
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Metaheuristic-based approach to waste
collection optimization

Author:
Maksym PROTSYK

Supervisor:
Oleksii MOLCHANOVSKYI

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences and Information Technologies
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://apps.ucu.edu.ua
http://apps.ucu.edu.ua


i

Declaration of Authorship
I, Maksym PROTSYK, declare that this thesis titled, “Metaheuristic-based approach
to waste collection optimization” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:



ii

“Reject common sense to make the impossible possible.”

Anahori Shimon



iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Metaheuristic-based approach to waste collection optimization

by Maksym PROTSYK

Abstract

The main topic of the thesis is the development of a program that will allow waste
companies to reduce their time on route planning by automatizing this task. This
work includes the implementation of the framework for experiments and the com-
parison of different metaheuristic algorithms (Tabu search, Simulated annealing, Ge-
netics algorithms) on synthetic and real data, which was required due to the non-
polynomial complexity of the given problem.

All the code can be found in my GitHub repository

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
https://github.com/maksprotsyk/garbage-routing-problem


iv

Acknowledgements
I want to express my gratitude to professor Oleksii Molchanovskyi for helping me
throughout the development process of this project, to my parents and friends for ev-
eryday support, and to the community of the Applied Science Faculty of Ukrainian
Catholic University for the amazing four years.



v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Works 3
2.1 Metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Metaheuristic algorithm examples . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Particle swarm optimization . . . . . . . . . . . . . . . . . . . . 5

2.3 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation details 8
3.1 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Main classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 General pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Input of the program . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Implemented algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Base solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Neigbourhood generation . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 Metaheuristic algorithms . . . . . . . . . . . . . . . . . . . . . . 15

Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 15
Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Additional adjustments . . . . . . . . . . . . . . . . . . . . . . . 18

4 Experiments 19
4.1 Initial experiments on synthetic data . . . . . . . . . . . . . . . . . . . . 19
4.2 Experiments on the Lviv data . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Experiments on other cities . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusions 31

Bibliography 32



vi

List of Figures

3.1 Pipeline of the program . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Example of route with loops . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Example of route with removed loops . . . . . . . . . . . . . . . . . . . 13

4.1 Initial solution based on clusters . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Tabu search with 500 iterations, "SWAP_NEIGBOURS" . . . . . . . . . 20
4.3 Tabu search with 500 iterations, "ANY_MOVE_SWAP" . . . . . . . . . 20
4.4 Best variants of algorithms (10 trucks) . . . . . . . . . . . . . . . . . . . 22
4.5 Best variants of algorithms (15 trucks) . . . . . . . . . . . . . . . . . . . 23
4.6 Best variants of algorithms (20 trucks) . . . . . . . . . . . . . . . . . . . 23
4.7 Groningen containers locations . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Sant Boi de Llobregat containers locations . . . . . . . . . . . . . . . . . 26
4.9 New York containers locations . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Pittsburg containers locations . . . . . . . . . . . . . . . . . . . . . . . . 27
4.11 Results of best algorithms for Groningen . . . . . . . . . . . . . . . . . 27
4.12 Results of best algorithms for Sant Boi de Llobregat . . . . . . . . . . . 28
4.13 Results of best algorithms for New York . . . . . . . . . . . . . . . . . . 28
4.14 Results of best algorithms for Pittsburg . . . . . . . . . . . . . . . . . . 29



vii

List of Tables

4.1 Garbage container configuration . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Garbage truck configuration . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Tabu search parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 SA parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 GA parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Tabu search best parameters . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 SA best parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 GA best parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Tabu search best parameters (more generated actions) . . . . . . . . . . 24



viii

List of Abbreviations

SA Simulated Annealing
GA Genetic Algorithm
PSO Particle Swarm Optimization



ix

Dedicated to my parents



1

Chapter 1

Introduction

1.1 Motivation

Today with the infinite possibilities provided by modern computers, it is strange
that many waste management companies still use manual route planning for their
vehicles. Firstly, this approach is very time-consuming, and secondly, it is prone to
human error. In this thesis, I would like to present an automated approach to this
task, which will help companies to reduce the amount of spent resources and time.

1.2 Problem statement

Before getting any further, let’s formulate the statement of the problem. We are
given n garbage containers, m garbage trucks, and l landfills. For each object, we
know such parameters:

1. Garbage container

• Capacity

• Garbage type

• Processing time (time needed by a truck to collect garbage from the con-
tainer)

• Location (i.e., distances and paths to other locations are known)

• Time window (the earliest time when the container processing may start
and the latest time when the container processing may finish)

2. Garbage truck

• Maximum capacities of each garbage type that the truck can transport

• Unloading time (time needed by a truck to unload the garbage at the land-
fill)

• Speed

• Fuel capacity

• Fuel consumption per kilometer

• Location

• Time window (the earliest time when the truck may start the waste col-
lecting process and the latest time that the truck may finish waste collect-
ing and return to its starting location )

3. Landfill



Chapter 1. Introduction 2

• Location

• Time window (the earliest time when the truck may start the unloading
process at the landfill and the latest time when the truck may finish it)

We need to plan routes for trucks in such a way that:

• All time windows are satisfied

• All trucks haven’t exceeded their fuel capacities

• All trucks never exceed their garbage capacity

• All containers should be processed no more than once

• At the end, all trucks must be located at their starting locations with no garbage
in them

Taking into account these conditions, we want to minimize the number of or-
phans (containers that were not processed), the total amount of fuel spent, and the
maximum route duration.

It’s actually fairly hard to minimize these three values at the same time because,
in most cases, more processed containers mean more fuel and time spent. However,
the number of orphans affects the well-being of people living near the containers,
and the other two values affect the money spent by the waste collecting company.
That’s why, in my opinion, orphan minimization should be prioritized.

