
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Stochastic Relaxation of Deep Neural
Networks as a Way to Build Adversarial

Robustness

Author:
Solomiia LENO

Supervisor:
Dr. Boris FLACH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
https://www.linkedin.com/in/solomiia-lenio/
https://cmp.felk.cvut.cz/~flachbor/
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Solomiia LENO, declare that this thesis titled, “Stochastic Relaxation of Deep Neu-
ral Networks as a Way to Build Adversarial Robustness” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Science is like sex: sometimes something useful comes out, but that is not the reason we are
doing it.”

Richard P. Feynman

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Stochastic Relaxation of Deep Neural Networks as a Way to Build Adversarial
Robustness

by Solomiia LENO

Abstract

Deep Neural Networks show spectacular results on real-life tasks from different ap-
plications: recommendation systems, speech recognition, autonomous driving, etc.
Despite this success they were proven to be vulnerable to small perturbations, im-
perceptible to human eye, in input data called adversarial attacks. Main reasons of
such vulnerability lie in the overparametrization of DNNs, tendency to overfitting
and high variance of learned features.
In this work we show that stochastic relaxation of Deep Neural Networks impacts
those factors and can help to improve adversarial robustness of a model up to ×1.7
times. We perform experiments on Binary and ReLU Convolutional Neural Net-
works and later compare our method results with current SOTA approach to build-
ing adversarial robustness - adversarial learning. In conclusions we propose steps
that might be taken to further improve performance of Stochastic Neural Networks
on both clean and adversarial data.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
I want to express deep gratitude to my supervisor, prof. Boris Flach, head of Machine
Leaning group at Czech Technical University in Prague, for helping me with this
research, sharing his experience and knowledge, and helping me out with every
single issue whether it was a dump coding mistake or a complicated mathematical
question.
I also want to say big thanks to every lecturer, lab teacher and teaching assistant who
I’ve met in Ukrainian Catholic University and Czech Technical University during
past four years for sharing their knowledge and inspiring me to always do even
more.
I am also super grateful to my family and closest friends for their constant support
and belief in me.
Last but definitely not least I want to express the deepest gratitude to The Armed
Forces of Ukraine for making it possible for me to do this research and write my
thesis under a peaceful sky.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Deep Learning in Real-life Applications 1
1.2 Downfalls of Deep Learning . 1
1.3 Existing Methods to Deter Adversarial Attacks on DNNs 1
1.4 Focus of the Work . 3

2 Background 4
2.1 Artificial Neural Networks . 4
2.2 Convolutional Neural Networks . 4
2.3 Stochastic Neural Networks . 5
2.4 Gradient Estimators . 6

2.4.1 Straight-Through Gradient Estimator 7
2.4.2 Score Function Gradient Estimators 8

3 Related works 9
3.1 Studies on Properties of Stochastic Neural Networks 9
3.2 Network Regularizations for Increasing Adversarial Robustness 9

4 Methodology 11
4.1 Scope of Work . 11
4.2 Stochastic Artificial Neuron . 11
4.3 Adversarial Attacks . 12

4.3.1 Targeted Adversarial Attack . 12
4.3.2 Untargeted Adversarial Attack 13
4.3.3 Missing Features Attack . 14

5 Experiments 15
5.1 Experimental setup . 15
5.2 Implementation and Training Details . 16
5.3 Results on Adversarial Robustness . 16
5.4 Impact of Stochasticity on Model Generalization 18

5.4.1 Model Accuracy . 18
5.4.2 Proneness to Overfitting . 19
5.4.3 Model Confidence on Correct and Wrong Predictions 20
5.4.4 Extracted Features Analysis . 20

vi

6 Conclusions 22
6.1 Results discussion . 22
6.2 Future work . 22

Bibliography 23

vii

List of Figures

1.1 Adversarial examples: top - untargeted adversarial example, i.e. the
attacker tries to misguide the model to predict any of the incorrect
classes, bottom - targeted adversarial example, i.e. misguiding the
model to a particular class other than the true class [32]. Image source:
[16] . 2

2.1 Example of Feed Forward Neural Network architecture: in green - in-
put layer, in purple - two hidden layers, in red - output layer which is
usually followed by a loss function. 4

2.2 On left - examples of Gabor function - mathematical model describing
the cells’ weights in V1 [29] - output on various parameters, on right
- low-level kernels learned on the images from ImageNet by AlexNet
model [23]. 5

2.3 The sign function and proxy functions for derivative used in the STE.
First column - sign function and its derivative, second column - iden-
tity and function and its derivative, originally used in the STE, third
- hard tanh function which becomes a proxy for step function when
uniform noise (below) is injected to the neuron, last column - tanh func-
tion which becomes the proxy is one injects logistic noise illustrated
below. 7

4.1 Probability density functions of chosen noise distributions: Gaussian
(std = 2) on left and logistic (std = 2) on right 11

4.2 Targeted adversarial examples generated with the Iterative Fast Gra-
dient Sign Method. Top row - original images from Fashion-MNIST
dataset, values are scaled to [0, 1] range, middle row - adversarial ex-
amples generated with FGSM, maximum perturbation ϵ = 0.05, also
in [0, 1] value range, bottom row - absolute differences between origi-
nal and adversarial images, value range [0, 0.05]. 13

4.3 Untargeted adversarial examples generated with Fast Gradient Sign
Method. Top row - original images from Fashion-MNIST dataset, val-
ues are scaled to [0, 1] range, middle row - adversarial examples gener-
ated with FGSM, maximum perturbation ϵ = 0.05, also in [0, 1] value
range, bottom row - absolute differences between original and adver-
sarial images, value range [0, 0.05]. 13

4.4 Heat maps of l2-norms over the activation channels for Conv2D layers
in the baseline ReLU network. Top row - input image is from class boot,
bottom row - input image from class bag. One can see that those two
objects that belong to different classes produce very similar heatmaps
and as a result are both classified as a bag with confidence > 0.9. 14

4.5 Adversarial examples generated with Missing Features approach: top
row - original images from Fashion-MNIST dataset, middle row - gen-
erated images with p = 0.1, bottom row - generated images with p = 0.5. 14

viii

5.1 Sample data from Fashion-MNIST [42]. The dataset consists of 28x28
grayscale images from 10 classes. The training set includes 60000 im-
ages, while the testing set - 10000 images. 15

5.2 Architecture of baseline model. The same block architecture - Conv2D
+ BatchNorm2D + activation - is preserved in all experiments. How-
ever, in some experiments with stochastic neurons we turn off the
batch normalization - i.e. eliminate BatchNorm2D from the model
block and keep only Conv2D and activation function. 15

5.3 Test accuracy of models on targeted adversarial examples generated
with FGSM. On x-axis - maximum perturbation ϵ, on y-axis accuracy.
Stochastic models are injected with additive noise. 17

