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Abstract

Nowadays most modern systems/services are distributed and scalable to be able
to meet the growing amount of data and users per product. Therefore, this thesis is
related to the development of a multi-user distributed smart Face Recognition-based
home lock.

This system should provide the possibility for users to trigger the Face Recognition-
based authentication process without direct contact with the lock, which should be
comfortable for the user. Also, the system should support the enrollment of multiple
users.
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Chapter 1

Introduction

1.1 Biometrics-based security systems

1.1.1 Overview

Biometric-based security systems have gained significant importance in recent years
due to their ability to provide more reliable and efficient authentication and access
control methods. Traditional security measures like passwords, PINs, or physical
access cards have limitations, such as being quickly forgotten, shared, or stolen.
Biometric-based systems leverage unique physiological or behavioral characteris-
tics, such as fingerprints, facial recognition, iris scanning, or voice patterns, for iden-
tification purposes.

1.1.2 Post COVID-19

Since November 2019, COVID-19 has forced many people to change their behavior
to avoid spreading the virus. One of the most important measures is social distanc-
ing, which involves keeping a safe distance from others. As a result, developing
multi-user or publicly available solutions that do not require direct physical con-
tact is preferable. Therefore, using biometrics can be a more hygienic alternative for
authentication and access control.

1.1.3 Under GDPR

However, there are some implications regarding working with, transferring, and
storing biometrics. With the widespread adoption of biometrics, privacy, and data
protection concerns have arisen, particularly in the General Data Protection Regula-
tion (GDPR[7]) context. Biometric data is considered sensitive personal data under
GDPR, and organizations must adhere to strict guidelines when collecting, process-
ing, and storing such information. This includes obtaining explicit consent from
individuals, implementing robust data security measures, and ensuring data mini-
mization and transparency in processing.

1.1.4 Enforcement of GDPR

Since May 2018 [12], the General Data Protection Regulation (GDPR) came into ef-
fect, replacing the Data Protection Directive 95/46/EC. The enforcement of GDPR
has been relatively active, with numerous fines and penalties being imposed on non-
compliant organizations. The European Data Protection Board (EDPB) has been
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the primary regulatory body responsible for enforcing GDPR. It has issued sev-
eral guidelines and recommendations to help organizations comply with the reg-
ulation. Since then, one of the most significant changes in enforcing GDPR has been
increased fines for non-compliance. Initially, the maximum fine for non-compliance
was €20 million or 4% of the organization’s global annual turnover, whichever was
higher. However, this has since been increased to €50 million or 4% of the global
annual turnover.

1.2 Problem formulation

To cope with evolving market challenges, we need to be able to develop solutions
flexible/modular enough to be ready to improve and adjust to new requirements.
Therefore, on the example of an FR-based smart home lock, we propose to design &
implement a biometrics-based security system with GDPR compliance in mind.



3

Chapter 2

Related Works

2.1 Detection

In computer vision, object detection is a common problem that involves identifying
and localizing objects of interest within an image or a video stream. The main goal
it to predict location of object of interest,i.e., bounding box within the image.

Often, bounding boxes are represented by coordinates of the top-left corner (xmin,
ymin) and coordinates of the bottom-right corner (xmax, ymax) or box height and width.

2.1.1 Face Detection

In the most simple settings Face Detection requires predicting bounding boxes per
each face on an image or a video stream.

Most common approaches:

1. The Viola-Jones Object Detection Framework[21]. First real-time object detec-
tion framework, and it has been widely used for face detection. It uses Haar-
like features and a cascade of classifiers (using AdaBoost) to detect faces in
an image. The algorithm has four stages: Haar Feature Selection, Creating an
Integral Image, Adaboost Training, and Cascading Classifiers.