1.3 Goals

In fact, for the amount of data that we will be working with, the route planning
problem couldn’t be completely solved in an adequate amount of time (the reason
for that will be discussed in later chapters). Thus my goals here are :

1. Implement different algorithms that return approximate solutions

2. Compare their efficiency on synthetic and real data (container locations in sev-
eral cities)

3. Evaluate the results and choose the best algorithms for real-life cases



3

Chapter 2

Related Works

2.1 Metaheuristic

The problem we are facing is an extended version of the well-known traveling sales-
man problem. The problem statement is as follows: we are given n cities and dis-
tances between each two of them and need to find the shortest path which will visit
every city and return us to the first one. If we think a little bit about the solution,
the first thing that comes to mind is to check every possible path, but this algorithm
requires O(n!) time and is not suitable even for cases with 20 cities. Actually, this
problem belongs to the class of NP-hard problems, which are believed to not have a
solution in polynomial time. So what can we do if even such a simple version of our
problem couldn’t be completely solved? Here metaheuristics can help us.

To use metaheuristic, we, in most cases, need to define three things:

1. Cost function, which needs to be minimized. In our case, an example of a cost
function can be: Cost(solution) = TotalFuelSpent

2. Solution space - a space that consists of every valid solution to our problem,
which will be searched. For our problem, this space is "all possible ways to
construct routes for garbage trucks so that no solution requirement is violated."

3. Method of generating neighbor solutions. For example, swapping containers
in the route.

Metaheuristic defines a strategy of solution space traversing, which starts the
search from some initial solution (or multiple initial solutions) and leads to a solu-
tion with a lower cost. It is not guaranteed that the result of the search will be the
global minimum; however, in most cases, the algorithm will still return a fairly good
solution.

2.2 Metaheuristic algorithm examples

Now, let’s look at some algorithms presented in the "Essentials of Metaheuristics"
(Luke, 2013)

2.2.1 Tabu search

The algorithm is very simple: on each iteration of the search, we generate the list of
neighbor solutions for the current one and change it to the neighbor with the lowest
cost. To avoid trapping in the local minimum, we also keep track of the visited
solutions in the so-called "Tabu list" (they won’t be visited again for a fixed amount
of iterations).



Chapter 2. Related Works 4

Algorithm 1 Tabu search
Algorithm parameters: iterations, MaxQueueSize
Input: initial solution
Output: improved solution

currentSolution = initial solution
bestSolution = initial solution
tabuQueue.Enqueue(solution);
for i in [0, iterations − 1] do

neighbours = GenerateNeighbors(currentSolution)
bestNeighbor = None
for sol in neighbours do

if sol in tabuQueue then
continue

end if
if bestNeighbour is None) or (Cost(sol) < Cost(bestNeighbour) then

bestNeighbour = sol
end if

end for
if bestNeighbour is None then

break
end if
if Cost(bestNeighbour) < Cost(bestSolution) then

bestSolution = bestNeighbour
end if
tabuQueue.Enqueue(bestNeighbour)
if tabuQueue.Size() > MaxQueueSize then

tabuQueue.Dequeue()
end if
currentSolution = bestNeighbour

end for
return bestSolution

2.2.2 Simulated Annealing

This algorithm is similar to the cooling process of a heated metal object. At first, we
can change the object’s shape very easily, but as temperature decreases, this becomes
harder and harder. Simulated annealing consists of several iterations. During every
iteration, we calculate the temperature:

t = 1 − IterationNumber
Total Iterations

After that, we generate neighbor solutions and take a random one of them. If the
solution is better, we take it and continue to the next iteration; in another case, we
take the worse solution with probability, which is a function of the cost of the current
solution, the cost of the neighbor solution, and the temperature. The most known
probability function is:

p(CostCurrent, CostNew, t) = exp(−CostNew − CostCurrent
t

)



Chapter 2. Related Works 5

2.2.3 Genetic algorithm

A genetic algorithm is an example of a metaheuristic, which works with multiple
solutions at once. The current set of solutions is called a population. On every it-
eration, the algorithm randomly chooses two solutions (the probability of solution
is usually related to its cost) and somehow combines them to create two child so-
lutions. This operation is called a "crossover". After that, we perform some other
random operations on each child, which is called "mutation". In such a way, we
create a new population of the same size as a starting one.

Algorithm 2 Genetic algorithm
Input: initial set of solutions
Output: improved solution

currentPopulation = initial set of solutions
bestSolution = solution with the lowest cost from initial set
for i in [0, iterations - 1] do

newPopulation = []
for j in [0, len(currentPopulation)/2 − 1] do

parent1 = ChooseRandom(currentPopultaion)
parent2 = ChooseRandom(currentPopulation)
child1 = Crossover(parent1, parent2)
child2 = Crossover(parent2, parent1)
child1 = Mutation(child1)
child2 = Mutation(child2)
if Cost(child1) < Cost(bestSolution) then

bestSolution = child1
end if
if Cost(child2) < Cost(bestSolution) then

bestSolution = child2
end if
newPopulation.Add(child1)
newPopulation.Add(child2)

end for
currentPopulation = newPopulation

end for
return bestSolution

2.2.4 Particle swarm optimization

Similar to GA, Particle swarm optimization works with a set of solutions instead
of just one. However, in this algorithm, we don’t replace old solutions with new
ones but just move them through the solution space in the direction of better ones.
For example, if our solution can be described as a vector of n-th dimension x =
(x0, x1, ..., xn−1) and we want to move it in the direction of some better solution y =
(y0, y1, ..., yn−1) we can define speed as v = y − x and replace x with x + kv. In the
case of the PSO algorithm, the calculations of speed are a little bit more complicated
because we try to move towards several solutions at once. Here is the pseudo-code
of the algorithm:



Chapter 2. Related Works 6

Algorithm 3 Particle swarm optimization algorithm
Input: initial set of solutions (vectors of n-th dimension) (its size is m)
Parameters α, β, γ, δ, jumpSize (real-valued numbers), in f ormatnsNum - num-

ber of informants solutions for each solution, iterationsNum
Output: improved solution

speeds = array of size m containing random speed of m-th solution
in f ormants = array with randomly chosen in f ormantsNum indices from 0 to m-1
for each solution (its shape is (m, in f ormantsNum))
solutions = initial set of solutions
bestFoundSolutions = initial set of solutions;
for i in [0, iterationsNum − 1] do

for j in [0, m − 1] do
bestIn f ormant = solution with the minimal cost from bestFoundSolutions

with an index equal to the index of some informant from in f ormants[j]
bestSolution = solution with the minimal cost from bestFoundSolutions
currentBestSolution = bestFoundSolutions[j]
in f ormantSpeed = bestIn f ormant − solutions[j]
bestSpeed = bestSolution − solutions[j]
currentBestSpeed = currentBestSolution − solutions[j]
for dim in [0, n-1] do

b = Random(0, β)
c = Random(0, γ)
d = Random(0, δ)
speeds[j][dim] = α ∗ speeds[j][dim] + b ∗ in f ormantSpeed[dim] + c ∗

bestSpeed[dim] + d ∗ currentBestSpeed[dim]
end for
solutions[j] = solution[j] + jumpSize ∗ speeds[j]
if Cost(solutions[j]) < Cost(bestFoundSolutions[j]) then

bestFoundSolutions[j] = solutions[j]
end if

end for
end for
return the best solution from bestFoundSolutions

It is obvious that this algorithm in its initial format won’t work on discrete data
like in our problem. However, it is possible to adapt it for the discrete case, which
was done, for example, in A discrete version of particle swarm optimization for
flowshop scheduling problems(Liao, Chao-Tang Tseng, and Luarn, 2007)

2.3 Related publications

Here are some publications related to using metaheuristics for the waste collection
problem that I found interesting.

"Metaheuristics for a bi-objective location-routing problem in waste collec-
tion management" (Farrokhi-Asl et al., 2016) and "A hybrid genetic algorithm for
waste collection problem by heterogeneous fleet of vehicles with multiple sep-
arated compartments" (Rabbani, Farrokhi-Asl, and Rafiei, 2016) are very similar
due to the same problem statement and used algorithms. Here each truck visits sev-
eral customers with garbage containers and then visits several disposal facilities to
get rid of the collected garbage. That means each truck performs only one trip and



Chapter 2. Related Works 7

then returns to the starting location. Both papers present fairly complex algorithms
(non-dominated sorting Genetic algorithm and multi-objective particle swarm opti-
mization in the first one and Genetic algorithm in the second). The main difference
is that the first paper is focused not on the route minimization for the given set of
locations but on the way to distribute disposal facilities in the best way possible.

In "Metaheuristics for the waste collection vehicle routing problem in the ur-
ban areas" (Stanković et al., 2020), the authors implemented four metaheuristic
algorithms: Simulated annealing, Genetic algorithm, Particle swarm optimization,
and Ant colony optimization. However, the problem they are working on still isn’t
the same as mine because the truck, as in the previous publication, performs only
one trip. Moreover, they test the algorithm on a very small number of locations.

In "The applications of multiple route optimization heuristics and meta-heuristic
algorithms to solid waste transportation: A case study in Turkey" (Derecia and
Karabekmez, 2022), the problem is close to my case because the authors work on
larger real-life data. However, they still make only one trip for each truck. The
implemented metaheuristic algorithms here are less complex than in the previous
two publications, but their amount is greater: Simulated annealing, Greedy descent,
Guided local search, and Tabu search algorithms.



8

Chapter 3

Implementation details

3.1 Framework architecture

Due to my goal of comparing different initial algorithms, search algorithms, and
neighbor generation methods, I needed to implement an easily extendable frame-
work, which could allow me to swap parts of the complete algorithm easily. I de-
cided to use C++ as the main language, but due to a lack of easy-to-use and modern
plotting libraries, I have chosen Python for the visualization task.

3.1.1 Main classes

Firstly, I’ll describe the main classes used in my program

• Container - a class that contains garbage container parameters mentioned in
the problem statement

• GarbageTruck - a class that contains garbage truck parameters

• Landfill - a class that contains landfill parameters

• Problem - a class that reads a config and input data from respective files and
contains all the Container, GarbageTruck, and Landfill objects. This class al-
lows to access objects by their ids (indices of objects in respective lists). It is
implemented as a singleton because the data contained in it is required in al-
most every part of the framework.

• Exportation - every route consists of several exportations. Exportation is a trip
where a truck collects waste from some containers and unloads it at some land-
fill. Exportation contains ids of the processed containers, truck, and landfill.
It also can check if the requirements of the problem statement are satisfied for
this trip.

• Route - class that contains several exportations. This class also can check if the
problem requirements are satisfied for the given finish fuel and time.

• Solution - this class contains information about a particular solution: routes,
orphan containers, and unused trucks. It also can be used to calculate the total
time, fuel, and distance of the solution.