5.4 Test accuracy of models on untargeted adversarial examples. Stochas-
tic models are injected with additive noise. 17

5.5 Test accuracy of models on adversarial examples generated with miss-
ing features attack. On x-axis - ratio of missing features p. Stochastic
models are injected with additive noise. 18

5.6 Test accuracy of Stochastic ReLU models. On left results of models
injected with additive noise, on right - with multiplicative noise. For
both plots, first bar column represents accuracy achieved by the base-
line model trained with adversarial learning, blue bars represent ac-
curacy of models with injected Gaussian noise, orange - with logistic
noise, dashed line represents the test accuracy of a deterministic base-
line model trained on clean data. 19

5.7 Learning curves for deterministic Binary model (left) and its respec-
tive stochastic counterpart (right); gradient estimator used for Stochas-
tic Binary NN is STE. 20

5.8 Histograms of model confidence. On left confidence distribution for
predictions made by deteministic ReLU model, in middle - by deter-
ministic ReLU model trained on mixture of clean and adversarial data,
on left - by stochastic ReLU model with Gaussian noise (std(Z) = 0.1)
injected. For all histograms: in green - confidence on correct predic-
tions, in red - confidence on wrong predictions. 20

5.9 T-SNE plots of features extracted with deterministic (on left), adver-
sarial (on right) and stochastic (on bottom) ReLU models. The stochas-
tic model is injected with additive logistic noise, std(Z) = 0.025. 21

ix

List of Abbreviations

ANN Artificial Neural Network
DL Deep Learning
DNN Deep Neural Network
FFNN Feed Forward Neural Network
CNN Convolutional Neural Network
BNN Binary Neural Network
ReLU Rectified Linear Unit
CE Cross-Entropy
NLL Negative Log-Likelihood
MLE Maximum Likelihood Estimator
FGSM Fast Gradient Sign Method
SOTA State-Of-The-Art

1

Chapter 1

Introduction

1.1 Deep Learning in Real-life Applications

Deep Neural Networks (DNNs) have become the leading pattern recognition tech-
nology in modern artificial intelligence. They have proved incredibly successful at
correctly classifying all kinds of input, including images, speech, data on consumer
preferences and others. Moreover, they have been shown to successfully analyze
and extract useful knowledge from both large amounts of data and non homoge-
neous data collections, i.e., data collected from different sources [1]. DNNs have
become a part of daily life, running almost everything from automated telephone
systems to user recommendations on the streaming service Netflix. The main reason
for such wide popularity of DNNs today are drastically increased chip processing
abilities (e.g., GPU units), the significantly low cost of computing hardware, and re-
cent advances in machine learning and signal/information processing research [37].

1.2 Downfalls of Deep Learning

While showing outstanding results in various real-life tasks, Deep Learning algo-
rithms have also raised a widely shared concerns and mixed sentiments among AI
researchers. In 2013 Christian Szegedy et al. published a paper called "Intriguing
properties of neural networks" [38] where they showed that it is possible to take one
image - of a lion, for example - and by altering few pixels convince a DL model that
it is actually looking at something different, like a panda. Such doctored examples
were later called adversarial examples and started a new branch of research on how
to protect DL models from adversarial attacks. And while misclassifying an animal
specie doesn’t seem to deserve that much attention of a scientific community here is
another example. A year later, in 2014 a group of researchers showed how one can
fool an AI-based autonomous driver into misreading a "stop" sign as "speed limit 45"
sign by carefully putting few white stickers on the sign [10]. Later research shows
that such an issue goes beyond object recognition: Long-Short Term Memory models
for speech recognition [45], Reinforcement Learning models for game playing [20]
and other types of Deep Learning models can also be attacked with slight changes
to input data.

1.3 Existing Methods to Deter Adversarial Attacks on DNNs

Adversarial attacks are essentially small (i.e., imperceptible to the human eye) per-
turbations of an input data which cause the model to misclassify an example. The
key insight is that those small perturbations of input values cause larger perturba-
tions of network activations that result in incorrect predictions. Thus, there exist two

Chapter 1. Introduction 2

FIGURE 1.1: Adversarial examples: top - untargeted adversarial ex-
ample, i.e. the attacker tries to misguide the model to predict any of
the incorrect classes, bottom - targeted adversarial example, i.e. mis-
guiding the model to a particular class other than the true class [32].

Image source: [16]

main approaches to building adversarial robustness: a) regularization of input data
and/or model parameters to prevent small changes in data from resulting in large
changes in representation vectors, b) training model with adversarial examples.
Research on this issue is still quite active but currently the most popular methods of
adversarial attacks deterrence are the following ones:

• Adversarial learning. SOTA approach to building adversarial robustness, orig-
inally proposed by Szegedy et al. in 2014 [38] adversarial learning provided DL
model training on a mixture of clean data and adversarial examples created by
researchers and/or simple algorithms. Later this approach was advanced to
include two DL models: one for solving original task and another for generat-
ing adversarial examples during the training process [15].

• Input gradient regularization. Input data regularization techniques are useful
to avoid large gradients on the input that make model vulnerable to attacks.
This idea was proven to be competitive with adversarial learning both theoret-
ically and empirically [12].

• Feature squeezing. These methods reduce the search space available to an ad-
versary by coalescing samples that correspond to many different feature vec-
tors in the original space into a single sample [43].

Chapter 1. Introduction 3

• Contrastive learning. This machine learning technique is essentially unsuper-
vised learning with supervised fine-tuning [11]. Key idea behind this method
is that unsupervised learning methods learn better representations which are
initially more resistant to adversarial examples.

1.4 Focus of the Work

In this work we focus on the stochastic relaxation of Deep Neural Networks as one
of the ways to regularize distribution of layers activations and possibly improve
model robustness against adversarial attacks. This method also requires almost no
additional memory and/or computational power usage. Given a large variety of
tasks that are being solved with DL algorithms today, we stop at one of easiest -
image classification. Relative simplicity of classification models architecture will
allow us to experiment with both different models of stochastic neurons and most
popular Neural Networks regularization techniques.

4

Chapter 2

Background

2.1 Artificial Neural Networks

Artificial Neural Networks are computational systems inspired by the structure of
a human brain. They consist of a sequence of connected layers of artificial neurons
that can transmit input signal to the output of the network. An artificial neuron
is essentially a linear function that maps all input signals to a scalar which is then
passed as one of the inputs to the next layer. Since composition of linear functions
is a linear function itself, an activation function is used after each neuron to intro-
duce non-linearity to the model. Due to presence of non-linearities and multi-layer
architecture, ANNs are particularly useful to extract non-trivial patterns, especially
when the problem is too hard to solve with handcrafted features. They are typically
trained by optimizing a loss function - an error between the ground-truth and pre-
dicted output for the given data input.
Feed Forward Network is the simplest and the most widely used type of ANN,
where the information moves only in one direction. Architecture of FFNN can es-
sentially be represented with an acyclic graph as on Figure 2.1. The training of FFNN
is generally done via the backpropagation algorithm, which efficiently calculates the
gradient in the weights w.r.t. a loss function and updates the parameters in order to
minimize the prediction errors.

