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“Attack is the secret of defense; defense is the planning of an attack.”

Sun Tzu
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Abstract

Modern classifiers have been proven to perform well in different domains as they
achieve great performance in applied real-world tasks. State-of-the-art neural net-
works help humans to analyze medical images, make decisions about whether a
bank should give a loan to a particular client, or control the self-driving car. There-
fore we must be confident in their performance and if we can trust them. However
every neural network was proven to be unprotected from adversarial attacks mak-
ing wrong predictions or decisions in safety-critical applications. Therefore the de-
fense against them is very crucial nowadays. Many works were dedicated to this
topic, but randomized smoothing has been recently proven to be an effective state-
of-the-art approach for the certification (guaranteed robustness) of deep neural net-
works and obtaining robust classifiers. Some prior results were obtained utilizing
the techniques of adding extra parameters to extend the limits of the regions that
can be certified. In this way, sample-wise optimization was proposed to maximize
the certification radius per input. This idea was further extended with the general-
ized anisotropic counterparts of ℓ1 and ℓ2 certificates which allow achieving larger
certified region volume avoiding worst-case certification near potentially larger safe
regions. However, anisotropic certification is limited by the aligned axis lacking the
freedom to extend in any direction. To mitigate this constraint, in this work, we (i)
revisit the anisotropic certification, provide an analysis of its non-axis aligned coun-
terpart and propose its rotation-free extension, (ii) conduct experiments on custom
toy and academic CIFAR-10 datasets to prove the improved performance.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
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Chapter 1

Introduction

1.1 Motivation

In the past decade, image classifiers have been proven to perform well in different
fields. Modern SOTA approaches achieve great performance in classifying real-life
images of different domains and sometimes can even outperform the human being
for example in medical imaginary. This fact raises the discussion about the explain-
ability of current NNs and the question if we can trust them. Every time when we
train the network, we split our data to train, test and validation sets adding the ver-
ification on how the network is generalizable, stable and robust. But even networks
with high results on test sets are vulnerable to small adversarially chosen perturba-
tions. It means that you have an almost ideal classifier of cats and dogs with almost
100% accuracy on the test set and one can choose such perturbation that changes
only a few pixels on the input image (you will not even recognize it) that classifier
will swap the predictions and will be totally sure that cat image is a dog.

While fouling the cat/dog classifier seems harmless, living at the beginning of
the era of autonomous vehicles forces us to rethink if we can trust NN for our safety.
Even some small physical attack on the road sign (just put a sticker on it) can cause
misprediction and instead of a “Stop” sign the car will interpret it as “Main Road”.
So the defense against adversarial attacks is very crucial nowadays because they are
being used in safety-critical applications. Therefore we need to have certifiably ro-
bust classifiers that we know are not going to fail for budgeted adversaries, meaning
if the adversary will have a certain budget (for example some ℓ2 difference) we can
guarantee that the robust classifier will not have worth performance than a certain
value which can be directly computed.

Several papers have done a lot of progress in this direction and in our thesis we
are trying to come up with ways to certify beyond the isotropic regions - non-axis
aligned anisotropic regions. For example, there has been lots of work on providing
certificates for ℓ2 regions. By certificate we mean that prediction is constant over
an ℓ2 image change. Then there was an extension where certification was general-
ized for anisotropic regions providing the certificates over larger regions. And in
our work, we look at generalization where those sets where a classifier is predict-
ing correctly could be rotated differently and they do not need to be axis-aligned.
This is important because with this setup the certificate is aware of the structure of
the decision boundary and one will be able to certify more by this generalization
compared to the previous works. And in this thesis, we worked with a randomized
smoothing framework to do such extension and provide better certificates on that.
We have proved our theoretical analysis by conducting experiments on the toy and
CIFAR-10 [20] datasets.
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FIGURE 1.1: Example of the ℓ2 certificates regions presented on the
2D toy dataset, where the blue and red regions correspond to differ-
ent data classes. Orange: Data dependent isotropic region [1], Blue:
Anisotropic (ANCER) region [11], Pink: Certification region obtained

with our proposed solution - RANCER (see Chapter 4)

1.2 Contributions

One can observe huge progress in the current state of randomized smoothing ap-
proaches but despite this, most of them provide the isotropic certification regions.
Recent paper by Eiras et. al. [11] proposed a state-of-the-art framework with gen-
eralized anisotropic certificates giving the best certified accuracy on the CIFAR-10
dataset. In our work, we generalize anisotropic regions beyond axis-aligned coun-
terparts and thereof we can summarize our contributions in:

• We provide a deep general analysis of non-axis aligned anisotropic certification
while preserving previous approaches as special cases.