2. Deep Learning Based Approaches. Deep learning methods have shown excel-
lent performance in face detection in recent years. They use convolutional neu-
ral networks (CNNs) to scan images in a multi-scale and sliding window fash-
ion. Notable architectures include Multi-task Cascaded Convolutional Net-
works (MTCNN[24]) and HR-ERNet. MTCNN, for example, uses a cascaded
architecture with three stages of increasingly more complex networks to pro-
pose candidate bounding boxes and refine their positions.
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3. YOLO (You Only Look Once)[17]. YOLO is a popular real-time object detection
system that can be trained to detect human faces. It frames object detection as a
regression problem to spatially separated bounding boxes and associated class
probabilities.

2.1.2 Hand Detection

1. Single Shot MultiBox Detector (SSD)[13]. The SSD framework is based on a
feed-forward convolutional network that produces a fixed-size collection of
bounding boxes and scores for the presence of object class instances in those
boxes. The main advantage of SSD is its speed - it’s much faster than methods
that involve generating proposal regions due to the fact that it completely elim-
inates proposal generation and subsequent pixel or feature resampling stages
and encapsulates all computation in a single network. In the context of hand
detection, the SSD model would be trained on a dataset of images with labeled
hands. It would learn to recognize hands and output bounding boxes around
them.

2. Hand Segmentation Using Learning-Based Prediction and Verification for Hand
Sign Recognition [4]. This 1998 paper discusses a skin color-based approach to
hand segmentation, which is a key step in hand detection. The authors use
a combination of skin color segmentation and a verification process involv-
ing motion analysis and shape matching to detect hands in the context of sign
language recognition.

2.2 Recognition

Recognition problems in computer vision involve identifying objects, persons, places,
or actions in images or videos. The objective of these problems is to label or catego-
rize the visual content according to pre-defined classes.

2.2.1 Face Recognition

Eigenfaces

Eigenfaces[20]. This is an older technique that involves performing Principal Com-
ponent Analysis (PCA) on the face images to extract the most significant features,
called Eigenfaces.

Deep Convolutional Neural Networks (CNNs)

This involves training a CNN to classify the face images directly. This approach can
be powerful, but it often requires a large amount of labeled training data, which
often is not achievable.

Deep Metric Learning

Deep metric learning involves training a deep learning model to learn an embedding
space where distance corresponds to a similarity metric. In the case of face recog-
nition, this means that the model should learn to map images of the same person’s
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face to nearby points and images of different people’s faces to distant points.
Metrics and models:

1. FaceNet[schroff-2015]. It uses an Euclidean space for face representations. The
model is trained using a triplet loss function. Triplet loss involves triplets of
images: an anchor (a), a positive example (p) that matches the anchor, and
a negative example (n) that does not match the anchor. The goal is to learn
a function f such that the distance between f(a) and f(p) is smaller than the
distance between f(a) and f(n). FaceNet uses a deep convolutional network
trained to directly optimize the embedding itself, rather than an intermediate
bottleneck layer.

2. ArcFace (DeepInsight)[5]. The ArcFace method introduces an additive angular
margin loss to the softmax loss (often referred to as ArcFace loss) to perform
highly efficient and discriminative face recognition. It emphasizes the margin
between positive and negative pairs, making the features more discriminative.

Retrieval. For real-time inference, it is crucial to optimize embedding organization
and retrieval, often referred to as indexing. Common types of indexing:

1. Brute Force Indexing: In this simplest method, to retrieve the most similar
objects to a given query, you would compute the distance between the query
and each data point in your dataset. The main disadvantage of this method is
that it doesn’t scale well, as you have to compute the distance to every single
data point.

2. Approximate Nearest Neighbor (ANN) Indexing: This method is a more ef-
ficient way to find the most similar objects. Instead of computing the exact
distance to every data point, it uses various algorithms to find approximate
nearest neighbors. The advantage is that it’s much faster and can handle larger
datasets. There are multiple libraries available that offer ANN indexing, like
FAISS (Facebook AI Similarity Search), Annoy (Spotify), or NMSLIB (Non-
Metric Space Library).