FIGURE 2.1: Example of Feed Forward Neural Network architecture:
in green - input layer, in purple - two hidden layers, in red - output

layer which is usually followed by a loss function.

2.2 Convolutional Neural Networks

Convolutional Neural Networks [25] is a specialized kind of neural networks for
processing data that has a known grid-like topology. Examples include time-series
data, which can be thought of as a 1D grid taking samples at regular time intervals,
and image data, which can be thought of as a 2D grid of pixels. From architecture

Chapter 2. Background 5

and training point of view CNNs do not differ from ANNs: they also consist of a
sequence of linear layers followed by non-linear activation functions and are trained
with backpropagation. The only difference is that instead of dense matrix multipli-
cation in every layer one performs convolution operation, which is application of
sliding kernel to the input data.
Given w ∈ R2h+1 is a kernel of weights, x ∈ Rn is an input data vector and y ∈ Rm,
where m = n − 2h, is a kernel output, convolution in 1D is defined as following:

y = w ⋆ x : yi =
h

∑
j=−h

wixj (2.1)

Such operation is useful due to high correlation of data points with the neighbouring
ones. Besides efficient utilisation the data structure, convolution brings few more
advantages to CNNs:

• Reduction of number of learnable parameters. Kernel of a fixed size (usually
h = 1 or h = 3) is significantly smaller than the size of an input data.

• Translation equivariance. If an object in input data is shifted, the output of
convolution will be shifted likewise.

It was a common practice to combine convolution layers with pooling (e.g., max
pooling) layers to introduce dimensionality reduction to the model. However, due
to generalization of convolution with stride (step size of the kernel when traversing
the input data) and dilation (spacing between values in a kernel) parameters pooling
layers are considered unnecessary.
Similarly to ANNS, construction of CNNs is closely related to the way human brain
processes visual information. The main similarities are found in low-lever features
extraction (illustrated in Fig. 2.2) performed by the primary visual cortex (a.k.a. V1)
cells in human brain and first few convolutional layers of CNNS.

FIGURE 2.2: On left - examples of Gabor function - mathematical
model describing the cells’ weights in V1 [29] - output on various
parameters, on right - low-level kernels learned on the images from

ImageNet by AlexNet model [23].

2.3 Stochastic Neural Networks

It is well known from Statistical Pattern Recognition [27] that stochastic predictors
can not be better than their deterministic counterparts. Using deterministic mod-
els together with standard loss functions (e.g., 0/1 loss), on the other hand, makes

Chapter 2. Background 6

the corresponding empirical loss to be a piece-wise constant function. The com-
mon solution is to interpret the network outputs as class probabilities and use Max-
imum Likelihood Estimator (Cross Entropy) instead. Stochastic Neural Networks,
however, allow one to interpret the network outputs as probabilities of a stochas-
tic predictor (i.e., to directly model the probability distribution) and optimize model
parameters by minimizing corresponding expected loss.
There are two main ways to introduce stochasticity to a Neural Network: a) use
stochastic parameters, b) use stochastic activation functions. In this work we use the
second approach, i.e., we introduce additive or multiplicative noise to the neuron
pre-activation. For a neuron with additive noise its output is defined as following:

a = Wx + b (2.2)
y = f (a − ξ) (2.3)

where W ∈ Rm×n and b ∈ Rn are neuron weight and bias parameters respectively, a
is neuron pre-activation, f (·) is an activation function and ξ is (a vectors of) indepen-
dent noise with a simple probability distribution (e.g., Gaussian, logistic).
Similarly, an artificial neuron with multiplicative noise is defined as:

y = f (a · ξ) (2.4)

where ξ is (a vector of) independent noises of same dimensionality as pre-activations
a and · is an operation of element-wise multiplication.
In this stochastic relaxation the expected loss becomes a smooth function and, thus,
is differentiable in network parameters, however it raises a problem of finding a
suitable (preferably unbiased) gradient estimator for backpropagation.

2.4 Gradient Estimators

Learning parameters of an Artificial Neural Network is a task of continuous opti-
mization which is usually solved with gradient-based methods (e.g., Stochastic Gra-
dient Descent). Similarly learning parameters of a Stochastic Neural Network is a
task of stochastic optimization, where instead of explicitly computing gradient of ex-
pectation of objective function w.r.t. function arguments one has to find or derive a
stochastic gradient estimator.
Task of learning parameters of a Stochastic Neural Network is defined as following:

Ex∼p(x)[l(x, θ)] → max
θ

(2.5)

where x is a vector of input examples, θ is a vector of network parameters and l is a
loss function. The gradient w.r.t. network parameters θ is then:

d
dθ

Ex[l(x, θ)] = Ex[
d
dθ

l(x, θ)] = Ex[
d

dyL l(x, θ)
d
dθ

yL] (2.6)

where L is the number of network layers and, thus, yL is the output of the last net-
work layer. Typical approach to calculating such an expression is to sample data
from p(x) and to approximate the theoretical expectation with an empirical expec-
tation, however nature of some widely used activation functions (e.g., sign function
which is not differentiable in 0 and has zero derivative everywhere else) might pose
additional challenges.

Chapter 2. Background 7

2.4.1 Straight-Through Gradient Estimator

Straight-Through estimator is a biased gradient estimator commonly used in Quan-
tized Neural Networks. The idea of the straight-through estimator is to simply by-
pass the piece-wise constant activation in the backward pass and treat it as if it was
an identity function, hence the name. This ad-hoc solution was first introduced em-
pirically, so now there exist few other options that were also derived for some spe-
cific practical cases. In this work, we use slightly different definition of STE, which
has a theoretical justification [36], to approximate gradients in the Stochastic Binary
Networks.
We define a stochastic binary neuron as a noisy sign mapping:

y = sign(a − z) (2.7)

where a = Wx + b is neuron pre-activation and z is a vector of independent noises.
Equivalently one can say that y is a random variable that follows {−1, 1} valued
Bernoulli distribution with probability p(y = 1) = P(a − z > 0) = P(a > z) = F(a)
where F denotes the c.d.f. of noise distribution. Due to definition of a Bernoulli r.v.,
E[y] = p(y = 1) = F(a).
Now one can define a straight-through gradient estimator for the binary neuron as
following:

d
dθ

Ex,z[l(x, θ)] = Ex,z[
d

dyL l(x, θ)
d
dθ

yL] = Ex[
d

dyL l(x, θ)
d
dθ

EzyL] (2.8)

For z ∼ logistic, p(y = 1) = Flog(a) = σ(a) where σ(·) is a sigmoid function. Thus,
equation 2.8 can be finished as:

Ex[
d

dyL l(x, θ)
d
dθ

Ezy] = Ex[
d

dyL l(x, θ)
d
dθ

σ(a)] (2.9)

FIGURE 2.3: The sign function and proxy functions for derivative
used in the STE. First column - sign function and its derivative, sec-
ond column - identity and function and its derivative, originally used
in the STE, third - hard tanh function which becomes a proxy for step
function when uniform noise (below) is injected to the neuron, last col-
umn - tanh function which becomes the proxy is one injects logistic

noise illustrated below.

