-to-one cell-nuclei as-

signment, cell border, and background.

Each auxiliary branch has its decoder head responsible for predicting the respec-
tive class. By having multiple decoder heads, the model can learn to extract features
specific to each class, allowing for more accurate predictions.

Furthermore, the auxiliary branches allow us to leverage additional supervision
signals during training. Adding multiple decoder heads is essential as it enables
the model to learn more complex features related to each object class. By predicting
the nuclei, border, and background classes, we can provide the model with addi-
tional cues to help it learn more discriminative representations for each class. Such a
paradigm is imperative in cases where the boundary between the cell and the back-
ground is ambiguous or the cell shapes are highly irregular.

One of the primary objectives of the 4-headed output approach was to address
the inconsistency in predicted cytoplasm structure. Upon observing the results of
the baseline model, we noticed slight perturbations in the reconstructed mask near
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the nuclei regions and the cytoplasm prediction chunks tending to be separate from
their origin cell, Figure 4.5.

(A) Baseline results (1-head) (B) 4-head results

FIGURE 4.5: Closing the gaps. Additional morphological image in-
formation allows us to punish the model for not predicting the nu-
clei and for classifying pixels as background simultaneously, thus im-
proving the overall performance. The first image displays the seg-
mentation results of the 1-headed model trained on a cytoplasm chan-
nel only. The 4-headed version, utilizing all four channels, visually

performs much better.

Targeting per-class optimization allowed us to penalize the model more in the
above-mentioned scenarios. We use a weighted linear combination of binary cross-
entropy losses [68].

LBCE(y, ŷ) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (4.1)

With each head focusing on a different aspect of the segmentation task, we com-
bine the losses from each head to generate a final loss.

Ltotal = λcyto · Lcyto + λnuc · Lnuc + λbd · Lbd + λbg · Lbg (4.2)

Where λcyto, λnuc, λbd, and λbg are the weighting coefficients for the cytoplasm,
nuclei, cell border, and background losses, respectively. These coefficients represent
the relative importance of each component in the final loss function.

4.3 Segmenting Overlapping Cells

With the aforementioned introduction of auxiliary outputs in Section 4.2.3, we
have observed that the model is prone to errors in the regions where two or more
cells occlude. Both semantic and instance segmentation approaches actively depend
on accurate scene understanding. Thus, the ability to precisely segment overlapping
foreground instances is a crucial part of either segmentation method.

We try to alleviate the problem of weakly labeled data for accurate segmenting
overlaps. Overlapping regions are defined as the intersection of multiple cells. We
propose to use an approach that leverages the spatial proximity of cells to identify
overlapping regions. We hypothesize that nearby cells are more likely to form over-
lapping instances, and this information can be used to guide the segmentation model
toward regions where overlaps are more likely to occur.

For every cell instance mask mi of mask M, we compute the distance transform
from its border to create a unique map gi, resulting in a batch of cell-border-based
distance maps D = {d0, d1, . . . , dn}. Each of the corresponding distance fields di
accounts for the contribution of mith cell to every other pixel in one sample. We
combine them using a max-reduction process to generate a single probability map
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FIGURE 4.6: The left image shows the annotation mask for a 512x512
brightfield sample. The right image displays the final constructed
overlap probability map, which incorporates the spatial proximity of

cell instances.

P. As an additional reweighting step, we apply log-scaling to refine the probability
map further to create a more steep descent toward local centers. This ensures that
the probability values are much higher in regions where cells are closer. The proba-
bility values of P corresponding to the background region of the mask sample M are
set to 0.1.

We exploit the Euclidean distance transform to get the distance maps:

di(xi, xj) =
√
(xi − xj)2 + (yi − yj)2 (4.3)

Followed by an element-wise max-reduction:

P =
n

max
i=0

di (4.4)

FIGURE 4.7: Overlap Region Probability Map.

While training, the resulting probability map P adjusts the loss by reweighting
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the prediction probabilities. Similar to [7], we recompute the loss by multiplying it
by 1 − P. As a result, we degrade values where the confidence of the overlap region
is high and continuously punish the model more for predicting high values in re-
gions of low confidence. The model incurs a heavier penalty for predicting overlaps
in regions where cells are located far apart and encourage such prediction in places
where overlapping instances are more likely to occur. Given the prediction ŷ, we
imply the information about the knowledge of overlap likelihood P to the loss to
attend the model to localize and understand overlappings better. To emphasize the
fewer overlapping areas, we apply the binary focal loss [38] rather than traditional
cross-entropy loss [68] to account for assigning a higher weight to hard-to-classify
examples. Mathematically, the reweighted focal loss can be expressed in the follow-
ing way:

Loverlap(y′, ŷ) = −α(1 − ŷ)γy′ log(ŷ)− (1 − α)ŷγ(1 − y′) log(1 − ŷ), (4.5)

where y′ = y(1 − P)

4.4 Synthetic Dataset

As an additional contribution, considering our small annotated portion of the
dataset and the low quality of annotated overlaps, in addition to probability maps,
we explored different ideas for expanding our training dataset.

One approach would exploit the possibility of using an unlabeled subset of bright-
field images and constructing corresponding pseudo labels, which would serve as
training data for the later stages. Such dataset construction would not be ideal.
Firstly, we would still lack information about the overlap locations as the final out-
put of the model is a binary mask. Next, with such an approach, we lose track of
instance information in a larger context of a single sample.

In light of these problems, we propose constructing new synthetic images while
preserving annotations on an instance level. We are motivated by prior work of
copy-pasting instances between the dataset samples [19]. In addition, the work has
shown that such a type of augmentation allows the model to generalize faster and
learn better representations. Furthermore, we extend this approach and adopt it to
our original cellular datasets.

Since cells are somewhat transparent and function as lenses, copying and pasting
them in the brightfield domain cannot produce high-fidelity images. We need to
reconstruct the overlapping regions to have upper and lower cells visible enough to
identify such regions as overlapping. We have seen from local experiments that the
model only segments "fake overlaps" and completely ignores the real ones when we
try to copy-paste cells in the brightfield domain.

To solve the problem, we initially set a prior condition over the phase images.
We have made this assumption based on the prior empirical evidence gathered by
our collaborators from PerkinElmer, who have developed a phase-contrast generat-
ing model that we have also used in this work. The properties of phase-contrasts
allow for approaching the problem more straightforwardly. Thus, we assume that
overlaps are achievable in phase contrast by adding pixel intensities. Meaning that
superimposed cells impose approximately additive intensity contribution of indi-
vidual objects.
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We adopt a GAN-based approach to learn and model a non-linear transforma-
tion for translation from the phase-contrast domain to the brightfield, along with a
custom cellular sample construction module.

4.4.1 Copy-Paste Module

Prior works such as MixUp [70], Mosaic [21], and CutMix [69] are efficient as
they combine multiple images on the crop level during training. These techniques
have contributed significantly towards achieving robust training. The YOLO fam-
ily [31] uses multiple combinations of such augmentation types in their pipelines
and achieves remarkable results. Nevertheless, such image transformations are not
instance-aware. The Copy-Paste procedure [19], on the other hand, is similar to the
CutMix and MixUp. The augmentation copies instances between different samples
while preserving only annotated parts which makes it an object-aware augmenta-
tion. Unlike Contextual Copy-Paste [14], we do not benefit from using context-aware
instance pasting due to the random nature of microscope images. Rather, we exploit
a random set of transformations to the copying instance before pasting it in. As a fur-
ther attribution to our method, we extend the usage of the Copy-Paste augmentation
to create a new synthetic dataset by first constructing new samples.

FIGURE 4.8: Process of a single Copy-Paste iteration of a cell between
different images along with their annotations. With a selected cell
pc1, we choose a random cell instance pi with its corresponding mask
mi. For each selected cell, we apply an augmentation A to mask and
phase crop. The selected cell gets added to a new image along with

the annotations.

Given a set of annotated phase-contrast images P that is not a part of the test
set and a corresponding set of masks M of shape (Ni, H, W), where Ni is the to-
tal number of annotated individual cells present in the ith sample, we randomly
select a group Gm = {m0, m1, . . . , mn} ∈ RN×H×W of N non-overlapping cells in-
stance masks from the set M. Consecutively, we crop N phase-contrast instances
from P corresponding to the selected masks of group Gm : Gp = {p0, p1, . . . , pn} ∈
RN×H×W .