• We conduct experiments in both: toy and CIFAR-10 datasets. As a conse-
quence of conducted experiments, we show that our generalized framework1

outperforms existing approaches and shows better results in certified accuracy
for ℓ2 on CIFAR-10.

1.3 Structure Of The Thesis

1.3.1 Chapter 2. Related Work

In this chapter, we provide a general background of adversarial attacks and their
types to familiarize with the research topic as well as a detailed overview of the two
main categories of the defenses against previously mentioned adversarial attacks
with a vast amount of research in this critical field.

1.3.2 Chapter 3. Theoretical Background On Randomized Smoothing

Here you can find the general principles of randomized smoothing as well as a de-
scription of the three main methods proposed recently for certified defenses against
adversarial attacks.

1https://github.com/tarasrumezhak/RANCER

https://github.com/tarasrumezhak/RANCER
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1.3.3 Chapter 4. Proposed Solution

This chapter describes our ideas on non-axis aligned anisotropic certification exten-
sion and brand-new methods to improve the performance of previous SOTA ap-
proaches.

1.3.4 Chapter 5. Experiments and Results

The chapter contains information about the detailed experiment setup together with
used neural networks architectures, datasets and evaluation metrics, all the results,
and a comparison of our algorithm with recent SOTA ones.

1.3.5 Chapter 6. Conclusion

Here we summarize all the provided theoretical background and experiments we
did and reflect on the limitations of the proposed solution and potential improve-
ments.
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Chapter 2

Related Work

In this section we will provide a base introduction of adversarial attacks, how they
can be performed and classified by different types. On the opposite, we will also
overview the two main categories of defense against adversarial attacks. They are
mainly divided into empirical which can be empirically robust to some particular
types of attacks and certified defenses which are definitely robust to the adversarial
perturbations which can be proved for some region.

2.1 Adversarial Attacks

In the 2013 Szegdy et al. [35] discussed the stability of NNs with respect to small
perturbations to their input. Such intentionally designed changes cause the classifier
to make mistakes and we call them adversarial attacks. In a study by Kloft et al.
[19] it was shown that inserting malicious points in the training set could gradually
shift the decision boundary of a classifier. Later Goodfellow et al. [13] introduced
the adversarial examples (perturbed samples) together with the exact way how to
generate them. In the case discussed in the thesis, we will overview only image data
examples where adversaries look almost identical to the original image but still can
lead to mispredictions.

With the vast popularity of NNs their security was doubted a long time ago,
Bareno et al. [3] even in 2006 provided a taxonomy of different attacks and how we
can protect NNs against them. Such techniques as regularization or randomization
were supposed to increase robustness against particular attacks. In 2012 Ukrainian-
born Alex Krizhevsky caused a rise in popularity of DNNs after winning the Ima-
geNet challenge with his AlexNet architecture. Many people hoped that the fact of
adding a high nonlinearity with deep layers will defend networks from attacks. But
two years later Goodfellow et al. [13] demonstrated the fast gradient sign method to
generate adversarial examples (see Figure 2.1) and broke all previous hopes.

Assume having parameters of a model θ, input image x with corresponding tar-
get y. And let the cost function which was used to train the classifier be J(θ, x, y).
With this setup, we can linearize the cost function around the current value of θ,
obtaining an optimal max-norm constrained perturbation of

η = ϵ sign (∇x J(θ, x, y)) . (2.1)

The authors have proven that this method causes a lot of different models to make
the wrong classification output, for example, 99.9% error rate with shallow classifier
on MNIST [22] with ϵ = 0.25.