Chapter 2. Background 8

2.4.2 Score Function Gradient Estimators

The Score Function Gradient Estimator is one the easiest and most general unbiased
estimators which is widely used in research and is also known as the likelihood ratio
method [13] and REINFORCE estimator [40].
The score function itself is the derivative of log of a function:

d
dθ

f (x, θ) = f (x, θ)
d
dθ

log f (x, θ) (2.10)

This identity is useful for deriving a gradient estimator with a Monte Carlo method,
i.e., sampling data from distribution and calculating empirical expectation:

d
dθ

Ex∼p(x,θ) f (x) =
d
dθ

∫
p(x, θ) f (x)dx =

∫ d
dθ

p(x, θ) f (x)dx =

=
∫

p(x, θ)
d
dθ

[log p(x, θ)] f (x)dx = Ex[f (x)
d
dθ

log p(x, θ)] (2.11)

∼ 1
N

N

∑
i=1

[f (xi)
d
dθ

log p(xi, θ)]

It is worth to note that the Score Function Estimator has no restrictions on the form of
f (·, θ), its continuity and differentiability. Another important comment is that while
being unbiased, this estimator has a high variance.

9

Chapter 3

Related works

3.1 Studies on Properties of Stochastic Neural Networks

It is well known that Multilinear Feed Forward Neural Networks are the universal
approximators for the real-valued functions [19]. However, FFNNs are capable only
of directly mapping a set of inputs to a set of outputs which is not enough for model-
ing stochastic processes. Thus, in 2004 Stochastic Neural Networks were introduced,
initially as a mathematical tool for modeling biological and physical processes [7].
As mentioned in section 2.3, one can also interpret SNNs outputs as probabilities
of a stochastic predictor. Due to variety of interpretations and ways to introduce
stochasticity to a Neural Network, training of the SNNs has been a wide and impor-
tant topic of research for many years [26, 30].
The later research was more focused on generalizing properties of SNNs. Following
the studies on approximating abilities of ANNs, both deep and shallow stochastic
sigmoid feedforward networks were shown to be capable of universal approxima-
tion [28]. Combination of ability to model complicated probabilistic distributions
and universal approximation suggested that SNNs might also have generative abil-
ities. Despite thorough research they did not outperform Generative Adversarial
Networks but showed to be useful for real-life applications.
Stochastic Neural Networks have found applications not only as generative models,
but also in unsupervised feature learning [17, 31], semantic hashing [33], and natural
language understanding [35], among others. Unsupervised training with SNNs can
be used as a parameter initialization strategy for subsequent supervised learning,
which was a key technique in the rise of Deep Learning in the years 2000s [18, 3].

3.2 Network Regularizations for Increasing Adversarial Ro-
bustness

Building adversarially robust models is an optimization problem with two objec-
tives: (i) maintain test accuracy on clean unperturbed images, and (ii) be robust to
large adversarial perturbations. In chapter 1 we briefly discuss main approaches for
solving such a problem. Current SOTA approaches which are mostly variations of
adversarial learning with heuristics usually improve adversarial robustness at a cost
of test accuracy. Moreover they usually are vulnerable to new, stronger attacks [6].
This had lead research community to develop theoretical tool to certify adversarial
robustness.
First theoretical approaches were based on linear and mixed-linear programming
[41]. These methods are what is are called provably robust, i.e., they can verifiably
guarantee that for a given data example x, no perturbation ∆ in l∞ less that some

Chapter 3. Related works 10

specified ϵ can change the class label that the network predicts for the perturbed ex-
ample x + ∆. However such provable rosubtness can be guaranteed only for rather
small-sized networks, moreover general effectiveness of these approaches does not
scale well to deeper networks.
The later approaches were based on randomized smoothing [34] or estimates of the
local Lipshitz constant. Randomized smoothing of a classifier f : Rd → Y returns a
smoothed classifier g which for input image x predicts class label that is most likely
to be returned by base classifier f when x is perturbed by isotropic Gaussian noise:

g(x) = arg max
c∈Y

P(f (x + ϵ) = c) (3.1)

where ϵ ∼ N (µ, σ2). An equivalent definition is that g(x) predicts the class c whose
pre-image {x‘ ∈ Rd : f (x‘) = c} has the largest probability measure under the dis-
tribution N (µ, σ2). The noise level σ is a hyperparameter of the smoothed classifier
g(·) which controls a robustness/accuracy tradeoff; it does not change with the in-
put x.
Randomized smoothing method scaled well to Deep Networks trained on ImageNet-
1k. It is also worth mentioning that randomized smoothing combined with ad-
versarial training has shown great promise for adversarial robustness certification
against attacks in the l2-norm , although it is not yet clear how randomized smooth-
ing may be adapted to other norms.
In 2019 Finlay and Oberman [12] derived a theoretical lower bound for the pertur-
bation to change model decision. This derivation was based on assumption of Lips-
chitz continuity of a loss function and motivated a need for gradient regularization
which lead to increase of a minimum adversarial distance - minimum distance be-
tween clean data sample and an adversarial one - for which adversarial data sample
is classified correctly. Gradient regularization method proved to be competitive with
adversarial training and scaled well to ImageNet-1k.

11

Chapter 4

Methodology

4.1 Scope of Work

In this work, we perform experiments with Stochastic Convolutional Neural Net-
works with sign and ReLU activation functions. To implement the stochastic relax-
ation of the networks we inject each block - Conv2D + (optionally) BatchNorm2D
+ activation function - with either additive or multiplicative noise before applying
activation function, i.e., we use stochastic activations. We also want to try different
models of stochastic neurons, thus we use two different noise distributions: Gaus-
sian and logistic.