For each selected cell pi and its annotation mi from the groups Gm, Gp, we apply
a combination of both linear and nonlinear/not affine transformations. To enrich
the distribution set, we mainly focus on utilizing resize, rotate, and shift augmen-
tations along with elastic deformations, which incorporate random pixel displace-
ment, modeled using a vector field. The random set of transforms is applied direc-
tory to phase crop pi and mask mi.
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We formulate novel data samples by initializing empty fields P′ and M′ of shapes
(1, H, W), (N, H, W), respectively. Next, we subsequently insert the transformed an-
notations and image crops into P′ and M′. Considering the additive characteristics
of phase-contrast modality, we add the intensities of the pasted cell crops pi, result-
ing in a completely new image P′ with corresponding instance-level annotations M′.

We additionally apply Gaussian blur on the edges of pi with σ = 20 to get a more
natural-looking transition from the cell to the background. Furthermore, we control
the cell injection process by exploiting overlap criteria between two superimposed
cells: 0 ≤ p ≤ 0.2, where p denotes the overlap ratio of a pasted cell with other cells.

4.4.2 pix2pix

As a next step to the aforementioned construction of more new brightfield im-
ages, we propose to use a generative adversarial network (GAN) in the conditional
setting. Following pix2pix [30], we use a U-Net-based architecture for the generator
G and a “PatchGAN” classifier as a discriminator D. The generator and discrimina-
tor networks are trained together in an adversarial setting, where the generator tries
to produce images that fool the discriminator. In contrast, the discriminator tries to
distinguish between the actual and generated samples correctly. Thus providing the
generator with more concrete feedback.

Since generative models require a vast amount of data, we cannot reason the
mapping from semantic masks as an input to get a good performance. For one rea-
son, our labeled portion of the dataset is relatively minimal to an extent. Instead,
we propose to learn the model to perform a mapping from phase to brightfield do-
main. This way, we do not require any labeled annotations and can exploit the whole
unannotated dataset.

FIGURE 4.9: pix2pix training process overview.

The generator G is U-Net-based architecture and comprises nine stacked convo-
lutional layers with increasing spatial resolution for the encoder. Along with that,
the model uses skip connections to preserve high-level features as well as spatial
information. Each skip-convolution layer uses 2D convolutions with a kernel size
of 4x4, stride of 2x2, and padding of 1x1. Every convolution block is followed by
Batch Normalization [29] to ensure features are scaled appropriately to achieve zero
mean and unit variance. The original Rectified Linear Unit (ReLU) [1] activation
was replaced with the LeakyReLU [65]. LeakyReLU helps to avoid the dead neu-
ron problem during model optimization by introducing a little negative slope in the
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negative region of the activation function. The decoder layer consists of 9 upsam-
pling convolutional blocks consisting of transpose 2D convolutions with a kernel
size of 4x4, stride of 2x2, and padding of 1x1. These convolutions are used to de-
convolve the features by increasing resolution, thus halving the number of feature
channels. Every deconvolution block is followed by the same Batch Normalization
and a ReLU activation function. At the final layer, a 1x1 deconvolution followed by a
Tanh activation function is used to map the resulting 128-dimensional feature vector
to 2-channel focal brightfield planes.

FIGURE 4.10: Process of translating a single phase-contrast image
into two brightfield focal planes.

In the training process, we feed the network a 512x512 crop of phase-contrast
images. The generator G takes as input image Ipc and produces the output of two
images representing brightfield focal planes Ib f : I′b f = G(Ipc).

The discriminator is trained in a “PatchGAN” manner. In addition to the output
of G, we use conditional information of the initial phase plane Ipc by concatenating
the channel dimensions and passing the input to the discriminator D. Following the
above-mentioned encoder architecture, we use a 5-layer discriminator for classify-
ing “real” and “fake” samples. We encode images by subsequently employing 2D
convolutions with a kernel size of 4x4, a stride of 2x2, and padding of 1x1, followed
by Batch Normalization and a LeakyReLU at each layer. The output layer 4x4 convo-
lution produces a single probability value identifying whether the predicted sample
is “real” or “fake”. The output image I′b f conditioned on the phase information gets
classified in 70x70 patches rather than the whole image. This method allows dis-
criminator D to make fine-grained decisions about the realism of specific regions of
the image for more local information feedback. To achieve this, a 70x70 window is
convolved across the entire image. Thus, the output of D is an averaged response
from local patches.

We utilize a tiling approach to preserve a full input resolution of 1024x1024. The
input image Ipc gets split into non-overlapping windows of size 512x512. Generator
G takes Ipc as an input and outputs the brightfield image Ib f with the same cell struc-
ture. At the same time, the adversarially trained discriminator D tries to evaluate the
quality of the output and distinguish it between “real” and “fake” images.

On inference, we construct a new phase-contrast sample P′ using the aforemen-
tioned copy-pasting module, described in Section 4.4.1, and feed it to the network.
In order to target the blank zero-background inpainting in the new input image P′,
we utilize 0.5 dropouts in generator layers as a form of noise to get non-deterministic
outputs.

We train the conditional model, where generator G tries to fool the adversarial
discriminator D and minimize the objective, and D tries to differentiate the actual
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data from the generated, thus maximizing the overall objective:

LcGAN(G, D) = Ex, y[log D(x, y)] + Ex, z[log(1 − D(x, G(x, z))] (4.6)

Since L1 loss enables the model to capture low frequencies, it is less prone to
output blurry images:

LL1(G) = Ex,y,z[∥y − G(x, z)∥1] (4.7)

The final network loss is formulated as a sum of LcGAN and L1 losses, we set λ to
be 100 as in the original implementation [30].

L = arg min
G

arg max
D

LcGAN(G, D) + λ · LL1(G) (4.8)

4.5 Instance Segmentation

Previously, most instance segmentation approaches laboriously relied on object
detection and performed mask prediction based on estimated bounding boxes or
dense centers [23] [36]. Many of them have been specifically designed for natural
objects, which renders them less efficient for biomedical images [53] [12]. Through-
out our experiments, we have observed those object detection models notoriously
underperformed in scenes with high object density and occlusion of elongated cells.
The object detection stage was the primary bottleneck in a whole pipeline due to
many ambiguous cell shapes [34].

4.5.1 SparseU-Net

We implemented a detection-free instance segmentation method to prevent all
issues related to the poor generalization of object detection pipelines. We target a
full segmentation of cells using our U-Net model. Motivated by [11] [63] [64] [73],
we enhance the SEU-Net model (Section 4.2) with an instance-aware decoder for
sparse prediction outputs. Rather than relying on predicting the region of interest
or centers to represent objects, we exploit a similar idea to [11] and elevate instance
learning by employing a sparse set of instance activation maps (IAM). Therefore,
every object gets represented by its instructive pixel regions. Next, the classification
and segmentation are directly performed from the learned instance features.

Many anchor and center-based object detection methods are usually limited by
the local contextual information and the receptive field of pixels [67] [10]. Instead,
instance activation maps exploit feature aggregation from the entire frame, therefore,
achieving broader context awareness and global reasoning.

Compared to the prior methods [23], in scenes where densely packed and oc-
cluded objects exhibit complex and unnatural shapes, instance activation maps can
serve as a more efficient method of aggregating instance features for segmenting in-
dividual instances. Mainly, it can highlight informative object areas and suppresses
other redundant pixels. Estimating boxes brings unnecessary background features
that are usually inessential, leading to suboptimal segmentation results, consider-
ing the task of segmenting overlapping cells [72] [34] [66] [18]. Additionally, the
effectiveness of center-based detection methods may become limited as foreground
objects acquire varying forms and shapes. Therefore we can not guarantee its ro-
bustness in targeting explicit centers of instances.
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During training, we push the instance activation maps (IAM) module to attend to
informative features. Since IAM output is conditioned on the input image, it exploits
arbitrary activation maps for every object. Therefore, we supervise model training
through explicit ground truth matching.