2.2.2 Gesture Recognition

1. Real-Time Hand Gesture Recognition Using Finger Segmentation[3]. This pa-
per proposes a real-time hand gesture recognition system based on finger seg-
mentation. It presents a method for segmenting the fingers from hand images
and uses geometric features of the fingers for gesture classification.

2. Hand Gesture Recognition Using 3D Convolutional Neural Networks[15]. This
paper presents a 3D convolutional neural network-based approach for hand
gesture recognition. It utilizes 3D convolutional filters to capture both spatial
and temporal information from the hand gesture sequences

3. Template Matching. his approach involves creating a database of hand gesture
templates and comparing input gestures with these templates. Various match-
ing techniques such as Euclidean distance or correlation coefficients are used
to identify the closest match.
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2.3 Split Computing

A concept where the computation process is split between the device and the cloud.
In other words, part of the computation is offloaded to the cloud, which reduces the
processing burden on the device and can help to conserve battery life and processing
power. This is often used in conjunction with edge computing to provide a balance
between processing power and latency. It is also referred to as federated learning,
is a method of machine learning where the algorithm is trained across multiple de-
centralized edge devices or servers holding local data samples, without exchanging
them. This is particularly valuable in scenarios where privacy is a concern, as it helps
to maintain the confidentiality and integrity of data. Applying split computing or
federated learning for face recognition tasks can provide a significant enhancement
in privacy protection. In a typical centralized face recognition system, facial images
or extracted features need to be uploaded to a central server for processing. This
potentially raises serious privacy concerns, as sensitive personal data is being trans-
ferred and stored centrally.
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Chapter 3

Methodology

3.1 Face Detection & Recognition

3.1.1 Detection

Criteria for the approach:

1. Low overhead – should allow real-time execution on an edge device, with little
to no unnecessary overhead.

2. Robustness – should avoid as much as possible incorrect object detection. If a
lot of incorrectly detected objects are processed and sent to the server it creates
a significant overhead to the whole security system

Possible approaches:

1. Haar feature-based cascade classifier [22]. It is a lightweight classic computer
vision algorithm. Its implementation is available as part of OpenCV library[16].

2. MTCNN [23]. Multi-task Cascaded Convolution Network, is robust enough
DL approach. Its implementation is available as part of facenet-pytorch library
[19]

3. BlazeFace[2]. It is a lightweight and well-optimized face detection model built
by Google and designed for mobile and edge devices. It’s part of the Medi-
aPipe[14] framework, which is a cross-platform framework for building mul-
timodal applied machine learning pipelines for mobile devices.

We tried both of those three approaches. As expected, the classic algorithm (from
OpenCV library) has proven to be the most lightweight approach, but also the least
robust one. The MTCNN has yielded the best results out of those three but had the
greatest overhead which is also problematic. The BlazeFace-based face detector from
mediapipe has not that great but reasonable precision and little overhead. Therefore,
we have chosen the golden center between those 2 which is BlazeFace because it is
both robust and lightweight enough for our hardware.

3.1.2 Recognition

Criteria for the approach:

1. Zero-shot – should not require readjustment (retraining) after adding a new
user/face.
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2. Robustness – should be able to determine outliers in most cases.

Due to the availability of large amounts of data [6], current SOTA FR approaches are
deep network-based.
Possible approaches:

1. Transfer learning. It is a powerful technique in machine learning that allows
models to transfer knowledge learned from one task to another. In the con-
text of deep metric learning, it can be used to leverage pre-trained models,
often trained on large-scale, diverse datasets, to learn useful representations in
a new, possibly smaller, dataset. It can also speed up training, as starting from
a pre-trained model often requires less training time to reach a good perfor-
mance level.

2. From scratch. We can train a model from scratch using random initialization
of the weights. This may be a viable option when our dataset is large enough
and sufficiently different from the datasets on which pre-trained models are
typically trained. However, this often requires a substantial amount of data
and computational resources.