• BaseSolution - a base class for all classes used to create an initial solution,
contains only one virtual method: "CreateSolution"

• Action - a base class for all classes used to perform actions (swapping contain-
ers in routes, moving them, etc.) on a solution. This class contains three virtual
methods:



Chapter 3. Implementation details 9

1. "PerformAction" - performs the action on the given solution if possible
(satisfies all the problem requirements) and does nothing if it is not. Re-
turns a boolean value, which tells if the action was successfully performed.

2. "GetAffectedIds" - returns the ids of containers that will be affected by
this action

3. "ExpectedDiff" - the expected difference in total fuel spent after perform-
ing the action

• Heuristic - base class for classes that generate actions that lead to neighbor
solutions.

• Search - base class for classes that perform metaheuristic searches. Contains
used Heuristic and only one virtual method, "search", which takes an initial
solution as an argument and returns the newly found one.

3.1.2 General pipeline

Reading config json
file into "Problem

class"

Reading input json
file into "Problem"

class

Creating initial
solution using
"BaseSolution"

Performing
metaheuristic search

on initial solution
using "Search"

Creating output json
file from the new

solution

FIGURE 3.1: Pipeline of the program

3.1.3 Input of the program

There are two JSON files required to run the program: config file and input file.
In the config file, you need to specify possible types of containers and trucks.

1 {
2 "container_types": [
3 {
4 "capacity": 1,
5 "processing_time": 10,
6 "garbage_type": "mixed",
7 "type": "MixedRegular"
8 },
9 ],

10 "truck_types": [
11 {
12 "type": "BigTruck",
13 "speed": 10,
14 "fuel_consumption": 0.5,
15 "fuel_capacity": 500,



Chapter 3. Implementation details 10

16 "capacities": {"mixed": 20},
17 "unloading_time": 15
18 }
19 ]
20 }

In the input file, you need to specify location and time windows for each container,
garbage truck and landfill.

1 {
2 "containers": [
3 {
4 "latitude": 682,
5 "longitude": 237,
6 "type": "MixedRegular",
7 "start": 0,
8 "finish": 100000000
9 }

10 ],
11 "trucks": [
12 {
13 "type": "BigTruck",
14 "latitude": 0,
15 "longitude": 499,
16 "start": 0,
17 "finish": 100000000
18 }
19 ],
20 "landfills": [
21 {
22 "latitude": 1000,
23 "longitude": 500,
24 "start": 0,
25 "finish": 100000000,
26 "max_trucks": 100
27 }
28 ]
29 }

Paths to these files and other parameters should be passed as the program argu-
ments, this includes:

1. "config" - path to the config file

2. "input" - path to the input file

3. "output" - path to the output file

4. "map_file" - path to the osrm folder, which contains data about the city that we
want to build routes for



Chapter 3. Implementation details 11

5. "real" - boolean value, which tells if we need to calculate real-life distances and
paths using "map_file"

6. "base_solution" - base solution to use

7. "heuristic" - heuristic to use to generate neighbor actions

8. "search" - metaheuristic search to use

There are also other parameters, but they are used only for particular algorithms
and will be mentioned later.

3.2 Implemented algorithms

3.2.1 Base solutions

I decided to try out two variants of the initial solution creation: regular greedy search
and greedy search based on clustered locations.

Algorithm 4 Greedy search

Sort trucks by the total garbage capacity in descending order
Create an empty route for each truck
Add index of each route to goodRoutes list
while goodRoutes is not empty do

for routeIndex in goodRoutes do
Add empty exportation to the route
while there is a container, which won’t break any of the problem require-

ments do
Add the container that can be processed the earliest, which won’t break

any of the problem requirements
Add landfill at which the truck can unload the earliest to the exporta-

tion, which won’t break any of the problem requirements
end while
if exportation is empty then

Delete the last exportation
Delete routeIndex from goodRoutes

end if
end for

end while

Here, trucks are sorted by the total garbage capacity in descending order so that
big trucks can choose from bigger amounts of containers, and the time spent on each
route would be more balanced.

For the second algorithm, we clusterize every given location using Agglomera-
tive Hierarchical Clustering and try to add containers from the same cluster as the
route’s last visited location (if it is not possible, we take container as in the first al-
gorithm). This clusterization algorithm was chosen because it only depends on dis-
tances between the locations and not their coordinates. Algorithms such as k-means
won’t work here because the path between two points in real life is almost always
not a straight line.



Chapter 3. Implementation details 12

Algorithm 5 Agglomerative Hierarchical Clustering
Algorithm parameters: clustering coefficient
Input: locations
Output: clusters

maxClusterDistance = clusterCoe f ∗ AverageDistance(locations)
clusters = Range([0, len(locations)− 1]) ▷ Initially every location is in separate
cluster
clustersCount = len(locations)
clusterDistances = CreateDistanceMatrix(locations, clusters) ▷ Matrix
which contains distances between each two clusters (maximal distance between
two location from this clusters)
while clustersCount > 1 do

cluster1, cluster2, dist = FindClosestClusters(clusterDistances)
if dist > maxClusterDistance then

break
clusters = CombineClusters(clusters, cluster1, cluster2) ▷ Changes cluster

of all locations from cluster2 to cluster1
clusterDistances = CreateDistanceMatrix(clusters)
clustersCount -= 1

end if
end while
return clusters;

3.2.2 Actions

Now, lets list implemented actions which could be performed on solutions during
metaheuristic search:

• InterChangeAction - swaps any two containers in the constructed routes.