4.5.2 Instance Aware Decoder

The decoder consists of two decoupled instance and mask branches. With an
instance-aware decoder, the model tries to learn to embed the characteristics of each
instance (e.g., intensity, appearance, shape, location, etc.). This is done explicitly
by learning kernels produced from instance-aware maps dynamically conditioned
on the input. Each of the regressed weight maps produced by the instance branch
attributes to the informative object-wise regions. In parallel, the model also learns
mask features which are further aggregated with kernels to result in a set of pre-
dicted instance masks.

Learning instance activation maps does not exploit direct supervision as we don’t
have the corresponding ground truth. Instead, the model pushes the instance acti-
vation maps module to discover and attend to informative instance-related parts
of an image. Learning to comprehend desirable regions belonging to specific fore-
ground objects is enforced with instance matching strategy, which exploits one-to-
one ground truth prediction superimposition. This ensures that produced instance
activation maps exploit correspondence with ground truth labels once aggregated
with mask features.

Namely, the following pair of decoupled pixel-wise mask and instance branches
are added to our SEU-Net model to enable cell instance segmentation. As a part of
the “vanilla” stage model, we add instance segmentation blocks only to the last layer
of the model.

Given the input image, we pass it through the encoder to extract informative
features on different levels of the encoder down pass. For the decoder part, we com-
bine upsampled features with the skip connections from earlier layers and exploit
instance separation with the resulting concatenated features X ∈ RD×H×W at the
output layer. Both mask and instance branches propagate image features X through
a series of convolutional blocks resulting in M and I feature maps, respectively. For
our experiments, we adopt four 3×3 kernel convolution blocks for both branches.
Then, instance activation maps can be formulated as A = F(I) ∈ RN×H×W , where
A is a sparse set of N activation maps that highlight informative regions for every
object. F is a simple 3×3 convolution network with sigmoid non-linearity activa-
tion. With feature maps X, we obtain instance features by aggregating them with
normalized to 1 activation maps A′ : a = A′ · XT:

a =
HW

∑
k=1

A′
ikXT

kj (4.9)

where a = {ai}N ∈ RN×D is a group of feature representations for N objects, and A′

is a sparse set of normalized to 1 instance activation maps. Therefore, every object
gets encoded into a 256-dimensional vector.

With instance features a, the model produces output class vector c ∈ RN×1 and
mask kernel k = {ki}N ∈ RN×D by projecting a to a lower dimension space with
two linear layers.
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FIGURE 4.11: Proposed SparseSEU-Net model architecture for end-
to-end bounding-box free instance segmentation. The decoder at
the last layer consists of two mask (orange) and instance (green)
branches. In parallel, both branches aim to provide mask and in-
stance features along with mask kernels, respectively. Later, both the
mask feature and mask kernel are aggregated and produce sparse in-

stance predictions.

Produced instance-aware mask kernels {ki}N can be directly aggregated with
mask features M to produce final sparse segmentation masks. Specifically, this is
done by element-wise multiplication: mi = ki · M, where M is the mask features, ki
is the corresponding instance kernel which incorporates features related to a specific
instance, and mi is the produced instance mask.

4.5.3 Mask Level Matching

Since the model initially produces N sparse outputs where N is larger than the
number of actual instances in an image, it becomes hard to evaluate the prediction
with respect to the ground truth. To assess this problem, we utilize a matching strat-
egy to assign predictions to the labeled data and compute losses. We employ the
optimal bipartite matching scheme recently proposed in [9] [11], resulting in a set of
corresponding {prediction, ground-truth} instance mask pairs. We adopt one-to-one
label assignments to eliminate redundant predictions and elevate the ones with the
best correspondence. Given a set of M ground-truth masks G = {g0, g1, . . . , gm} and
a fixed-size set of N predictions P = {p0, p1, . . . , pn}, where N > M, we compute
losses on the subset of best-matched predictions of P. The one-to-one matching as-
signment finds a minimum weighted bipartite graph matching σ ∈ S within the sets
G and P:

σ = arg min
σ∈S

n

∑
i=1

C(pσ(i), gi) (4.10)
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C = C(1−λ)
cls · Cλ

mask (4.11)

where σ is the permutation representing the matching between predicted and
ground truth masks that minimizes the sum, S is the set of permutations, and C
is a pair-wise matching cost between G and P that is a weighted combination of
both classification cost Ccls and mask regression cost Cmask. We set λ coefficient to
0.8. Each target gets assigned to an object prediction through an optimal assignment
problem computed efficiently using the Hungarian algorithm [52]. With the Hun-
garian approach, we find the optimal match between M ground-truth objects and N
predictions given a weighted cost matrix C:

min
X

n

∑
i=1

n

∑
j=1

C(i, j) · X(i, j) (4.12)

subject to an assignment X:

N

∑
i=1

X(i, j) = 1 ∀j

N

∑
j=1

X(i, j) = 1 ∀i

X(i, j) ∈ {0, 1} ∀i, j

The cost function C takes into account the class prediction ci of the output mask
and mask similarity score of gi and pi. Specifically, we propose a pair-wise dice-
based matching score for ground truth and instance prediction masks, where the
dice coefficient for gith and pith masks is defined as:

Dice(pi, gi) =
2 ∑i pi · gi

∑i p2
i + ∑i g2

i
(4.13)

We supervise mask prediction with a linear combination of three losses on the
positive (matched) predictions. To address the class imbalance between background
and foreground in instance masks, we utilize a hybrid mask loss function by com-
bining the Dice Loss [54] and Binary Cross Entropy Loss [68].

LDice(y, ŷ) = 1 − 2 ∑N
i=1 yiŷi

∑N
i=1 y2

i + ∑N
i=1 ŷ2

i

(4.14)

LBCE(y, ŷ) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (4.15)

Lmask = λdice · Ldice + λbce · Lbce (4.16)

Unlike for other losses, for classification, we calculate the loss for all predictions,
including the non-matched ones. We use a focal loss [38]:

Lcls(pt) = −α(1 − pt)
γ log(pt) (4.17)

The final training loss is defined in Eq. (4.18) as a combination of mask and
classification losses.
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L = λmask · Lmask + λcls · Lcls (4.18)

Specifically, on inference, we want to rank the predicted masks. We utilize the
classification scores to explicitly target every predicted instance’s confidence. In ad-
dition, we also compute the maskness metrics [63] for every instance: m = 1

N ∑N
i=1 p,

where p is the predicted probability mask with N pixels. Thus, the combined confi-
dence score s is computed as a contribution of both class confidence c and maskness
score m: s = c · m

4.5.4 Scaling the Model

FIGURE 4.12: SparseSEU-Net with multi-level feature aggregation.
With the mask and instance branches at the last layer of the "vanilla"

model, we extend their usage to every model level.

We further employ the idea and enable the model to learn better semantic and
instance representations through a multi-level feature aggregation with the SEU-Net
model. Just as in the "vanilla" version of the instance segmentation model where the
instance and mask branching takes place only in the output decoder layer (Section
4.5.2), we employ this type of forking on all the decoding layers. The instance branch
aims to generate N per-object activation maps with instance features. In parallel, the
mask branch is designed to encode instance-aware semantic mask features. With
each new level of the decoder branch, we upscale and pass the instance features
Ii

Di×Hi×Wi and mask feature maps Mi
Di×Hi×Wi from the layer below.

For every up pass, the mask features, along with the instance features maps, get
upsampled by the factor of x2. For each of these explicit passes, we employ concate-
nation with features from the skip connection to propagate more spatial information
until the last level. Thus, the resulting mask and instance feature maps at layer m
of the decoder branch are a contribution of a skip connection from the encoder con-
catenated with the semantic features Xi and upsampled corresponding mask and
instance features from the previous layer n. This way, we maintain full feature
aggregation from the bottleneck layer to the very top and preserve the branching
paradigm.
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FIGURE 4.13: An instance aware decoder up-pass with skip connec-
tion. Both mask (orange) and instance (green) features get propagated
from the lower layer of the model to the outer layer via feature aggre-

gation.
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Chapter 5

Experiments and Results

We present experimental results mainly on our local manually labeled small-
scale "exhaustive" dataset (Section 4.1). The data labels consist of high-fidelity cell
segmentations along with the corresponding nuclei and overlap annotations, which
allowed us to evaluate the model from different perspectives. To further extend the
assessment of model performance, we conduct evaluations on the publicly avail-
able LIVECell dataset [15], which consists of expert-validated annotations for phase-
contrast modality images. LIVECell is one of the most extensive datasets regarding
images and annotated cells, consisting of over 1.6 million cells of diverse morpholo-
gies.