For this task, we have chosen Deep Metric Learning approach with the ResNet18[10]
network trained using ArcFace loss [5]. The pre-trained network is provided as part
of arcface-pytorch [18]) package.

Inference

We use cosine distance as the measure of similarity, the smaller the distance the more
similar are two vectors.

d(u, v) = 1 − u · v
||u|| · ||v||

We assume the vectors may belong to the same user face when the distance between
those two vectors is smaller than a certain threshold

s(u, v, sth) = d(u, v) < sth

sth is similarity distance threshold

We define the probability of vector q representing the face of user u, as a ratio of
user u face feature vectors from the Index that are similar enough to vector q over
the total number of face feature vectors of user u residing in the Index.

p(q, u, sth) = ∑n
i=1 s(q, ui, sth)

n

ui is user u face feature vector.
n is the total number of user u face feature vectors.

A lock is to be opened if and only if the person’s face corresponds to one of the
known users. We assume that the vector belongs to the known user if the highest
user probability is also higher than a certain threshold.

r(q, U, sth, rth) = max({p(q, u, sth)|u ∈ U}) > rth
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U is the set of known users registered to a certain lock whose face feature vectors are
in the Index.
rth is the recognition threshold

Split Computing

Nowadays, edge devices are gaining more and more computational resources, e.g,
RPi 4B with 8GB RAM. Nevertheless, neural networks still going deeper and deeper
requiring manifold computational resources than before. Therefore it is only natural
to use those resources effectively. To accomplish this we can use Split Computing
[11]. We split ResNet18 into two parts:

• EdgeNet – is to be used on the edge-side device, i.e., the smart lock itself. It
consists of [0, k) layers of ResNet18

• ServerNet – is to be used on the server-side. It consists of [k, n] layers of
ResNet18, where n is the last layer

Pipeline

1. Intermediate feature extraction – it occurs on the edge side. Basically, it is
just transforming the detected face (128x128 RGB image) into an intermediate
feature vector using EdgeNet.

2. Final feature extraction – it occurs on the server side. Here we transform the
intermediate feature vector into its final form of 1024 float32 vectors.

3. Inference – by using the approach described above we determine whether the
given vector belongs to the group of users registered to lock.

3.2 Hand Detection & Gesture Recognition

3.2.1 Detection

Criteria for the approach:

1. Lightweight – should be able to execute in real-time on the edge device.

2. Robustness – not that critical, but desirable.

For the following task, we have chosen to use the mediapipe library hands. It pro-
vides hand landmark detection capabilities and is lightweight enough to be run on
an edge device.

https://developers.google.com/mediapipe
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FIGURE 3.1: Hand landmarks

3.2.2 Recognition

Having all the hand landmarks recognizing specific gestures becomes straightfor-
ward. We will use gesture recognition only for triggering the user verification pro-
cess. Therefore, we need only one specific gesture, i.e., Activation Gesture. For that
purpose, we choose Knocking Gesture, which can be further simplified as Palm Open
changing to Palm Squeezed. We can detect those simple hand gestures using the fol-
lowing approach 3.1:

1. Palm Open – check whether all INDEX, MIDDLE, RING, FINDER finger TIPs
are above corresponding MCPs

2. Palm Squeezed – whether all INDEX, MIDDLE, RING, FINDER finger TIPs be-
low corresponding MCPs

3.3 Instruments

3.3.1 Programming Language

To quickly prototype and implement our system we decided to use Python as the
main programming language.

3.3.2 Data Storage

To store registered user feature vectors we need some kind of database or storage.
For this purpose, we decided to use object storage. It is a data storage architecture
that manages data as objects, as opposed to other architectures, e.g., file systems
that manage data as with a file hierarchy, and block storage that manages data like
blocks within sectors and tracks. Each object in this storage system consists of data,
an arbitrary amount of metadata, and an identifier that should be unique globally.
Properties:

1. Flat Address Space. Object storage uses a flat address space that enables easier
scaling. Unlike file systems, there’s no need to organize files in a hierarchy,
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which can be complex to manage and navigate as the system scales. With ob-
ject storage, objects are dispersed across various devices in different locations,
each accessed through its unique identifier.