FIGURE 4.1: Probability density functions of chosen noise distribu-
tions: Gaussian (std = 2) on left and logistic (std = 2) on right

For gradient estimation in binary stochastic neurons we use Straight-Trough and
Score Function Gradient Estimators discussed in section 2.4. ReLU activation is ev-
erywhere differentiable, so backpropagation in the Stochastic ReLU Networks poses
no additional challenges for us.
Measuring and analysing model performance on adversarial examples is closely re-
lated to the analysis of generalization abilities of the model. Thus, besides measur-
ing model performance on adversarial attacks we also want to perform qualitative
experiments to see how the injected noises affect model accuracy, model certainty
on both correct and wrong predictions, explore extracted fearures etc. In the conclu-
sions, we compare performance of stochastic models with the SOTA approach which
is training model on a mixture of clean and adversarial data.

4.2 Stochastic Artificial Neuron

In section 4.1 we mentioned that we introduce stochasticity to networks by either
adding or multiplying neuron pre-activation by an independent noise sampled from
Gaussian and logistic distributions. We are still left with the choice of noise distribu-
tion parameters.

Chapter 4. Methodology 12

Expectation and variance of sum and product of two independent random variables
X and Z is defined as following:

E[X + Z] = E[X] + E[Z] (4.1)

Var[X + Z] = Var[X] + Var[Z] (4.2)

E[XZ] = E[X]E[Z] (4.3)

Var[XZ] = Var[X]Var[Z] + Var[X]E2[X] + Var[Z]E2[Z] (4.4)

From these definitions one might have two proposals:

• set E[Z] = 0 and Var[Z] = 1 in order to preserve statistics of distribution of
layer pre-activations. In this approach multiplicative noise can be viewed as a
random reweighting of the features extracted by the layer which might result
in more uniform distribution of feature importance.

• use noise addition/multiplication as a regularization of pre-activation distri-
bution, i.e., set E(Z) and Var(Z) to some data-driven values.

In this work we explore the noise distributions with E(Z) = 0 to preserve asymp-
totic unbiasedness of the predictors. However, we change the value of Var(Z), or
equivalently std(Z), throughout the experiments. We treat the ratio between stan-
dard deviation of the clean data distribution and the standard deviation of the noise
distribution as a noisiness ratio - the level of noisiness injected in the network.
Namely, the statistics of the clean dataset are E(X) = 0.5 and std(X) = 0.5 (these
statistic were calculated on random sample of 7000 images, which is 10% of original
dataset, drawn from both training and test parts of the dataset). Thus, to achieve 5%,
10% and 20%-level of noisiness we sample noises from distributions with std(Z) =
[0.025, 0.05, 0.01].

4.3 Adversarial Attacks

4.3.1 Targeted Adversarial Attack

The traditional strategy for finding a targeted adversarial example is as follows:
given some classifier p(y|x), some input x ∈ Rn, some target class ŷ and a maximum
perturbation ϵ, we want to find the input x̂ that maximizes p(ŷ|x̂) (or equivalently
log p(ŷ|x̂)), subject to the constraint ||x − x̂||∞ ≤ ϵ. When p(y|x) is parameterized
by a neural network, an attacker with access to the model can perform iterative gra-
dient descent on x in order to find a suitable input x̂. Such an approach was first
introduced in 2016 as Iterative Fast Gradient Sign Method [24] and is mathematically
defined as following:

xadv
0 = x, xadv

i = clip0,max(x)−ϵ(xadv
i−1 − ϵ sign(∇x J(θ, xadv

i−1, yLL))) (4.5)

where clip function is used to keep the overall change in the ϵ-range, ϵ is the maxi-
mum perturbation hyperparameter, J is an objective function used for model train-
ing, θ is a vector of model parameters and yLL is a target class, the one which initially
is considered the least likely for a data sample x. Instead of the least likely class as a
target one can use any class other that the ground-truth one.

Chapter 4. Methodology 13

FIGURE 4.2: Targeted adversarial examples generated with the It-
erative Fast Gradient Sign Method. Top row - original images from
Fashion-MNIST dataset, values are scaled to [0, 1] range, middle row -
adversarial examples generated with FGSM, maximum perturbation
ϵ = 0.05, also in [0, 1] value range, bottom row - absolute differences

between original and adversarial images, value range [0, 0.05].

4.3.2 Untargeted Adversarial Attack

Untargeted adversarial attacks are considered weaker than targeted ones in a sense
that they usually provide less change to the input image but at the same time they
are easier and computationally cheaper to implement.
For data sample x, respective ground-truth label y, model with parameters θ and
loss function J an untargeted one-iteration variant of the Fast Gradient Sign Method
is defined as following:

xadv = x + ϵ sign(∇x J(θ, x, y)) (4.6)

From such a definition one cas see that this method relies on increasing the loss value
associated with the ground-truth label hoping to "push" loss for other classes lower.
However, this might not be the case: untargeted FGSM may return an adversarial
example which is still correctly classified by the model or is classified as something
very similar (e.g., boot classified as a sneaker).

FIGURE 4.3: Untargeted adversarial examples generated with Fast
Gradient Sign Method. Top row - original images from Fashion-
MNIST dataset, values are scaled to [0, 1] range, middle row - ad-
versarial examples generated with FGSM, maximum perturbation
ϵ = 0.05, also in [0, 1] value range, bottom row - absolute differences

between original and adversarial images, value range [0, 0.05].

Chapter 4. Methodology 14

4.3.3 Missing Features Attack

We introduce one more metric for model robustness estimation - missing features
attack. Motivation for such a metric comes from the observations of heat maps pro-
duced by layers activation for certain data examples (illustrated on Fig.4.4): some
images from different classes cause very similar activation of later network layers
leading us to believe that not all class-defining features are taken by network into
account. We observed such a behaviour in both Binary and ReLU baseline models,
moreover it happens not only for classes of similar articles of clothing (e.g., shirt and
coat) but also for dissimilar ones (e.g., boot and bag).

FIGURE 4.4: Heat maps of l2-norms over the activation channels for
Conv2D layers in the baseline ReLU network. Top row - input im-
age is from class boot, bottom row - input image from class bag. One
can see that those two objects that belong to different classes produce
very similar heatmaps and as a result are both classified as a bag with

confidence > 0.9.

Given such highly non-uniform distribution of feature importance, we want to mea-
sure how network performance is affected by "turning off" some random features.
We implement this method simply with a dropout module:

xadv = dropoutp(x) (4.7)

FIGURE 4.5: Adversarial examples generated with Missing Features
approach: top row - original images from Fashion-MNIST dataset,
middle row - generated images with p = 0.1, bottom row - generated

images with p = 0.5.

15

Chapter 5

Experiments

5.1 Experimental setup

For our experiments, we consider the Fashion-MNIST dataset [42]. Since there is no
published Deep Learning benchmark for Fashion-MNIST classification, we trained a
baseline model with an all-convolutional architecture which is illustrated in Fig. 5.2.
Achieved test accuracy is 90% (the best published benchmark - Support Vector Clas-
sifier - achieves mean test accuracy 89.7%). Results on baseline model robustness to
adversarial attacks are showed and discussed in section 5.3.