5.1 Implementation Details

Our work presents all the results implemented using the Python 3.7 [59] pro-
gramming language. For training, we used the PyTorch [46] framework, which pro-
vides powerful capabilities for neural network building and training. NumPy [22],
OpenCV [6], and SciPy [60] were used to handle data manipulation and preprocess-
ing tasks. All of the visual results of our experiments were made using Matplotlib
[28], a popular plotting library. These tools formed the backbone of our implemen-
tation and allowed us to achieve reliable and reproducible results.

5.2 Training Details

All the experiments were conducted on a single Tesla V100 GPU 32GB, provided
by the High-Performance Computing Center of the Institute of Computer Science at
the University of Tartu.

To train our model, we have adopted a training scheme published in earlier
works [55]. We use AdamW optimizer [42] with an initial learning rate of 1e-5
with a 1e-5 weight decay. Initially, all images were resized to a 1024x1024 size.
We adopt random flip, coarse dropout, and easy elastic deformation augmentations
when training. While training, we extracted 512x512 random crops from randomly
sampled input images and their corresponding masks to accumulate 4 samples per
mini-batch.

5.3 Semantic Segmentation

We start our experimentation with the SEU-Net (Sections 4.2, 4.2.2) semantic seg-
mentation model and show how additional morphological features propagate more
information and achieve better results. We use our in-house dataset, described in
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Section 4.1, to show that the semantic segmentation model can generalize well to
unseen data after training on a relatively small subset of images. We split the data
into 18 train, 5 validation, and 5 test set images.

We specifically experiment by introducing decoupled decoder branches to target
additional semantic features. We extend our model to predicting cytoplasm, nuclei,
background, and border. We perform an ablation study to show the importance of
additional representations and further assess the overall performance of all the mod-
els. The SEU-Net model, in its different variations, was trained from scratch for 1000
epochs. On inference, we sampled sliding windows of size 512x512 with an overlap
of 256x256 and averaged them to get a final prediction of size 1024x1024. For a fair
comparison, we apply a 0.5 prediction threshold for all the models on all class levels.
We visually and quantitatively observe a big jump in performance metrics with an
additional nuclei head (2-head model). Similarly, as in Section 4.1 where we observe
that overlayed fluorescence data on top of phase image exploits a better visual rep-
resentation of cell instances. We can also observe a similarly big leap to higher scores
when we transition from the 3-headed model, which exploits cytoplasm, cell border,
and background prediction, to a 4-headed network that additionally incorporates
nuclei information.

FIGURE 5.1: Visual comparison of the base model trained with cy-
toplasm channel only and multi-headed model with decoupled de-
coders. The images show cell segmentation results on sample bright-
field images using both model variations. The first column demon-
strates the output of the base model, the second column shows the
output of the multi-headed model, and the third column shows the

ground-truth masks.

Therefore, we reason a boost in segmentation performance as the model attends
to understanding the cytoplasm location based on nuclei positioning. Adding more
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information about the surrounding scene of a sample brings slightly better perfor-
mance as the model punishes inaccurate predictions due to the proposed combi-
nation of cytoplasm, nuclei, cell border, and background losses. When it comes to
evaluating the performance of segmenting the nucleus, we also observe an increase
in score numbers. With multiple decoder heads, the model has a direct correspon-
dence in segmenting cytoplasm and nuclei pixels.

Model Acc. Prec. Rec. F1 IoU

Cyto

SEU-Net (base) 0.9016 0.9318 0.8600 0.9061 0.8300
SEU-Net (2-head) 0.9214 0.9508 0.9036 0.9266 0.8613
SEU-Net (3-head) 0.9216 0.9509 0.9040 0.9268 0.8636
SEU-Net (4-head) 0.9229 0.9493 0.9083 0.9282 0.8661

TABLE 5.1: Cytoplasm segmentation performance of the SEU-Net
model on the test set of the "exhaustive" dataset.

Model Acc. Prec. Rec. F1 IoU

Nuc

SEU-Net (base) 0.9796 0.9118 0.8566 0.8834 0.7911
SEU-Net (2-head) 0.9814 0.9113 0.8800 0.8950 0.8101
SEU-Net (3-head) - - - - -
SEU-Net (4-head) 0.9852 0.9481 0.8847 0.9152 0.8437

TABLE 5.2: Nuclei segmentation performance of the SEU-Net model
on the test set of the "exhaustive" dataset.

5.4 Segmenting Overlapping Cells

As a target of our study, we also exploit a segmentation over the overlap re-
gions of cells in a single sample. First, we conduct experiments training the SEU-
Net model with the same training pipeline. We train models with both cytoplasm
and overlap decoders in parallel for segmenting overlaps. On inference, we only use
the overlap branch prediction maps and apply a threshold of 0.3 to target the low
confidence problem. Given our small dataset with weak overlap labels, we propose
to evaluate the performance mainly using F1 and Precision scores. Nonetheless, we
include all prediction metrics for a broader comparison. To access the amodal per-
ception information, we utilize probability maps to guide the model. Since all the
masks need a corresponding probability map for the model to readjust the loss ap-
propriately, we construct them beforehand.

We proposed and experimented with different variations of weight maps consid-
ering scenarios of overlap positioning. In initial experiments, we computed the dis-
tances from the nuclei center. We also proposed different approaches for aggregating
the probability maps of separate cells, considering neighboring cell influence. Given
a cell, we computed its probability map in several ways. In the initial experiments,
we used to get the distance map within the bounded space of one cell to indicate
the low probability of other cells overlapping the area of the nucleus. We specifi-
cally targeted the nuclei location and set the probability value to be very low for the
corresponding pixels and the background area (Figure 5.2a). Next, we removed the
boundary limit and extended the influence of cells to one another. The computed
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(A) attn. map v0 (B) attn. map v1 (C) attn. map v2

(D) attn. map v3 (E) attn. map v4

FIGURE 5.2: Visual overview of different probability maps con-
structed from given annotations of "exhaustive" dataset. In our ex-
periments, we refer to them as attention maps (attn. maps). All of the

above subfigures exploit overlap awareness to some degree.

distance maps to every sample point from all nucleus centers were merged using
the overall maximum probability value (Figure 5.2b).

Next, we experimented with extending probabilities near the annotated over-
lap regions to introduce relaxation constraints over the loss function, considering
weak overlap annotations (Figure 5.2c). Later, we merge the nuclei-based with the
overlap-aware distance map approaches (Figure 5.2d). As the final modification to
this approach, we construct a probability map (Figure 5.2e), considering cell borders
over cell centers and including overlap awareness, as described in Section 4.3.

Model Acc. Prec. Rec. F1 IoU

Overlaps

SEU-Net 0.9855 0.3352 0.0639 0.1073 0.0567
SEU-Net + attn. map (v0) 0.9775 0.1855 0.1914 0.1884 0.1040
SEU-Net + attn. map (v1) 0.9725 0.1549 0.2274 0.1843 0.1015
SEU-Net + attn. map (v2) 0.9797 0.2168 0.1858 0.2001 0.1112
SEU-Net + attn. map (v3) 0.9738 0.1865 0.2737 0.2219 0.1248
SEU-Net + attn. map (v4) 0.9760 0.2177 0.2908 0.2490 0.1422

TABLE 5.3: Overlap segmentation performance of the SEU-Net model
on the test set of the "exhaustive" dataset. The table shows a compar-
ison of different types of probability maps that were used to train the

model.