2. Metadata. Object storage includes extensive metadata. In traditional file sys-
tems, metadata usually includes basic file information (e.g., creation date, mod-
ified date, size). In object storage, metadata is extensive and customizable,
making the data easier to manage, analyze, and utilize.

3. Scalability. Object storage is highly scalable because of its flat address space.
It’s built to handle vast amounts of unstructured data, making it a good fit for
large-scale cloud storage and big-data analytics.

4. Data Protection & Reliability. Object storage often includes built-in data pro-
tection mechanisms such as redundancy, erasure codes, and data replication.

5. Accessibility. Objects are typically accessible through HTTP-based APIs, mak-
ing data easily accessible to web-based applications.

Object storage systems:

1. Amazon S3 (Simple Storage Service). Amazon S3 is one of the most well-
known and widely used object storage services. It’s designed to provide 99.999999999%
(11 9’s) of durability, and it stores copies of each object across multiple systems
to achieve this.

2. Google Cloud Storage. Google’s object storage service is similar to Amazon S3
and is designed to be highly scalable and durable. It also supports a variety of
data access levels, from high-frequency access to long-term archival.

3. Microsoft Azure Blob Storage. Azure’s Blob Storage is Microsoft’s object stor-
age solution for the cloud. It’s optimized for storing large amounts of unstruc-
tured data, such as text or binary data.

4. IBM Cloud Object Storage. IBM’s solution is designed to handle unstructured
data with durability, security, and scalability, using IBM’s dispersed storage
technology.

OpenStack Swift. Swift is an open-source object storage system that can scale
to store petabytes of data, and it’s part of the OpenStack project, which pro-
vides open-source software for building cloud services.

3.3.3 Distribution

To distribute solutions in a platform-independent way we decided to use docker
images. Docker is an open-source platform that automates the deployment, scal-
ing, and management of applications. Docker uses containerization to bundle an
application and its dependencies into a single object, or "image". Docker images are
lightweight, standalone, executable packages that include everything needed to run
a piece of software, including the code, a runtime, libraries, environment variables,
and configuration files.

Docker images are designed to be distributed and run across different platforms.
This allows developers to design and test applications in a local Docker environment
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and then easily deploy them elsewhere, knowing that the Docker image contains
everything the application needs to run correctly.

3.3.4 Deployment

To deploy our system on one instance/node we decide to use docker-compose. It is
a tool that allows to define and manage multi-container Docker applications. It uses
YAML files to configure an application’s services and then with a single command,
it creates and starts all the services from the configuration.
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Chapter 4

System Architecture

FIGURE 4.1: Highlevel Architecture

4.1 Overview

To support multiple smart home locks and to be able to serve multiple authentication
requests simultaneously our system is to be distributed. To The Door Lock system
consists of two parts: edge-side and server-side.

1. Edge-Side
Edge-side is the smart-lock itself. It closes/opens the door lock, takes photos,
recognizes Activation Gesture, detects faces and does some prepossessing on
them, and sends a request for user verification to the server side.

(a) Lock

• Raspberry Pi 4 Model B 8GB
• Raspberry Pi Camera Module v2
• RPi Relay Board (12V) + Solenoid Lock
• Local UI (green/red led)
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FIGURE 4.2: Lock-side connection diagram

FIGURE 4.3: Lock-side physical design
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2. Server-Side

• Verification Service

• Storage Service

• Enrollment Service

• Persistent storage

• Index

4.2 Edge-Side

4.2.1 Lock

The core of the edge-side part of our system is Raspberry Pi 4 Model B (8GB of RAM,
Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GH) connected to green/red led.