• MoveAction - moves container to some another place in constructed routes

• ReverseAction - reverses the order of containers of some part of exportation

3.2.3 Neigbourhood generation

Based on the implemented actions, I created several base methods on neighbour-
hood generation:

• SwapInExportation - generates all actions that swap containers from one ex-
portation

• MoveInExportation - generates all action that move container to another place
in its exportation

• RemoveLoops - generate reverse actions which get rid of loop in some expor-
tation



Chapter 3. Implementation details 13

0 200 400 600 800 1000

100

200

300

400

500

600

700

800

FIGURE 3.2: Example of route with loops

0 200 400 600 800 1000

100

200

300

400

500

600

700

800

FIGURE 3.3: Example of route with removed loops



Chapter 3. Implementation details 14

• SwapAny - randomly selects a fixed amount of containers and generates all
swap actions for them (includes swaps in different exportations)

• SwapNeigbors - swap containers in the same exportation, which are placed
close enough to each other in containers order

In addition to this base classes, I also implemented methods to create more com-
plex neighborhoods:

• MultipleSelector - generates all actions for a given list of neighborhoods

• ProbabiliticSelector - randomly selects a neighborhood from the given list
based on specified probabilities

• FixedOrderSelector - given a list of neighborhoods, uses them for a specified
amount of times (for example, SwapAny is used 2 times, SwapInExportation
is used 3 times and then again SwapAny is used 2 times ...)

• TimeDependenceSelector - given a list of neighborhoods, uses all except the
last one for a fixed amount of times and then uses the last one for all other
iterations

Using these classes, I implemented several complex neighborhoods:

• "ANY_EXPORTATION_PROB1" - with probability 0.5 uses SwapAny and with
probability 0.5 uses SwapInExportation

• "ANY_EXPORTATION_PROB2" - with probability 0.75 uses SwapAny and
with probability 0.25 uses SwapInExportation

• "ANY_EXPORTATION_FIXED1" - uses SwapAny once, then SwapInExporta-
tion once and so on

• "ANY_EXPORTATION_FIXED2" - uses SwapAny 5 times, then SwapInExpor-
tation 3 times and so on

• "ANY_MOVE_EXPORTATION_FIXED2" - uses SwapAny 5 times, then MoveIn-
Exportation 3 times and so on

• "ANY_EXPORTATION_TIME1" - uses SwapAny for half of the iterations and
MoveInExportation for the rest

• "ANY_EXPORTATION_TIME2" - uses SwapAny for 2
3 of the iterations and

MoveInExportation for the rest

• "ANY_EXPORTATION" - uses all actions from SwapAny and SwapInExpor-
tation

• "ANY_MOVE_EXPORTATION" - uses all actions from SwapAny and MoveIn-
Exportation

• "ANY_MOVE_SWAP" - uses SwapAny 5 times and 3 times randomly chooses
between MoveInExportation and SwapInExportation with equal probability

• "REMOVE_LOOPS_SWAP_EXPORTATION" - uses all actions from RemoveLoops
and SwapInExportation



Chapter 3. Implementation details 15

• "REMOVE_LOOPS_SWAP_ANY_EXPORTATION" - with probability 0.6 uses
"REMOVE_LOOPS_SWAP_EXPORTATION" and with probability 0.4 uses Swa-
pAny

• "REMOVE_LOOPS_MOVE_EXPORTATION" - uses all actions from RemoveLoops
and MoveInExportation

• "MOVE_SWAP_EXPORTATION" - uses SwapInExportation 15 times, MoveIn-
Exportation 20 times and so on

3.2.4 Metaheuristic algorithms

I have implemented 3 well-known metaheuristic algorithms but slightly adjusted
them. These algorithms try to maximize the score function, which I defined as

Score(solution) = −100 ∗ OrphansCount(solution)− TotalFuelSpent(solution)

Tabu search

The main idea is the same as in the original Tabu search (1). However, I’ve still made
some adjustments.

Firstly, here instead of adding solutions to the Tabu list, I add containers on
which the actions were performed and don’t perform any actions on them in the
next few iterations. This modification was required due to the huge size of solution
space for real-life examples (the Tabu list was too small to help achieve better solu-
tions). It also sped up the algorithm because, with this modification, we don’t need
to compare solutions with the solutions from the Tabu list.

Secondly, I calculate the expected total fuel spent difference caused by the action
before checking if it is possible to perform it; this means that bad actions won’t be
performed and won’t increase the execution time.

Finally, I parallelized the algorithm. On every iteration, actions are split between
several threads, and in the end, the best action of each thread is compared.

The parameters of this algorithm are iterations count and the Tabu queue coeffi-
cient, which defines the Tabu queue size as

TabuSize = TabuQueueCoe f ∗ ContainersCount(Problem)

Simulated annealing

For the SA algorithm, I used a modified temperature function described in "Metas-
trategy simulated annealing and Tabu search algorithms for the vehicle routing prob-
lem" article (Osman, 1993). To calculate max and min temperatures, firstly, we need
to calculate the max and min score difference after performing some neighbor action
on the initial solution.

Tmax = max(|Score(newSolution)−Score(initialSolution)| ∀ newSolution ∈ NeighborSolutions)

Tmin = min(|Score(newSolution)−Score(initialSolution)| ∀ newSolution ∈ NeighborSolutions)

We also calculate parameters:

α = ContainersCount(Problem) ∗ PossibleActionsCount

γ = ContainersCount(Problem)



Chapter 3. Implementation details 16

Where PossibleActionsCount is the number of actions that don’t break any require-
ments of the problem. The temperature on iteration i is then calculated as

Ti =
Ti

1 + βiTi

βi =
TmaxTmin

(α + γ
√

i)TmaxTmin

T0 here is equal to Tmax. There is also a possibility that the algorithm won’t choose
any action from all the neighbor actions; in this case, we perform a reset and change
the temperature to

Treset = max(
Treset

2
, Tbest)

Where initial Treset is equal to Tmax and Tbest is the temperature at which we found
the best solution so far.