Table 5.3 shows the influence of model guidance via overlap-aware probability
attention maps introduced in the training procedure. Adding overlap knowledge
brings significant improvement, specifically of the F1 score to 0.25 in overlap seg-
mentation performance. This can be explained by the fact that weight maps exploit
lowering the false positives rate on the background region and grouping predic-
tions near the high overlap probability values as the network tends to understand
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(A) baseline (B) attn. map v0 (C) attn. map v1

(D) attn. map v2 (E) attn. map v3 (F) attn. map v4

FIGURE 5.3: Visual overlap segmentation performance starting with
the model trained solely from given annotations (baseline) and
traversing through the results of the model trained with loss recal-
ibration guidance (Section 4.3). Visualized results exploit ground-
truth annotations (white) and prediction map activations (red) thresh-

olded to a max value 0.3.

the region localization of overlapping instances. Nonetheless, reweighting probabil-
ity maps help greatly improve scores on almost all metrics. As an additional factor,
we reason great performance based on visual inspection. The output prediction of
the model trained solely on overlap annotations exploits many almost random pre-
dictions. On the other hand, having the model guided by the initial distance maps,
which indicate high probability values of overlap occurrence, allows the model to
expoit reasonable predictions. We observe multiple activations in non-annotated
regions, which visually exploit intersection regions of overlapping instances.

In the training process, we also experiment with successive ways of attending
to overlap regions. The obtained probability map P, described in Section 4.3, is
used to adjust the output by recalibrating the loss function. Instead of applying
the complement of P directly to the predicted probabilities, following [7], we ensure
the importance of overlapping regions by reweighting the entire pixel-wise focal loss
[38]:

L′
overlap(y, ŷ) =

1
N

N

∑
i=1

P(i) · Loverlap(yi, ŷi) (5.1)

Nonetheless, we didn’t see significant improvements over the proposed method
described in Section 4.3
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5.5 Synthetic Data

Following the problem with detecting overlaps, we also strive to exhaust our
dataset to the fullest and construct synthetic samples following the brightfield dis-
tribution. As a goal of ours, we first experiment with a simple cell Copy-Pasting
(Section 4.4.1) between different images. Since the brightfield modality is not addi-
tive but exploits a more complex way of modeling light scattering, the model started
overfitting on the overlaps belonging to newly pasted cells and ignored the real ones.
To address this problem, we propose to use a combination of Copy-Paste augmenta-
tion and domain translation, described in Section 4.4.2

FIGURE 5.4: Overfitting in brightfield Copy-Paste. The left images
show the predicted overlaps, and the images on the right depict
the annotated overlap regions from combined manual labeling and
Copy-Pasting. Model overfits and begins segmenting “fake overlaps”
that occur from pasting cells in from different images directly in the

brightfield domain.

We exploit the same procedure for training the model on the newly constructed
synthetic data as we have for the initial dataset. We also experiment with size vari-
ations of the newly constructed dataset and show our results. To explicitly compare
synthetic data influence, we compute the metrics on the same test subset from the
original data to show that the model could generalize over all segmentation classes
with a dataset constructed via image synthesis.

Model Training Method Acc. Prec. Rec. F1 IoU

Cyto

SEU-Net (2-head) Original 0.9214 0.9508 0.9036 0.9266 0.8613
SEU-Net (2-head) Synthetic (100) 0.9226 0.9192 0.9418 0.9304 0.8698
SEU-Net (2-head) Synthetic (1000) 0.9221 0.9123 0.9494 0.9305 0.8700

TABLE 5.4: Cytoplasm segmentation performance of the SEU-Net
model trained on different datasets, including the original and syn-
thetic data of different sizes on the test set of the "exhaustive" dataset.

We observe an improvement for almost every metric in multiple segmentation
tasks, including the segmentation of cytoplasm, nuclei, and overlapping regions in
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Model Training Method Acc. Prec. Rec. F1 IoU

Nuc

SEU-Net (2-head) Original 0.9852 0.9481 0.8847 0.9152 0.8437
SEU-Net (2-head) Synthetic (100) 0.9830 0.9031 0.9094 0.9062 0.8285
SEU-Net (2-head) Synthetic (1000) 0.9865 0.9318 0.9177 0.9247 0.8600

TABLE 5.5: Nuclei segmentation performance of the SEU-Net model
trained on different datasets, including the original and synthetic data

of different sizes on the test set of the "exhaustive" dataset.

Model Training Method Acc. Prec. Rec. F1 IoU

Overlap

SEU-Net (3-head) Original 0.9855 0.3352 0.0639 0.1073 0.0567
SEU-Net (3-head) Synthetic (100) 0.9620 0.1151 0.2661 0.1607 0.0874
SEU-Net (3-head) Synthetic (1000) 0.9729 0.1955 0.3150 0.2412 0.1372

TABLE 5.6: Overlap segmentation performance of the SEU-Net model
trained on different datasets, including the original and synthetic data

of different sizes on the test set of the "exhaustive" dataset.

brightfield images. We also indicate a boost in overlaps segmentation performance.
With our limited "exhaustive" dataset, the model struggles to identify and grasp
the understanding of intersecting cell regions. The problem of initial low-quality
segmentation performance can be explained by the fact that the small-scale dataset
exploits inaccurate annotations for the overlap areas. Therefore, we find it crucial
for the model to have more available data and information to attend to these regions
accurately. The proposed approach, on the other hand, exploits nearly perfect labels
for overlapping locations. Since our Copy-Paste procedure is controlled to establish
a considerable degree of freedom for creating new annotations, the resulting syn-
thetic dataset exploits a massive variety of labeled overlap occurrences. We observe
comparable results to those in ??, which prove the wight maps to be a crucial part of
guiding the model training accurately.

FIGURE 5.5: Prediction on the original "exhaustive" dataset sample
from the test group, with models trained on synthetic and original
datasets. Noticeably, the model trained on synthetic data performs
better semantic map reconstruction. The model pays more attention
to small details, some of which were even missed during the annota-

tion process resulting in a more detailed segmentation.
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5.6 GANs

Since the brightfield domain is not ideal for the direct construction of new data,
we use our phase-contrast domain to guide the model to output realistic samples
with a piece of rich feature information. We assume that the additive property of
phase image is only an approximation and use it for modeling overlaying cells. We
reason assumption based on the prior empirical evidence gathered by our collabo-
rators from PerkinElmer, who have developed a phase-contrast generating model
that we have also used in this work. Therefore, we propose to use a conditional
generative adversarial network (cGAN) to model the translation between the two
domains.

We start by formulating a problem of creating a synthesized sample by merging
domain translation and Copy-Pasting (Section 4.4.1). Since directly moving cells
from place to place in brightfield images proved challenging, we opted to train a
cGAN to perform the transition from synthesized samples of the simpler domain to
brightfield focal planes.

FIGURE 5.6: pc2bf. Visual brightfield generation results from the
phase-contrast image using a U-Net-based autoencoder.

First and foremost, we design a simple U-Net autoencoder to manage translation
from phase to brightfield domain. For training, we utilize our whole unannotated
portion of the dataset to enrich the amount of fed-in data. As input, we pass random
512x512 crops. We test the model training with a combination of Mean-Square Error
(MSE) and Binary Cross-Entropy (BCE) losses to balance out the perceptual quality
of the output. On inference, we first perform a straightforward single-cell pasting
between different annotated phase samples. Then we pass the new image to the
model to get the two final brightfield planes. We have observed that an autoencoder
model had trouble converging and did not capture intricate patterns to generate
highly realistic brightfield samples from phase images. As an additional problem,
all the dataset samples already exploit high cell density. Immense object solidity
introduced a small degree of freedom when constructing new samples. With such
a limitation, newly pasted cells have created highly out-of-the-distribution overlap-
ping visually distinguishable instances.

As a follow-up approach, we were motivated to establish a more flexible and
controllable method for constructing new brightfield planes. Pix2pix being a state-
of-the-art baseline model, was ideal for this task. With the introduction of the “Patch-
GAN” discriminator, the model could converge better and achieve plausible visual
results. Since this type of discriminator is specifically designed to work on local
patches, it was able to provide necessary feedback to the generator. As a result,
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the model managed to grasp high-frequency data along with low-frequencies su-
pervised by the L1 loss. We utilize all the available dataset images for the model
training. To ensure the model’s convergence ability, we introduced Fréchet Incep-
tion Distance (FID) [25] score metric and used it along with the L1 loss output. The
FID metric is used to evaluate the quality and diversity of generated images. To
compute the similarity score of the generated to the actual data, we extracted a 2048-
dimensional feature representations vector for each minibatch using a pretrained
Inception-v3 network [56]. The final score was computed as a Euclidean distance
between the mean and covariance matrices of the real and generated features. For
training purposes, we follow an approach from [20]. We use minibatch SGD and
apply the AdamW solver [42], with an initial learning rate of 2e-4, and momentum
parameters β1 = 0.5, β2 = 0.999. We apply dropout with a 0.5 rate on inference to
output non-deterministic results.