FIGURE 5.1: Sample data from Fashion-MNIST [42]. The dataset con-
sists of 28x28 grayscale images from 10 classes. The training set in-

cludes 60000 images, while the testing set - 10000 images.

FIGURE 5.2: Architecture of baseline model. The same block architec-
ture - Conv2D + BatchNorm2D + activation - is preserved in all exper-
iments. However, in some experiments with stochastic neurons we
turn off the batch normalization - i.e. eliminate BatchNorm2D from

the model block and keep only Conv2D and activation function.

Chapter 5. Experiments 16

The main goal of experiments is to measure models robustness to adversarial
attacks described in the chapter 4. We then explore further questions: does the in-
troduced stochasticity impact model ability to generalize on the data and whether it
can lead to other benefits. More explicitly, we look at the distributions of activations
and gradients values during training of both deterministic and stochastic models as
well as try to analyze features extracted by the models.

5.2 Implementation and Training Details

To conduct the experiments we used Python, more specifically Python3 program-
ming language. All the models and stochastic modules were implemented using
PyTorch library.
All the stochastic models were trained with Negative Log Likelihood:

lNLL(θ; x, y) = −
C

∑
k=1

yk log ŷk(x; θ) (5.1)

where, x is the data sample, y is respective ground-truth label, θ is a vector of net-
work parameters, ŷ(θ) represents predictions of model parameterized by θ and C is
total number of classes. For ground-truth label y given as a one-hot encoding vector
the NLL loss expression can be simplified as following:

lNLL(θ; x, y) = − log ŷi:yi=1(x; θ) (5.2)

From such definition one can see that optimizing NLL loss becomes equivalent to
maximizing the likelihood of model predicting the correct label which in turn is
equivalent to minimizing the empirical 0/1 loss for a deterministic predictor [27].
The deterministic models were trained with Cross Entropy loss combined with soft-
max activation in the last layer [8].
Both the loss functions were optimized with the Adam optimizer [21]. Hyperpa-
rameters of the optimizer (i.e., learning rate α and moving average parameters β1
and β2) are different for few experiments and are documented in respective experi-
ment configuration files. We trained all the models for 100 epochs.
Code for experiments reproduction can be found here: sol4ik/stochastic-predictors

5.3 Results on Adversarial Robustness

For these experiments, we train deterministic models on a mixture of clean and ad-
versarial examples generated with one-iteration FGSM, ϵ = 0.07; a new set of ad-
versarial examples is generated based on new model parameters after every 20th

training epoch. We also train stochastic models on clean data only. Later we test all
the models against adversarial attacks discussed previously with different hyperpa-
rameters.

Looking at the plots of models performance on attacks (Fig. 5.3 - 5.5) one can see
that stochastic models indeed perform relatively better that the deterministic base-
line model, however they are not quite competitive with the network trained on
adversarial examples. Besides this, we observe quite interesting behaviour of the
models. Neural Network injected with Gaussian noise seems to be invariant to hy-
perparameters change for all the attacks. Stochastic Network with logistic noise also

https://github.com/sol4ik/stochastic-predictors

Chapter 5. Experiments 17

FIGURE 5.3: Test accuracy of models on targeted adversarial exam-
ples generated with FGSM. On x-axis - maximum perturbation ϵ, on

y-axis accuracy. Stochastic models are injected with additive noise.

FIGURE 5.4: Test accuracy of models on untargeted adversarial ex-
amples. Stochastic models are injected with additive noise.

Chapter 5. Experiments 18

FIGURE 5.5: Test accuracy of models on adversarial examples gener-
ated with missing features attack. On x-axis - ratio of missing features

p. Stochastic models are injected with additive noise.

shows almost constant accuracy except for last few attack runs which are the hard-
est. Model trained on mixture of clean and adversarial data performs well only on
attack of same type which was used for adversarial examples generation, we even
see a small increase in performance for attack with ϵ close to 0.07 which was used
during training.
From these observation, we assume the following:

• The model trained on mixture of clean and adversarial images overfitted to the
adversarial data, later in section 5.4 we discuss performance of this model on
clean data and other results support this assumption.

• Stochastic Neural Networks injected with logistic noise show better perfor-
mance compared to Networks injected with Gaussian noise. This assumption
is also supported by the following experiments.

• Stochastic models learned data representation which is truly invariant to small
perturbations in input examples, however this representation does not capture
well true data distribution.

5.4 Impact of Stochasticity on Model Generalization

5.4.1 Model Accuracy

In section 3.2 we mentioned that improvement of on adversarial robustness of a
DNN often comes at a cost of accuracy on clean test data. Even though the achieved
adversarial robustness of stochastic models is not so far competitive with the re-
sults achieved with adversarial learning, one can see that stochastic models perform
much better on the clean data compared to the baseline model trained on adversarial
examples.

Chapter 5. Experiments 19

FIGURE 5.6: Test accuracy of Stochastic ReLU models. On left results
of models injected with additive noise, on right - with multiplicative
noise. For both plots, first bar column represents accuracy achieved
by the baseline model trained with adversarial learning, blue bars rep-
resent accuracy of models with injected Gaussian noise, orange - with
logistic noise, dashed line represents the test accuracy of a determinis-

tic baseline model trained on clean data.

As one might expect injecting a model with noise of distribution with smaller
value of standard deviation results in better performance on test data. Both ReLU
and Binary models injected with logistic noise showed better accuracy. In case of
Binary NNs, we explain this with the fact that Straight-Through Estimator for lo-
gistic noise becomes closer to the true gradient value; for Score Function Gradient
Estimator-based neuron there is almost no difference in performance results.
It is worth noting that results discussed and illustrated in Fig. 5.6 and the rest of
chapter 5 where obtained after a single run of model training. For better analysis
one should conduct more training experiments and rather analyze mean value and
standard deviation of accuracy values obtained.

5.4.2 Proneness to Overfitting

Due to high dimensionality of representation space and large amount of parameters
Deep Neural Networks tend to overfit on training data. Formally, statistical model
overfitting is defined as the production of an analysis that corresponds too closely
or exactly to a particular set of data. In practice one might detect model overfitting
by observing its performance on both training and test data: if model performance
on train data is comparably better than its performance on test data, there is a high
chance of overfitting.
For our specific case of Fashion-MNIST classification, we define model overfitting as
training accuracy going over 90% while test accuracy stays incomparably low (e.g.,
around 70%).
We observed no overfitting neither for deterministic models, nor their stochastic
counterparts. However, as illustrated on Fig. 5.7, one can see that rate of accuracy
growth on both train and test data for stochastic models is very small compared to
the case of deterministic model which is a sign of more uniform learning.