The parameters of this algorithm are:

1. Iterations count

2. The maximal number of resets before ending the search

3. Temperature coefficient - we multiply α and γ by this value to speed up or
slow down the temperature decrease rate

Genetic algorithm

For this algorithm, I also made several adjustments to the original one (3) to increase
its effectiveness. Instead of just creating new population of the same size as previ-
ous one, I create a population with size equal to 2 ∗ PopulationSize + 1, which con-
tains the best solution found yet and 2 ∗ PopulationSize children. After that I choose
PopulationSize

2 best solutions from this list and PopulationSize
2 randomly selected solutions

(which are not contained in the best half). I also made the algorithm parallel (each
thread separately creates several children and mutates them). Now let’s talk about
mutation and crossover operations. Mutation operation is fairly simple, with some
fixed probability we either perform a random good action on solution (action which
increases the score of solution) or a completely random action. Used crossover type
is called an ordered crossover. To perform it, we firstly need function that generate
containers order for the given solution.



Chapter 3. Implementation details 17

Algorithm 6 Creation of containers order
Input: solution
Output: containers order

Add index of each route to goodRoutes list
exportationIndex = 0
containersOrder = []
while goodRoutes is not empty do

for routeIndex in goodRoutes do
if The number of exportations in route == exportationIndex then

Delete routeIndex from goodRoutes
end if
Add containers from the exportation with index equal to exportationIndex

to the order
end for
exportationIndex += 1

end while
Add orphan containers to the order
return containersOrder

Now, let’s look how the new container order is created from the given orders for
parents.

Algorithm 7 Child order creation
Input: order1, order2
Output: newOrder

start = Random([0, len(order1)− 1]
end = Random([0, len(order1)− 1]
if end < start then

swap(start, end)
end if
newOrder = []
Add containers from order1 from index 0 to start − 1 to newOrder
Add containers from order1 from index end + 1 to len(order1)− 1 to newOrder
Insert containers that are not present in newOrder at index start in the same order
as they are present in order2
return newOrder;

Creation of a solution based on the order of the containers is very similar to the
initial greedy algorithm (4), but instead of adding the container that we can process
the earliest, we try to add the next container from the order.

The parameters of GA are:

1. Iterations count

2. Population size

3. Mutation probability - the probability of performing random action instead of
a good one while mutating



Chapter 3. Implementation details 18

Additional adjustments

I have also defined a parameter called epsilon. If the score difference after perform-
ing some action has an absolute value less than this parameter, we don’t perform it.
This helps to prevent cases when we swap containers very close to each other, etc,
and makes minimal temperature for SA algorithm adequate.



19

Chapter 4

Experiments

4.1 Initial experiments on synthetic data

As the initial data, I had 11 synthetic input files with a number of containers from 5
to 300 (all of the same type). All time windows were set in such a way that each
action could be performed anytime, and the time window problem requirement
wouldn’t be broken. This synthetic data helped to sort out neighborhood struc-
tures that showed worse results. For example, "SWAP_NEIGBOURS" neighborhood
structure almost couldn’t improve the base solution, which you can see on the results
plots for the input with 100 containers (squares are trucks, hexagons - are landfills,
and crosses are containers).

0 200 400 600 800 1000

0

200

400

600

800

1000

FIGURE 4.1: Initial solution based on clusters

Total distance: 10568



Chapter 4. Experiments 20

0 200 400 600 800 1000

0

200

400

600

800

1000

FIGURE 4.2: Tabu search with 500 iterations, "SWAP_NEIGBOURS"

Total distance: 10566

0 200 400 600 800 1000

0

200

400

600

800

1000

FIGURE 4.3: Tabu search with 500 iterations, "ANY_MOVE_SWAP"

Total distance: 9876



Chapter 4. Experiments 21

Based on the synthetic data, I filtered out 9 good neighborhood structures:

• "MOVE_IN_EXPORTATION"

• "REMOVE_LOOPS_SWAP_ANY_EXPORTATION"

• "REMOVE_LOOPS_MOVE_EXPORTATION"

• "ANY_EXPORTATION_PROB1"

• "ANY_MOVE_EXPORTATION_FIXED2"

• "ANY_MOVE_EXPORTATION"

• "ANY_EXPORTATION_TIME1"

• "ANY_EXPORTATION"

• "ANY_MOVE_SWAP"

I also decided to test only the greedy base solution because it worked better than
the solution based on clusters in almost every situation.

4.2 Experiments on the Lviv data

For experiments on Lviv, I found google maps layer containing locations and types
of 1475 garbage containers. I have parsed the respective KML file using Python to
create an input JSON file (all trucks are located at some random container location,
the landfill location was found on the internet). I have also changed the type of all
containers and trucks to the same one for my experiments. The configuration file
was made to be close to reality.

TABLE 4.1: Garbage container configuration

Capacity 1100 liters
Processing time ≈ 2 minutes

TABLE 4.2: Garbage truck configuration

Capacity 35000 liters
Speed 45 KM/H
Fuel consump-
tion per KM

0.25 liters

Fuel capacity 300 liters
Unloading time 3 minutes

https://www.google.com/maps/d/u/0/viewer?mid=1ASrSdBmfCY6_JYm0guIBbbA4JXTPRgqe&ll=49.82480300404357%2C23.98606149325123&z=13&fbclid=IwAR2qdmygiOrHRWgN5wIf-LXq-0KdtVyzx9U5XIhN94PGWdMhX-nakkP7gTc


Chapter 4. Experiments 22

I tested three implemented metaheuristic algorithms using such parameters:

TABLE 4.3: Tabu search parameters

Iterations 200; 500;
Tabu queue coefficient 0.3; 0.5

TABLE 4.4: SA parameters
Iterations 3000; 5000;
Temperature coefficient 0.0001; 0.00001

TABLE 4.5: GA parameters
Iterations 200; 400;
Population size 10; 20
Mutation probability 0.1; 0.3

I have also decided to test algorithms on various numbers of trucks (10, 15, 20)
to be sure they work fine regardless of this value.