The Software to be run on the edge-side is packaged into a docker image. The
base image we use is balenalib/raspberrypi4-64-debian which is dedicated to the spe-
cific hardware. The software on the edge-side can be logically divided into 6 tasks:

• Control Task – This task manages all tasks mentioned below. On the lock
startup, it requests for an Activation Gesture detection from Activation Task.
When it receives the frames on which the Activation Gesture was detected it
requests for face detection from Detection Task. If no face was detected it
requests again for detection of Activation Gesture from Activation Task. If a face
was detected it requests to recognize it from the Verification Task. If the face
was not recognized it requests again for detection of Activation Gesture from the
Activation Task. If the face was recognized it unlocks the door for 5 seconds
and then requests for Activation Gesture to be detected by the Activation Task.

• Camera Task – This task streams frames taken by Pi Camera Module v2.

• Activation Task – This task listens to the frame stream and is responsible for
detecting Activation Gesture and passing frames on which mentioned gesture
is detected to Control Task on its request.

• Detection Task – This task is responsible for detecting bounding boxes for
faces on frames provided by Control Task and choosing the most representa-
tive among them. The result of a successful face detection procedure is one
cropped and resized to a 128x128 RGB face image.

• Verification Task – This task receives a 128x128 image from Control Task and
transforms it to a 2x32768 float32 vector which is an intermediate representa-
tion of a detected face. Then it sends this intermediate feature vector to the
server-side (verification service specifically) to be recognized. The result of the
recognition is passed to the Control Task.

• Local UI Task – This task is optional, it only exists for the demonstration on the
laptop-based edge-side device. It listens to the Camera Task’s frame stream
and displays them as a separate widget on the laptop. It also listens to re-
sponses to Control Task requests and displays the state of the system visually.
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FIGURE 4.4: Lock state diagram

4.3 Server-Side

On the server-side part of our system, there are 3 types of micro-services that may
be replicated to facilitate high-load traffic, persistent storage, and in-memory Index.
Although it makes sense to have API Gateway to load balance traffic between repli-
cas of services, there is a ready solution from each of the big cloud providers (AWS,
GCP, Azure), e.g., AWS Gateway Load Balancer (GLB). So it is only natural to choose
to use a ready solution from the cloud our system will be deployed to.

4.3.1 Persistent Storage

Its purpose is to store the data of all registered locks and users. In simple terms,
user/lock being registered means its data being stored at the Persistent Storage. For
this purpose, we decided to go with object storage as it is scalable and reliable and all
the cloud provider offers a ready solution for it,e.g. AWS S3. For local deployment,
we emulate it with the docker volume.
The vectors in this object storage have prefixes consisting of two parts:



Chapter 4. System Architecture 17

1. Lock identifier – it specifies to which lock vector belongs, e.g., MY-AWESOME-
LOCK.

2. User identifier – it specifies the user whose face the vector represents, e.g.,
Maksym.

Here is an example of such storage:

\LOCK_0\USER_0\vector_0 . npy
. . .
vector_n . npy

. . .
USER_n\vector_0 . npy

. . .
vector_n . npy

. . .
\LOCK_n\USER_0\vector_0 . npy

. . .
vector_n . npy

. . .
USER_n\vector_0 . npy

. . .
vector_n . npy

We can say that the lock is registered if there is at least one vector first part of which
corresponds to the lock’s name.

4.3.2 In-memory Index

Its purpose is to provide fast retrieval of known users’ face feature vectors that
are the closest to the query vector. For this, we use Redis, as it provides means
to retrieve vectors based on the cosine distance (https://redis.io/docs/stack/
search/reference/vectors/). Each feature vector is stored as JSON document
with 3 fields:

vec tor VECTOR FLAT 6 TYPE FLOAT32 DIM 1024 DISTANCE_METRIC COSINE
user TEXT
lock TEXT

Also, each document is stored for 60 seconds in Redis, so we do not need to invali-
date it manually when a new user is registered to or deleted from the lock. Verifica-
tion Service is responsible for populating and querying Redis.