Chapter 5. Experiments 20

FIGURE 5.7: Learning curves for deterministic Binary model (left) and
its respective stochastic counterpart (right); gradient estimator used

for Stochastic Binary NN is STE.

5.4.3 Model Confidence on Correct and Wrong Predictions

Now we look at the confidence level of model predictions. Motivation for this ex-
periment comes from the fact that even when making incorrect predictions Neural
Networks tend to be very confident about them, i.e., score returned by the network,
which is later interpreted as a probability/confidence, is usually over 0.9. We again
look into three different models: deterministic model trained in clean data, deter-
ministic model trained with adversarial data and stochastic model, and check their
predictions on clean test dataset.
For all models we observe almost identical (there are insignificant changes in the
counts of confidence values lower than 0.5 for incorrect predictions) distribution of
confidence level for both correct and wrong predictions. Histograms of respective
distributions are illustrated in Fig. 5.8.

FIGURE 5.8: Histograms of model confidence. On left confidence dis-
tribution for predictions made by deteministic ReLU model, in middle
- by deterministic ReLU model trained on mixture of clean and ad-
versarial data, on left - by stochastic ReLU model with Gaussian noise

(std(Z) = 0.1) injected.
For all histograms: in green - confidence on correct predictions, in red

- confidence on wrong predictions.

5.4.4 Extracted Features Analysis

In our last experiments we try to compare and analyse features extracted by deter-
ministic and stochastic models. We look at the features extracted by the models,
more specifically we look at the outputs of the block 8 (Fig. 5.2) and map them to 2D
space with t-SNE mehtod for better visualization.

Chapter 5. Experiments 21

FIGURE 5.9: T-SNE plots of features extracted with deterministic (on
left), adversarial (on right) and stochastic (on bottom) ReLU models.
The stochastic model is injected with additive logistic noise, std(Z) =

0.025.

We observe quite interesting shapes of features clusters in data representation
learned by stochastic networks. For both Gaussian and logistic noise clusters tend to
have flowy shapes rather than solid ellipses as in case of determinsitic models (Fig.
5.9). Both additive and multiplicative noise act as a shaping factor and show to truly
regularize representation space, however, as we can see thee is a need to try different
noise distributions for possibly better results.

22

Chapter 6

Conclusions

6.1 Results discussion

In this work we have proposed and proved a hypothesis that stochastic relaxation
of an Artificial Neural Network helps to increase its adversarial robustness. Exper-
imentally we showed that injecting neuron pre-activations with additive or multi-
plicative noise from logistic distribution can help to increase model accuracy on ad-
versarial examples generated with different methods almost ×1.7 times while loos-
ing only up to 10% of accuracy on clean data. We also compare performance of
stochastic models with the model trained on adversarial examples which is current
SOTA approach for building adversarial robustness. Even tough our method does
not show competitive results compared to adversarial training, we show with other
qualitative experiments that stochastic models show better generalizing abilities and
potential for further improvement compared to deterministic models trained on ei-
ther clean or adversarial data.
In sections 5.3 we show that data representation learned by Stochastic Neural Net-
works is indeed invariant to small data perturbations, however further fine-tuning
and/or regularization is needed to learn representation which is closer to the true
data distribution.

6.2 Future work

We briefly mention in section 5.4 that all results that were illustrated and discussed
in this work were obtained after a single run of each training experiment. For better
statistical analysis of noise injection impact on model performance it is needed to
performs multiple runs of training experiments and analyze obtained sequence of
values.
The noise distributions we chose for our experiments are too close value-wise and,
thus, did not provide us with the desired variety of Stochastic Artificial Neuron
models. We plan to explore different noise distributions (e.g., uniform) along with
data preprocessing in order to get different statistics on clean dataset.
Our last proposal for further improvement is to inject each layer with noise of dif-
ferent distribution (e.g., change std(Z) for each Conv2D layer according to change in
pre-activations statistics) in order to perform better regularization of (pre-)activations
in every layer.

23

Bibliography

[1] Lei Zhang et al. Deep Learning for Sentimental Analysis: A Survey. 2017. arXiv:
1801.07883.

[2] Milad Alizadeh et al. “A Systematic Study of Binary Neural Networks’ Opti-
misation”. In: International Conference on Learning Representations. 2019.

[3] Y. Bengio et al. “Greedy layer-wise training of deep networks”. In: vol. 19. Jan.
2007.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. “Estimating or
Propagating Gradients Through Stochastic Neurons for Conditional Compu-
tation”. In: CoRR abs/1308.3432 (2013). arXiv: 1308.3432.

[5] Joseph Bethge et al. Back to Simplicity: How to Train Accurate BNNs from Scratch?
2019.

[6] Nicholas Carlini and David Wagner. Adversarial Examples Are Not Easily De-
tected: Bypassing Ten Detection Methods. 2017.

[7] Paolo Crippa, Claudio Turchetti, and Massimiliano Pirani. “A Stochastic Model
of Neural Computing”. In: Knowledge-Based Intelligent Information and Engineer-
ing Systems. Ed. by Mircea Gh. Negoita, Robert J. Howlett, and Lakhmi C. Jain.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 683–690.

[8] Cross Entropy loss. URL: https://pytorch.org/docs/stable/generated/
torch.nn.CrossEntropyLoss.html.

[9] Zehao Dou, Stanley J. Osher, and Bao Wang. Mathematical Analysis of Adversar-
ial Attacks. 2018. arXiv: 1811.06492 [cs.LG].

[10] Kevin Eykholt et al. Robust Physical-World Attacks on Deep Learning Models.
2018. arXiv: 1707.08945 [cs.CR].

[11] Lijie Fan et al. When Does Contrastive Learning Preserve Adversarial Robustness
from Pretraining to Finetuning? 2021.

[12] Chris Finlay and Adam M. Oberman. “Scaleable input gradient regulariza-
tion for adversarial robustness”. In: Machine Learning with Applications 3 (2021),
p. 100017. ISSN: 2666-8270. URL: https://www.sciencedirect.com/science/
article/pii/S2666827020300177.

[13] Peter W. Glynn. “Likelihood Ratio Gradient Estimation for Stochastic Sys-
tems”. In: Commun. ACM 33.10 (Oct. 1990), pp. 75–84. ISSN: 0001-0782.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. 2014.