It is worth mentioning that all further experiments were performed on the com-
puter with macOS 12.4 operating system, Intel Core i5-8257U processor (4 cores, 1.6
GHz base frequency) and 16GB of RAM. Now, let’s look at the results.

1,790 1,780 1,770 1,760 1,750 1,740 1,730 1,720 1,710

Total distance

0

100

200

300

400

500

600

700

800

900

1,000

E
x
e
c
u

ti
o
n

 t
im

e

ANNEALING
GENETIC
NO_SEARCH
TABU

Search

Top results for 10 trucks

FIGURE 4.4: Best variants of algorithms (10 trucks)



Chapter 4. Experiments 23

1,830 1,820 1,810 1,800 1,790 1,780 1,770 1,760 1,750

Total distance

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

E
x
e
c
u

ti
o
n

 t
im

e

ANNEALING
GENETIC
NO_SEARCH
TABU

Search

Top results for 15 trucks

FIGURE 4.5: Best variants of algorithms (15 trucks)

1,860 1,850 1,840 1,830 1,820 1,810 1,800 1,790 1,780 1,770

Total distance

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

E
x
e
c
u

ti
o
n

 t
im

e

ANNEALING
GENETIC
NO_SEARCH
TABU

Search

Top results for 20 trucks

FIGURE 4.6: Best variants of algorithms (20 trucks)



Chapter 4. Experiments 24

Here I displayed the best 15 results for each amount of trucks. The line shows the
algorithm with the minimal value of TotalDistance(BaseSolution)−TotalDistance(NewSolution)

ExecutionTime(NewSolution)−ExecutionTime(BaseSolution)
(I measure total distance instead of fuel because all trucks are of the same type
and have the same fuel consumption rate). As we can see, for every case, the to-
tal distance is minimized by around 50-60km compared to the base solution, which
is around 3 percent (for 10 trucks best algorithm decreases the distance by 3.3%, for
15 - by 2.7% and for 20 - by 2.9%).

Based on these results, I have chosen the best parameters set for each algorithm.
Here, I decided to check two versions of the Tabu search: one regular and another
with more generated neighborhood actions on each iteration (because its execution
time is the smallest and allows to perform additional actions in an adequate amount
of time). Here I talk about SwapAny, which by default generates swaps for 10 con-
tainers (the second version generates swaps for 500 containers).

TABLE 4.6: Tabu search best parameters

Iterations 500;
Tabu queue coefficient 0.3
Neighborhood structure "ANY_MOVE_EXPORTATION"
Base solution greedy

TABLE 4.7: SA best parameters
Iterations 5000;
Temperature coefficient 0.00001
Neighborhood structure "ANY_MOVE_EXPORTATION"
Base solution greedy

TABLE 4.8: GA best parameters
Iterations 400;
Population size 10;
Mutation probability 0.1;
Neighborhood structure "ANY_MOVE_EXPORTATION_FIXED2"
Base solution greedy

TABLE 4.9: Tabu search best parameters (more generated actions)
Iterations 500;
Tabu queue coefficient 0.3
Neighborhood structure "ANY_MOVE_EXPORTATION"
Base solution greedy

4.3 Experiments on other cities

On the internet, I have found 4 more datasets with container locations in other cities.
Those are:

1. Groningen (2062 containers)

2. Sant Boi de Llobregat (1723 containers)



Chapter 4. Experiments 25

3. New York (544 containers)

4. Pittsburg (1194 containers)

Firstly, let’s look at the locations of the containers, trucks and landfill for these
cities:

FIGURE 4.7: Groningen containers locations



Chapter 4. Experiments 26

FIGURE 4.8: Sant Boi de Llobregat containers locations

FIGURE 4.9: New York containers locations



Chapter 4. Experiments 27

FIGURE 4.10: Pittsburg containers locations

I’ve measured the difference in execution time and total distance (in percentages)
compared to the base solution of the best algorithms for each of these cities (for the
case with 10 trucks). The results are as follows:

Best algorithms results for Groningen

ANNEALINGGENETICTABUTABU 500.0

0.0%

0.5%

1.0%

1.5%

2.0%

Total distance difference (in percents)

TABU 500.0TABUGENETICANNEALING
NEALINGNETICBUBU 500.0

0

200

400

600

800

s

Execution time difference

FIGURE 4.11: Results of best algorithms for Groningen



Chapter 4. Experiments 28

Best algorithms results for Sant Boi de Llobregat

ANNEALINGGENETICTABUTABU 500.0

0.0%

0.5%

1.0%

1.5%

Total distance difference (in percents)

TABU 500.0TABUGENETICANNEALING
NEALINGNETICBUBU 500.0

0

200

400

600

800

s

Execution time difference

FIGURE 4.12: Results of best algorithms for Sant Boi de Llobregat

Best algorithms results for New York

ANNEALINGGENETICTABUTABU 500.0

0%

1%

2%

3%

4%

Total distance difference (in percents)

TABU 500.0TABUGENETICANNEALING
NEALINGNETICBUBU 500.0

0

50

100

150

s

Execution time difference

FIGURE 4.13: Results of best algorithms for New York



Chapter 4. Experiments 29

Best algorithms results for Pittsburg

ANNEALINGGENETICTABUTABU 500.0

0%

1%

2%

3%

4%

Total distance difference (in percents)