In the second stage of synthesizing data, the trained pix2pix model maps phase
images to brightfield focal planes. We construct new input data, following the men-
tioned earlier Copy-Paste approach in Section 4.4.1. After, the new sample is fed to
the model. As a result, we get the final brightfield modality image along with the
constructed annotations. We have observed that the trained model does not struggle
with generating background noise in brightfield samples from spaces resulting from
pasting instances onto a new blank canvas (Section 4.4.1).
Visual results for this methodology proved to be indistinguishable from the real data
by inspection.

FIGURE 5.7: pc2bf. Visual brightfield generation results from the
phase-contrast image using pix2pix. To compare the robustness of
brightfield generation, we provide real data of four images on the top

row and generated focal planes on the bottom.

In the earlier stages of our experiments, we only incorporated the semantic data
as an input to the pix2pix model as a part of mask2img translation. We have observed
that the model struggled to produce plausible brightfield images. The problem of
generating high-fidelity images from labels can be resonated with the fact that the
generative models require enormous amounts of data. Therefore, our small anno-
tated subset is insufficient for this task in given conditions.
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FIGURE 5.8: mask2bf. Visual brightfield generation results from the
segmentation mask using pix2pix.

5.7 Instance Segmentation

For our main results of instance segmentation, we report COCO [39] mask AP
scores on the test subsets for all datasets. We also propose to compare the perfor-
mance with the state-of-the-art models in both natural and cellular domains. For
this, we use Mask-RCNN [23], YOLOv5 [31], YOLOv8, and CellPose [53] models, as
they have been widely used in many cases of cell segmentation.

We divide our local "exhaustive" dataset (Section 4.1) using the same split strat-
egy resulting in 18 train, 5 validation, and 5 test images. For fairness, we train the
models for 2000 epochs with a batch size 8 on the same dataset partitions. Instead of
sampling random crops, we resize the input images to 512x512 to ensure the same
evaluation for all the approaches. All the models used for comparison were initial-
ized with pretrained weights on respective datasets. Thus, we might expect slight
variations in the results.

During inference, we maintained the same threshold coefficients for the non-
maximum suppression overlap and confidence threshold for object detection-based
networks and used the same 0.5 mask predictions threshold for all the trained mod-
els.

Considering our approach, we train the SparseSEU-Net model from scratch for
2000 epochs on resized 512x512 images. Besides the model’s sparse N outputs, we
had to sample corresponding ground truth masks. This limited our memory usage
on a single GPU machine. Resulting in 100 output masks with a batch size of 2, the
training process occupied 28 Gb of storage. To resolve the problem of memory over-
head, we acquired gradient accumulation of 4 batches into the training pipeline to
store the gradients for several forward passes and run backpropagation. Regardless,
we indeed expect a much higher performance with an increased number of GPUs.

We start by training the model with a small initial learning rate of 1e-5 with 1e-5
weight decay. We later change the learning rate and decay values to 5e-5 and 0.005,
respectively, following [11]. We adopt N=100 sparse outputs for each image.

Additionally, we apply the watershed transform to our SEU-Net semantic seg-
mentation model from Section 4.2 with four decoupled outputting branches for mul-
tiple modalities. Table 5.7 shows our model achieves a comparable result to the
state-of-the-art models, reaching 75.8 mAP. We also observed that our model could
capture smaller objects compared to every other model. Nonetheless, we assume
that the model has yet to perform better once with pretrained weights. This ex-
periment also delegates the importance of accurately segmenting overlapping cells.
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Directly learning distinct instances instead of depending on manual postprocessing
of semantic segmentation enables the achieving of more accurate results. Since the
watershed technique cannot recover whole cells due to a large number of object oc-
clusions, it has proven to be prone to errors of assigning pixels to wrong instances,
even with a highly detailed segmentation performance.

AP AP50 AP75 APS APM APL

Mask R-CNN* 22.2 60.7 10.8 0.0 6.1 26.2
YOLOv5* 33.7 79.0 25.9 0.0 20.5 38.8
YOLOv8* 39.8 79.5 34.8 0.0 21.8 45.0
CellPose* 32.2 68.7 27.7 0.0 10.2 37.2
SEU-Net + wtshd 27.6 43.2 31.1 0.5 17.9 57.6
SparseSEU-Net 39.6 75.8 34.1 12.7 42.8 39.5

TABLE 5.7: Cell instance segmentation mask AP (%) performance on
the test set of the "exhaustive" dataset. We also compare instance seg-
mentation results with the initial SEU-Net model with applied wa-
tershed transform [49]. The * denotes model initialization with pre-

trained weights before training.

For the LIVECell data, we utilize the existing split train, validation, and test sub-
sets. Considering the heavy burden and high computational cost associated with
training on a large dataset, we choose to limit our training data to only 2% of the
available samples for all models. Since now our model is limited to outputting 100
sparse masks, we had to make sure to include image crops with no more than 90 in-
stances. We subsequently utilize the same training procedure as for the local dataset.
We train all the available models for 400 epochs and report instance segmentation re-
sults on a complete set of test images. We observe a similar performance in segmen-
tation compared to every other model (Table 5.8). Nonetheless, we witness a similar
behavior of segmentation performance of objects of different sizes as in with the "ex-
haustive" dataset. The model outperforms all the competitors, exhibiting prominent
performance in smaller object segmentation by achieving APS of 26.5 % beating the
second-best result of 8.9 AP. The network also achieves comparable results of APM
and APL.

AP AP50 AP75 APS APM APL

Mask R-CNN* 14.4 32.5 10.0 4.4 16.1 20.8
YOLOv5* 15.9 42.8 9.1 0.7 16.5 24.7
YOLOv8* 26.5 53.1 24.6 2.5 23.5 37.5
CellPose* 24.8 48.1 24.2 8.9 23.0 44.6
SparseSEU-Net 21.8 44.7 22.3 26.5 18.2 39.8

TABLE 5.8: Cell instance segmentation mask AP (%) performance on
the test set of the LIVECell dataset. The * denotes model initialization

with pretrained weights before training.

5.7.1 Adding Overlap Awareness

Empirically we have observed that our U-Net network, enhanced with Squeeze-
and-Excitation (SE) blocks and decoupled auxiliary decoders (Section 4.2.2), was
able to produce a viable overlap segmentation approach. To leverage accurate in-
stance reconstruction, we also enhanced our SparseSEU-Net model similarly. We
add a side decoder branch to learn overlap representations in parallel with instance
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semantic representations from the initial model version. Following the [33] ap-
proach, we hypothesize a performance boost with feature aggregation. Therefore,
we conduct experiments with

We formulate feature merging in the following way. Given input features I, we
decode them with overlap and instance-aware decoder branches, resulting in Xo and
Xi feature maps, respectively. Since overlap areas are instance-agnostic, we can di-
rectly combine overlap features with grouped instance features. Before forking into
mask and instance branches (Section 4.5.2) on the last decoder layer, we aggregate
feature maps from parallel decoders by conditioning the instance-aware features on
overlap features. Thus, the resulting dimension is increased by a factor of x2. We
idealize that additional information about the overlapping regions might help pro-
duce more accurate instance predictions.

FIGURE 5.9: Adding overlap awareness to the decoder layer. The
model employs two parallel decoupled decoders to learn overlap and
instance representations. The IAM module outputs instance activa-
tion maps. The information about the overlaps is passed to the IAM
by adding conditional overlap features Xo.

⊕
denotes the concatena-

tion operation.