[16] Douglas Heaven. “Why deep-learning AIs are so easy to fool”. In: Nature 574
(2019). ISSN: 163-166. URL: https://doi.org/10.1038/d41586-019-03013-5.

https://arxiv.org/abs/1801.07883
https://arxiv.org/abs/1308.3432
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://arxiv.org/abs/1811.06492
https://arxiv.org/abs/1707.08945
https://www.sciencedirect.com/science/article/pii/S2666827020300177
https://www.sciencedirect.com/science/article/pii/S2666827020300177
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/d41586-019-03013-5

Bibliography 24

[17] G.E. Hinton and R.R. Salakhutdinov. “Reducing the Dimensionality of Data
with Neural Networks”. In: Science (New York, N.Y.) 313 (Aug. 2006), pp. 504–
7. DOI: 10.1126/science.1127647.

[18] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algo-
rithm for Deep Belief Nets”. In: Neural computation 18 (Aug. 2006), pp. 1527–54.
DOI: 10.1162/neco.2006.18.7.1527.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366. ISSN: 0893-6080.

[20] Sandy H. Huang et al. “Adversarial Attacks on Neural Network Policies”. In:
CoRR abs/1702.02284 (2017). arXiv: 1702.02284. URL: http://arxiv.org/
abs/1702.02284.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014.

[22] Pushmeet Kohli et al. Identifying and eliminating bugs in learned predictive mod-
els. Mar. 2019. URL: https://www.deepmind.com/blog/identifying-and-
eliminating-bugs-in-learned-predictive-models.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in Neural In-
formation Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates,
Inc., 2012.

[24] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. 2016.

[25] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation 1.4 (1989), pp. 541–551. DOI: 10.1162/neco.
1989.1.4.541.

[26] Kimin Lee et al. “Simplified Stochastic Feedforward Neural Networks”. In:
(Apr. 2017).

[27] Jiří Matas. Lecture notes on Pattern recognition and Machine learning course. Oct.
2021.

[28] Thomas Merkh and Guido Montúfar. “Stochastic Feedforward Neural Net-
works: Universal Approximation”. In: CoRR abs/1910.09763 (2019). arXiv: 1910.
09763. URL: http://arxiv.org/abs/1910.09763.

[29] Bruno A. Olshausen and David J. Field. “Sparse coding with an overcom-
plete basis set: A strategy employed by V1?” In: Vision Research 37.23 (1997),
pp. 3311–3325. ISSN: 0042-6989.

[30] Tapani Raiko et al. “Techniques for Learning Binary Stochastic Feedforward
Neural Networks”. In: (June 2014).

[31] M.A. Ranzato et al. “Unsupervised Learning of Invariant Feature Hierarchies
with Applications to Object Recognition”. In: July 2007, pp. 1–8. DOI: 10.1109/
CVPR.2007.383157.

[32] Pradeep Rathore et al. “Untargeted, Targeted and Universal Adversarial At-
tacks and Defenses on Time Series”. In: CoRR abs/2101.05639 (2021). arXiv:
2101.05639.

https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.2006.18.7.1527
https://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
https://www.deepmind.com/blog/identifying-and-eliminating-bugs-in-learned-predictive-models
https://www.deepmind.com/blog/identifying-and-eliminating-bugs-in-learned-predictive-models
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1910.09763
https://arxiv.org/abs/1910.09763
http://arxiv.org/abs/1910.09763
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1109/CVPR.2007.383157
https://arxiv.org/abs/2101.05639

Bibliography 25

[33] Ruslan Salakhutdinov and Geoffrey Hinton. “Deep Boltzmann Machines”. In:
Proceedings of the Twelth International Conference on Artificial Intelligence and Statis-
tics. Ed. by David van Dyk and Max Welling. Vol. 5. Proceedings of Machine
Learning Research. PMLR, 16-18 Apr 2009, pp. 448–455.

[34] Hadi Salman et al. Provably Robust Deep Learning via Adversarially Trained Smoothed
Classifiers. 2019.

[35] Ruhi Sarikaya, Geoffrey Hinton, and Anoop Deoras. “Application of Deep Be-
lief Networks for Natural Language Understanding”. In: Audio, Speech, and
Language Processing, IEEE/ACM Transactions on 22 (Apr. 2014), pp. 778–784.
DOI: 10.1109/TASLP.2014.2303296.

[36] Alexander Shekhovtsov, Viktor Yanush, and Boris Flach. Path Sample-Analytic
Gradient Estimators for Stochastic Binary Networks. 2020. arXiv: 2006.03143.

[37] Pramila P. Shinde and Seema Shah. “A Review of Machine Learning and Deep
Learning Applications”. In: 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA). 2018, pp. 1–6. DOI: 10 .
1109/ICCUBEA.2018.8697857.

[38] Christian Szegedy et al. Intriguing properties of neural networks. arXiv: 1312.
6199v1.

[39] Florian Tramèr et al. Ensemble Adversarial Training: Attacks and Defenses. 2017.

[40] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning”. In: Mach. Learn. 8.3–4 (May 1992), pp. 229–
256. ISSN: 0885-6125.

[41] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via
the convex outer adversarial polytope. 2017.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv: cs.
LG/1708.07747 [cs.LG].

[43] Weilin Xu, David Evans, and Yanjun Qi. “Feature Squeezing: Detecting Ad-
versarial Examples in Deep Neural Networks”. In: Proceedings 2018 Network
and Distributed System Security Symposium. Internet Society, 2018. arXiv: 1704.
01155.

[44] Penghang Yin et al. Understanding Straight-Through Estimator in Training Acti-
vation Quantized Neural Nets. 2019. arXiv: 1903.05662.

[45] Piotr Żelasko et al. Adversarial Attacks and Defenses for Speech Recognition Sys-
tems. 2021. DOI: 10.48550/ARXIV.2103.17122.

https://doi.org/10.1109/TASLP.2014.2303296
https://arxiv.org/abs/2006.03143
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://arxiv.org/abs/1312.6199v1
https://arxiv.org/abs/1312.6199v1
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1903.05662
https://doi.org/10.48550/ARXIV.2103.17122

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Deep Learning in Real-life Applications
	Downfalls of Deep Learning
	Existing Methods to Deter Adversarial Attacks on DNNs
	Focus of the Work

	Background
	Artificial Neural Networks
	Convolutional Neural Networks
	Stochastic Neural Networks
	Gradient Estimators
	Straight-Through Gradient Estimator
	Score Function Gradient Estimators

	Related works
	Studies on Properties of Stochastic Neural Networks
	Network Regularizations for Increasing Adversarial Robustness

	Methodology
	Scope of Work
	Stochastic Artificial Neuron
	Adversarial Attacks
	Targeted Adversarial Attack
	Untargeted Adversarial Attack
	Missing Features Attack

	Experiments
	Experimental setup
	Implementation and Training Details
	Results on Adversarial Robustness
	Impact of Stochasticity on Model Generalization
	Model Accuracy
	Proneness to Overfitting
	Model Confidence on Correct and Wrong Predictions
	Extracted Features Analysis

	Conclusions
	Results discussion
	Future work

	Bibliography