TABU 500.0TABUGENETICANNEALING
NEALINGNETICBUBU 500.0

0

100

200

300

400

500

s

Execution time difference

FIGURE 4.14: Results of best algorithms for Pittsburg

As we can see, the algorithms show better results for New York and Pittsburg (al-
most 4% and around 3.3% decrease of total distance) and worse results for Gronin-
gen and Sant Boi de Llobregat (around 2% and 1.5% decrease of total distance). I
guess there are several reasons for that:

1. The number of containers - independently of the number of containers, the
difference that some action performed on the solution can make to the total
distance is almost the same. But the total distance traveled by trucks is actually
related to the number of containers. This means cities with more containers
(Sant Boi de Llobregat, Pittsburg) require more iterations to get as good results
as cities with the smaller amount

2. Landfill location - some cities have landfills located very far from the majority
of containers (Sant Boi de Llobregat, Pittsburg). This means that most part of
the traveled distance is traveling to the landfill and returning back to the city,
which couldn’t be decreased

3. The density of containers distribution - in the case of more dense distributions,
the base solution returns a pretty good result, which can be hard to improve
(Sant Boi de Llobregat, Groningen)

We can see that the Tabu search with an increased amount of generated neighbors
shows slightly better results than the other 3 algorithms. However, I don’t think this
algorithm would be very useful for real-life cases due to its huge execution time. In
my opinion, the best two algorithms here are GA and regular Tabu search, but they
should be used in different scenarios. If you have a lot of time, you can use GA



Chapter 4. Experiments 30

because, in most cases, it shows better results then Tabu search and SA, and if you
are limited by time, you should use regular Tabu search because it shows fairly good
results while spending less amount of time.



31

Chapter 5

Conclusions

In this thesis, I have compared a vast amount of different variations of metaheuristic
algorithms for the waste collection problem. After all experiments, I can tell that
the best of the implemented algorithms for this task is the genetic algorithm and the
Tabu search. However, I can’t say that the obtained results are ideal (3-4% improve-
ment compared to the base solution). Nevertheless, with the framework that I have
implemented, it is possible to easily extend the number of algorithms and types of
actions performed on the solution. This can include more complex metaheuristics
such as particle swarm optimization, actions that operate on multiple containers at
once (from different exportations), etc. The room for improvement is simply limit-
less, due to the given problem being NP-hard.

Despite this, I still think that the solution is good enough to use in real-life cases.
The program can greatly decrease the amount of time people in garbage companies
spent on the route planning task and the only additional thing you need (besides
configurations of containers and trucks and their locations) is OpenStreetMap data
for your city.



32

Bibliography

Derecia, Ufuk and Muhammed Erkan Karabekmez (2022). “The applications of mul-
tiple route optimization heuristics and meta-heuristic algorithms to solid waste
transportation: A case study in Turkey”. In: Decision Analytics Journal.

Farrokhi-Asl, Hamed et al. (2016). “Metaheuristics for a bi-objective location-routing-
problem in waste collection management”. In: Journal of Industrial and Production.
DOI: http://dx.doi.org/10.1080/21681015.2016.1253619.

Liao, Ching-Jong, Chao-Tang Tseng, and Pin Luarn (2007). “A discrete version of
particle swarm optimization for flowshop scheduling problems”. In: Computers
Operations Research 34.10, pp. 3099–3111. ISSN: 0305-0548. DOI: https://doi.
org/10.1016/j.cor.2005.11.017. URL: https://www.sciencedirect.com/
science/article/pii/S0305054805003643.

Luke, Sean (2013). Essentials of Metaheuristics. second. Lulu.
Osman, Ibrahim Hassan (1993). “Metastrategy simulated annealing and tabu search

algorithms for the vehicle routing problem”. In: Annals of operations research, pp. 421–
451.

Rabbani, Masoud, Hamed Farrokhi-Asl, and Hamed Rafiei (Mar. 2016). “A hybrid
genetic algorithm for waste collection problem by heterogeneous fleet of vehicles
with multiple separated compartments”. In: Journal of Intelligent Fuzzy Systems
30, pp. 1817–1830. DOI: 10.3233/IFS-151893.

Stanković, Aleksandar et al. (2020). “Metaheuristics for the waste collection vehicle
routing problem in the urban areas”. In: Working and Living Environmental Protec-
tion Vol. 17, No 1, pp. 1–16. DOI: https://doi.org/10.22190/FUWLEP2001001S.

https://doi.org/http://dx.doi.org/10.1080/21681015.2016.1253619
https://doi.org/https://doi.org/10.1016/j.cor.2005.11.017
https://doi.org/https://doi.org/10.1016/j.cor.2005.11.017
https://www.sciencedirect.com/science/article/pii/S0305054805003643
https://www.sciencedirect.com/science/article/pii/S0305054805003643
https://doi.org/10.3233/IFS-151893
https://doi.org/https://doi.org/10.22190/FUWLEP2001001S

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem statement
	Goals

	Related Works
	Metaheuristic
	Metaheuristic algorithm examples
	Tabu search
	Simulated Annealing
	Genetic algorithm
	Particle swarm optimization

	Related publications

	Implementation details
	Framework architecture
	Main classes
	General pipeline
	Input of the program

	Implemented algorithms
	Base solutions
	Actions
	Neigbourhood generation
	Metaheuristic algorithms
	Tabu search
	Simulated annealing
	Genetic algorithm
	Additional adjustments



	Experiments
	Initial experiments on synthetic data
	Experiments on the Lviv data
	Experiments on other cities

	Conclusions
	Bibliography