We perform an ablation study by sequentially feeding more information to the
"vanilla" version of the SparseSEU-Net model. We first propose to validate the seg-
mentation performance by introducing the auxiliary overlap-aware head and ag-
gregating both cell and overlap features for reconstruction. Then, we enhance the
training procedure by attending to more probable overlap regions to directly opti-
mize overlap segmentation with the wight maps proposed in Section 4.3. Overall,
we have not seen any performance gain in any score metrics. We assume that adding
conditional overlap information affects the general training of the model. Instead of
leveraging the information about the common region of multiple overlapping cells
to separate objects into multiple instances, the model tries to merge them. As a re-
sult, we observe a performance drop in cases of segmenting especially large objects
that overlap more often than small-sized cell instances shown in Table 5.9.

5.7.2 Multi-Level Feature Aggregation

As the next step towards a more accurate segmentation, we exploit scaling the
overall architecture of the model. We apply the same forking into mask and in-
stance branches, as described in Section 4.5.2 and propagate the feature information
from the bottleneck level of the decoder to the very top. Table 5.10 shows that with



Chapter 5. Experiments and Results 37

overlap head attn. mask AP AP50 AP75 APS APM APL

39.6 75.8 34.1 12.7 42.8 39.5
✓ 38.0 74.7 35.2 7.6 42.5 23.6
✓ ✓ 38.8 76.9 35.4 9.2 42.7 29.1

TABLE 5.9: Ablation study of cell instance segmentation mask AP (%)
performance of the SparseSEU-Net. We consecutively increase the
model’s overlap awareness by first introducing the overlap decoder
branch. We then enhance the training with the weight maps (attn.

maps) for better overlap supervision.

multi-feature aggregation, the model was able to converge much faster and get high
validation results in the relatively early stages of training. Besides, by passing infor-
mation from lower to layers, the model achieved the best performance of mAP50:95
and mAP75 scores surpassing all previous approaches. We find that the multi-level
SparseSEU-Net model could segment smaller- and average-sized cells more accu-
rately, surpassing the "vanilla" version by a large margin.

AP AP50 AP75 APS APM APL

single-level 39.6 75.8 34.1 12.7 42.8 39.5
multi-level 44.3 74.6 46.8 16.0 48.3 36.0

TABLE 5.10: Cell instance segmentation mask AP (%) performance of
the "vanilla" version of the model vs. multi-level feature aggregation

SparseSEU-Net.

5.7.3 IoU Aware Objectness

In addition to the classification outputs, similar to implementation [11] [27] [35],
we additionally experiment with model training by adding the objectness scores to
explicitly target the confidence of every predicted instance. Specifically, on infer-
ence, we want to rank the predicted masks. To ensure the model understands the
predictions it is producing and gives more reasoning about the instance shapes, we
estimate the IoU between each predicted mask and the ground truth object it covers.
The IoU prediction head is trained with a mean-square-error loss between the IoU
prediction, and the IoU predicted with the ground truth masks.

Lobj(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (5.2)

The final training loss is defined is then defined in Eq. (5.3) as a combination of
mask, IoU-aware objectness, and classification losses.

L = λmask · Lmask + λobj · Lobj + λcls · Lcls (5.3)

Nonetheless, we observe a huge performance drop as the model struggles to
generalize on the "exhaustive" data. Resulting in a near 0.25 mAP score. We reason
for this problem by the fact the model also struggles to produce unique instances.
Meaning that the outcome predictions result in many duplicates and similar outputs,
thus creating a contradictive training process between classification and objectness
optimization.
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5.7.4 Error Analysis

We perform error analysis in two iterations to get a better quantitative under-
standing of SparseSEU-Net for instance mask predictions. First, we propose to re-
place the sparse predictions with the corresponding ground truth labels. Specifically,
we compute the dice scores with ground truth masks for each predicted binary mask
and replace the predictions with the best-matched ground truth (w/ gt mask). The
model achieves substantially good results. Results in Table 5.11 suggest that there is
still a big potential for improving segmentation branches for learning a better repre-
sentation of semantic features for a more accurate instance reconstruction.

Then, we set up the same prediction-ground truth matching scheme (gt matched)
and only keep predicted masks that resolve in high dice scores with their corre-
sponding ground truth annotations. We observe an expected huge leap and increase
of mAP50 scores up to 83.1 %. This way of the evaluation show that, indeed, the
mask confidence scoring described in Section 4.5.3 is not ideal; thus, there is a big
room for improving the mask ranking in order to identify the ones with correct high
confidence.

AP AP50 AP75 APS APM APL

baseline 44.3 74.6 46.8 16.0 48.3 36.0
w/ gt mask 97.8 97.9 97.8 95.4 98.2 100.0
gt matched 47.8 83.1 48.9 20.9 51.2 40.1

TABLE 5.11: Comparing analysis of cell instance segmentation mask
AP (%) performance. (w/ gt mask) indicates the ideal performance
when we substitute the best prediction with the ground-truth data.
(gt matched) metrics show the performance of the best-matched pre-

dictions with the ground-truth data.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we primarily have shown that multi-task learning enables enrich-
ing the performance of the semantic segmentation model. We specifically introduced
decoupled auxiliary decoder branches to give the model more context information.
We have underlined the importance of segmenting the occlusion regions of over-
lapping cells and identified key factors to achieve better performance by introduc-
ing overlap-aware probability maps. The experiments demonstrate that proposed
weight maps exploit a significant boost in overlap segmentation performance. Ad-
ditionally, we designed a way to generate annotated synthetic brightfield images.
We establish a newly constituted large-scale dataset and show that segmentation
performance increases once trained on the synthesized images. As one of the main
contributions to our work, we enhance our SEU-Net model with instance segmenta-
tion blocks. By enabling multi-level feature aggregation, we show that the model is
able to achieve state-of-the-art results.

6.2 Future Work

At our current research stage, we considered a few possibilities for improving
the instance segmentation pipeline. As an additional attribution, we wanted to en-
sure that the predicted spares masks exploit uniqueness, which means that a single
prediction mask shape is not repeated. Till this point, we have observed multiple
duplicate masks, some of which were effectively disregarded by the confidence of
the initial predictions. Nonetheless, there are ideas to target this problem. Addi-
tionally, we plan to measure the performance of our approach on other downstream
tasks, including segmenting cells in different modalities. We hope that our work in
the future can be a key to a more robust cell instance segmentation.
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[32] Cefa Karabağ et al. “Semantic segmentation of HeLa cells: An objective com-
parison between one traditional algorithm and four deep-learning architec-
tures”. en. In: PLoS One 15.10 (Oct. 2020), e0230605.

[33] Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. “Deep Occlusion-Aware Instance
Segmentation with Overlapping BiLayers”. In: CVPR. 2021.

https://doi.org/https://doi.org/10.1002/cncr.28501
https://doi.org/https://doi.org/10.1002/cncr.28501
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.28501
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.28501
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.28501
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.28501
https://arxiv.org/abs/1911.07732
https://arxiv.org/abs/2012.07177
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1088/1742-6596/1684/1/012094
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/1703.06870
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007%2F978-3-319-10578-9_23
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1903.00241
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1611.07004
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926


Bibliography 42

[34] Alexander Kirillov et al. InstanceCut: from Edges to Instances with MultiCut.
2016. arXiv: 1611.08272 [cs.CV].

[35] Alexander Kirillov et al. Segment Anything. 2023. arXiv: 2304.02643 [cs.CV].

[36] Youngwan Lee and Jongyoul Park. CenterMask : Real-Time Anchor-Free Instance
Segmentation. 2020. arXiv: 1911.06667 [cs.CV].

[37] G Li et al. “Segmentation of touching cell nuclei using gradient flow tracking”.
en. In: J Microsc 231.Pt 1 (July 2008), pp. 47–58.

[38] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002
[cs.CV].

[39] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: CoRR
abs/1405.0312 (2014). arXiv: 1405.0312. URL: http://arxiv.org/abs/1405.
0312.

[40] Shu Liu et al. “Path Aggregation Network for Instance Segmentation”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,
pp. 8759–8768. DOI: 10.1109/CVPR.2018.00913.

[41] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Net-
works for Semantic Segmentation. 2015. arXiv: 1411.4038 [cs.CV].

[42] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG].