4.3.3 Verification Service

Its purpose is to serve verification requests from edge-side devices. From edge-side
it receives 2x32768 float32 intermediate feature vector. Executing the second stage
of the Face Recognition pipeline it transforms this vector into 1024 float32, which is
used to query the In-memory Index and perform recognition (detect whether the
vector in question belongs to the registered user of the lock). When the In-memory
Index for the lock of interest, it retrieves lock users’ feature vectors through the Stor-
age Service and populates the In-memory Index.
It has only one REST endpoint

https://redis.io/docs/stack/search/reference/vectors/
https://redis.io/docs/stack/search/reference/vectors/
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• Verification: using provided intermediate feature vector performs recognition
and responds with the result.

4.3.4 Storage Service

Its purpose is to encapsulate access to all locks users’ face feature vectors from Per-
sisten Storage. It stores/deletes lock users’ feature vectors provided by Enrollment
Service into/from Persistent Storage and retrieves them on Verification Service re-
quest.
It has the following REST endpoints:

• Lock data Retrieval: retrieve feature vectors of all users associated with the
lock

• Lock data deletion: delete all feature vectors of all users associated with the
lock

• Lock data store: add new users/feature vectors to the lock

• Lock user data deletion: delete all feature vectors of the user associated with
the lock

4.3.5 Enrollment Service

Its purpose is to serve user/lock (un)registration requests from the outside. It re-
quests Storage Service to add/delete lock/user/feature vectors to/from the Persis-
tent Storage. It is also responsible for running the second stage of the Face Recogni-
tion Pipeline to transform users’ intermediate (2x32768 float32) face feature vectors
into their final (1024 float32) form that is to be stored in the Persistent Storage.
It has the following REST endpoints:

• Lock user(s) registration: register user to specified lock, if lock not exists also
register lock

• Lock user deletion: delete users from the associated lock

• Lock deletion: delete lock

FIGURE 4.5: Server-side architecture
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Chapter 5

Usage

Here we demonstrate a full use-case scenario for our system. The demonstration is
done on the laptop due to the lock not having any other local user interface except
green/red LED.

5.1 First run

When the system is up and running for the first time there is no lock registered.
Therefore, the expected behavior is that Verification Service will respond to edge-
device requests with a status informing it that edge-device is not yet registered.

FIGURE 5.1: Not registered lock

5.2 Enrollment

To enroll lock we need to run python script. We should pass Verification Service
URL, our lock name, enroll command, and path to the dataset of users we want to
register. Sample dataset structure:

/path/ d a t a s e t /
−−−−−−−−−−−−−| andriy
| |−− 1680880160 .11034 . jpg
| |−− . . .
. . .

|−−−−−−−−−−−−| maksym
| |−− 1680869428 .4691794 . jpg
| |−− . . .
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Sample command:

python −m e n r o l l ht tp :// l o c a l h o s t : 5001 my_lock_id −− e n r o l l path/to/ d a t a s e t

5.3 Post Enrollment

After the server-side is aware of the existence of our lock and users (they are in the
Persistent Storage) we are ready to go.

FIGURE 5.2: Registered lock



21

Chapter 6

Alternative Solutions

6.1 Nest Hello Doorbell

The Nest Hello Doorbell [9] is a smart video doorbell that provides a live video
feed of your doorstep and offers advanced features such as facial recognition. Key
Features:

• Facial Recognition: Utilizes advanced facial recognition technology to identify
familiar faces and send personalized alerts to your smartphone.

• Two-Way Audio: Enables you to have conversations with visitors through the
built-in microphone and speaker.

6.2 August Smart Lock Pro

August Smart Lock Pro[1] key features:

• Remote Access: With the August Smart Lock Pro, you can lock and unlock
your door, control keyless access, and keep track of who comes and goes, all
from your phone.

• DoorSense Technology: August’s DoorSense technology helps you know if
your door is securely closed and locked.

• Compatibility: It’s compatible with most standard deadbolts, allowing you to
keep your existing lock and keys. It simply attaches to your existing deadbolt,
on the inside of your door, so you can still use your keys outside.