[43] Brian J. Morrison, John C. Morris, and Jason C. Steel. “Lung cancer-initiating
cells: a novel target for cancer therapy”. In: Targeted Oncology 8.3 (2013), pp. 159–
172. ISSN: 1776-260X. DOI: 10.1007/s11523-012-0247-4. URL: https://doi.
org/10.1007/s11523-012-0247-4.

[44] Larry E. Morrison et al. “Brightfield multiplex immunohistochemistry with
multispectral imaging”. In: Laboratory Investigation 100.8 (2020), pp. 1124–1136.
ISSN: 0023-6837. DOI: https://doi.org/10.1038/s41374-020-0429-0. URL:
https://www.sciencedirect.com/science/article/pii/S0023683722003798.

[45] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66. DOI:
10.1109/TSMC.1979.4310076.

[46] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

[47] Ondrej Pös et al. “Circulating cell-free nucleic acids: characteristics and appli-
cations”. In: European Journal of Human Genetics 26.7 (July 2018), pp. 937–945.

[48] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[49] Jos B. T. M. Roerdink and Arnold Meijster. “The Watershed Transform: Defi-
nitions, Algorithms and Parallelization Strategies”. In: Fundam. Informaticae 41
(2000), pp. 187–228.

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

https://arxiv.org/abs/1611.08272
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/1911.06667
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/CVPR.2018.00913
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1711.05101
https://doi.org/10.1007/s11523-012-0247-4
https://doi.org/10.1007/s11523-012-0247-4
https://doi.org/10.1007/s11523-012-0247-4
https://doi.org/https://doi.org/10.1038/s41374-020-0429-0
https://www.sciencedirect.com/science/article/pii/S0023683722003798
https://doi.org/10.1109/TSMC.1979.4310076
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1505.04597


Bibliography 43

[51] Danny Salem et al. “YeastNet: Deep-Learning-Enabled Accurate Segmentation
of Budding Yeast Cells in Bright-Field Microscopy”. In: Applied Sciences 11.6
(2021). ISSN: 2076-3417. DOI: 10.3390/app11062692. URL: https://www.mdpi.
com/2076-3417/11/6/2692.

[52] Russell Stewart and Mykhaylo Andriluka. End-to-end people detection in crowded
scenes. 2015. arXiv: 1506.04878 [cs.CV].

[53] Carsen Stringer et al. “Cellpose: a generalist algorithm for cellular segmenta-
tion”. In: Nature Methods 18.1 (Jan. 2021), pp. 100–106.

[54] Carole H Sudre et al. “Generalised Dice Overlap as a Deep Learning Loss
Function for Highly Unbalanced Segmentations”. en. In: Deep Learn Med Image
Anal Multimodal Learn Clin Decis Support (2017) 2017 (Sept. 2017), pp. 240–248.

[55] Peize Sun et al. What Makes for End-to-End Object Detection? 2021. arXiv: 2012.
05780 [cs.CV].

[56] Christian Szegedy et al. Rethinking the Inception Architecture for Computer Vision.
2015. arXiv: 1512.00567 [cs.CV].

[57] Yan Tie et al. “Immunosuppressive cells in cancer: mechanisms and potential
therapeutic targets”. en. In: J Hematol Oncol 15.1 (May 2022), p. 61.

[58] Maxim Tkachenko et al. Label Studio: Data labeling software. Open source soft-
ware available from https://github.com/heartexlabs/label-studio. 2020-2022.
URL: https://github.com/heartexlabs/label-studio.

[59] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[60] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/
s41592-019-0686-2.

[61] Chien-Yao Wang et al. CSPNet: A New Backbone that can Enhance Learning Capa-
bility of CNN. 2019. arXiv: 1911.11929 [cs.CV].

[62] Gufeng Wang and Ning Fang. “Detecting and tracking nonfluorescent nanopar-
ticle probes in live cells”. en. In: Methods Enzymol 504 (2012), pp. 83–108.

[63] Xinlong Wang et al. SOLO: Segmenting Objects by Locations. 2020. arXiv: 1912.
04488 [cs.CV].

[64] Xinlong Wang et al. SOLOv2: Dynamic and Fast Instance Segmentation. 2020.
arXiv: 2003.10152 [cs.CV].

[65] Bing Xu et al. Empirical Evaluation of Rectified Activations in Convolutional Net-
work. 2015. arXiv: 1505.00853 [cs.LG].

[66] Xinpeng Yang et al. “Ship Instance Segmentation Based on Rotated Bounding
Boxes for SAR Images”. In: Remote Sensing 15.5 (2023). ISSN: 2072-4292. DOI:
10.3390/rs15051324. URL: https://www.mdpi.com/2072-4292/15/5/1324.

[67] Ze Yang et al. Dense RepPoints: Representing Visual Objects with Dense Point Sets.
2020. arXiv: 1912.11473 [cs.CV].

[68] Ma Yi-de, Liu Qing, and Qian Zhi-bai. “Automated image segmentation using
improved PCNN model based on cross-entropy”. In: Proceedings of 2004 Inter-
national Symposium on Intelligent Multimedia, Video and Speech Processing, 2004.
2004, pp. 743–746. DOI: 10.1109/ISIMP.2004.1434171.

[69] Sangdoo Yun et al. CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features. 2019. arXiv: 1905.04899 [cs.CV].

https://doi.org/10.3390/app11062692
https://www.mdpi.com/2076-3417/11/6/2692
https://www.mdpi.com/2076-3417/11/6/2692
https://arxiv.org/abs/1506.04878
https://arxiv.org/abs/2012.05780
https://arxiv.org/abs/2012.05780
https://arxiv.org/abs/1512.00567
https://github.com/heartexlabs/label-studio
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/1911.11929
https://arxiv.org/abs/1912.04488
https://arxiv.org/abs/1912.04488
https://arxiv.org/abs/2003.10152
https://arxiv.org/abs/1505.00853
https://doi.org/10.3390/rs15051324
https://www.mdpi.com/2072-4292/15/5/1324
https://arxiv.org/abs/1912.11473
https://doi.org/10.1109/ISIMP.2004.1434171
https://arxiv.org/abs/1905.04899


Bibliography 44

[70] Hongyi Zhang et al. mixup: Beyond Empirical Risk Minimization. 2018. arXiv:
1710.09412 [cs.LG].

[71] Lei Zhang, Qiuguang Wang, and Jiping Qi. “Research Based on Fuzzy Algo-
rithm of Cancer Cells in Pleural Fluid Microscopic Images Recognition”. In:
2006 International Conference on Intelligent Information Hiding and Multimedia.
2006, pp. 211–214. DOI: 10.1109/IIH-MSP.2006.264982.

[72] Longhao Zhang and Huihua Yang. “Adaptive attention augmentor for weakly
supervised object localization”. In: Neurocomputing 454 (2021), pp. 474–482.
ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2021.05.024.
URL: https://www.sciencedirect.com/science/article/pii/S092523122100761X.

[73] Bolei Zhou et al. Learning Deep Features for Discriminative Localization. 2015.
arXiv: 1512.04150 [cs.CV].

https://arxiv.org/abs/1710.09412
https://doi.org/10.1109/IIH-MSP.2006.264982
https://doi.org/https://doi.org/10.1016/j.neucom.2021.05.024
https://www.sciencedirect.com/science/article/pii/S092523122100761X
https://arxiv.org/abs/1512.04150

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related works
	Classical Approaches
	Semantic Segmentation Using U-Net
	Instance Segmentation
	MaskRCNN
	YOLOv5
	YOLOv8
	CellPose


	Problem Formulation
	Method
	Labeling the Dataset
	Semantic Segmentation
	Squeeze-and-Excitation Blocks
	Adding more morphology-based information
	Decoupled Decoders

	Segmenting Overlapping Cells
	Synthetic Dataset
	Copy-Paste Module
	pix2pix

	Instance Segmentation
	SparseU-Net
	Instance Aware Decoder
	Mask Level Matching
	Scaling the Model


	Experiments and Results
	Implementation Details
	Training Details
	Semantic Segmentation
	Segmenting Overlapping Cells
	Synthetic Data
	GANs
	Instance Segmentation
	Adding Overlap Awareness
	Multi-Level Feature Aggregation
	IoU Aware Objectness
	Error Analysis


	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