• Smart Home Integration: The August Smart Lock Pro is compatible with pop-
ular smart home platforms, such as Apple HomeKit, Alexa, and Google Assis-
tant. This means you can control your lock with voice commands and integrate
it with other smart devices in your home.

• Auto Lock & Unlock: The lock can automatically lock behind you and unlock
as you approach, which is convenient for hands-free entry and exit.

• Activity History: You can track activity at your doorstep with a 24/7 activity
feed in the August app. This means you can see when people lock and unlock
your door, and when they use a virtual key.

• Easy Installation: Installation of the August Smart Lock Pro is designed to be
straightforward and is touted to take about 10 minutes with just a screwdriver.
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• Guest Access: You can grant access to your home for specific amounts of time
to friends, family, or other people you trust. This can be done from anywhere
via the August app.

• Z-Wave Plus: The August Smart Lock Pro also supports Z-Wave Plus, a wire-
less communication protocol used primarily for home automation.

• August Connect WiFi Bridge: The lock comes bundled with the August Con-
nect, which plugs into a power outlet and connects the lock to your WiFi net-
work for remote access.

6.3 Gate Labs All-in-One Video Smart Lock

The Gate Labs All-in-One Video Smart Lock [8] is a robust smart lock system that
offers advanced security features along with integrated video surveillance.

• Facial Recognition: The smart lock utilizes built-in facial recognition technol-
ogy to identify authorized individuals and grant them access to your home.

• Video Surveillance: The lock features a built-in camera that captures video of
visitors and sends real-time alerts to your smartphone when someone is at
your door.

• Two-Way Audio: It enables you to have conversations with visitors through
the built-in microphone and speaker. Mobile App Control: You can control
and monitor the smart lock remotely using the Gate Labs mobile app, which
allows you to lock or unlock your door, view live video feeds, and manage
access permissions.

• Integration: The smart lock system is compatible with virtual assistants like
Amazon Alexa and Google Assistant, enabling voice control and integration
with other smart devices.

• Battery Life: Due to the additional features of video surveillance and facial
recognition, the lock may require regular charging or battery replacement.

6.4 Summary

There are available solutions on the market that provide better security and different
ways to trigger unlock process. Nevertheless, our solution is the only one among
those that uses gesture recognition for this purpose.
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Chapter 7

Experiments

7.1 Dataset

FIGURE 7.1: Lock Dataset: Maksym B.

To test my implementation we gathered a dataset of 11 subjects, from 9 to 19 faces
per subject. The dataset mainly consists of pictures of my coworkers. Therefore, we
can only disclose my pictures in the table above.
We spilt this dataset into 2 equal parts:

1. Registered users

2. Unregistered users

Half of the registered users’ photos were added to the system database. Each photo
of an unregistered user and of registered ones (but not in the database) was verified
by the algorithm. The results are the following.
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As we can see there is no False Positive as it should be. Because our priority is
to prevent unauthorized access. This means we need to prevent malicious agents
from entering the user’s home.

7.2 Latency

Obviously, on the laptop, everything runs fast and smoothly due to the abundance
of computational resources which is not the case on edge devices like Raspberry Pi.
Here we provide information on the latency of two most heavy tasks:

• Face Detection – on average it takes .4 seconds, up to 1 second in the worst-case
scenario.

• First Stage of Face Recognition – on average it takes 2.1 seconds, up to 2.5
seconds in the works-case scenario

The latency for the response from the server-side is about 0.2 seconds on average.
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Chapter 8

Summary

In conclusion, we can say that the development of the distributed FR-based door
lock was successful as MVP. By any means, it is not production ready yet and has
multiple limitations. The possible potential improvement includes but not limited
to:

1. Liveness detection

2. Fault tolerance

3. Remote UI

Code for this project can be found @https://github.com/mak9su4roi/lokilock

https://github.com/mak9su4roi/lokilock
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