There are many ways to categorize adversarial attacks in the literature:
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FIGURE 2.1: A demonstration of fast adversarial example generation
applied to GoogLeNet on ImageNet. Source: [13]

2.1.1 By Target

The untargeted attack is the type described before in the thesis where the attacker’s
goal is to make the model return the incorrect prediction no matter which one. ([13])
Targeted attacks are more precise as they give us the opportunity to specify the ex-
act output class which attacked models will predict. In this setting when creating
an adversary we are changing it iteratively with the new loss function, which is
constructed from two terms: original and target loss as we want to minimize the
probability for the original true class and maximize it for the target class. This target
loss term helps us to construct a targeted attack. The same method can be applied to
both types of attacks, for example presented by Dong et al. [8].

2.1.2 By Access To The Network

White-box attack assumes that we have all the necessary information about attacked
NN: architecture, weights, gradients, etc. This information helps to construct spe-
cific adversarial examples. ([13]) With black-box attacks our information is totally
limited, the only thing we can get is the output of the model. In this setting, attack-
ers try to investigate the dependence between input and output by giving a lot of
samples as the input. A practical example of such attack was presented by Papernot
et al. in [30].

2.1.3 By The Way Of Attack

Poisoning Attack - some deployed models are being retrained with the newly ob-
served data, attackers can use this to poison the samples with wrong labels causing
mispredictions later. ([36], [26]) Evasion Attack - attacker tries to foul previously
trained and already deployed classifier. ([13])

2.2 Defences Against Adversaries

There have been several approaches towards building models to defend against ad-
versaries and these methods can be generally divided into two categories:



Chapter 2. Related Work 6

2.2.1 Empirical Defenses

In 2015 Goodfellow et al. [13] showed the way to attack DNNs and in the same
paper presented the adversarial training. With the help of the fast gradient sign
method mentioned before (Equation 2.1), we can quickly generate adversarial exam-
ples during training which makes it possible to apply in practice. In the mentioned
procedure they train the network on adversarial examples. The authors also found
that training with an adversarial objective function based on the fast gradient sign
method was an effective regularizer making the model more robust to adversarial
attacks:

J̄(θ, x, y) = αJ(θ, x, y) + (1− α)J (θ, x + ϵ sign (∇x J(θ, x, y))) . (2.2)

Then Kurakin et al. [21] in 2017 showed how to apply the explicit model training on
the adversarial examples on a big scale. The previously mentioned paper showed
the result on MNIST dataset [22] while here the authors apply adversarial training
on ImageNet [7] and wrote the exact recommendations for how to successfully scale
adversarial training to large models and datasets. One year later Madry et al. [27]
started to think about fully resistant NNs which can be robust to the wide range of
adversarial attacks. They discussed how to find more powerful examples of attack-
ing during training to make the model more robust. But in reality, it is impossible to
prove if a prediction of a “robust” classifier trained with adversarial training is truly
robust. It was shown later that such models were robust to only specific kinds of
attacks and were successfully broken by stronger adversaries. Carlini and Wagner
[4] surveyed ten recent methods and carried out additional experiments on them.
They showed that all previous attacks can be defeated by carefully constructing new
loss as well as new adversarial examples are harder to defeat than was mentioned
in previous studies. They also provided some recommendations for defenses for in-
stance to evaluate a model for harder attacks. And actually, the research community
was pulling the rope: new attacks were breaking previously robust models and then
new defenses were proposed and so on. For example, Athalye et al. [2] analyzed
that obfuscated gradients (a special case of gradient masking) were a common oc-
currence, with 7 of 9 defenses relying on obfuscated gradients in ICLR 2018. The
authors showed that their new attacks successfully circumvent 6 completely, and 1
partially, in the original threat model each paper (out of 7) considers.

With those studies and pulling the rope side by side with each new paper, there
was less trust in empirical defenses and we can observe the increasing interest in
papers focused on defenses with formal guarantees.

2.2.2 Certified Defenses

As Cohen et al. [5] defined a classifier is certifiably robust if for any input x, one
can easily obtain a guarantee that the classifier’s prediction is constant within some
set around x, often ℓ1, ℓ2 or ℓ∞ ball. Here we must mention that certification works
for both: generically trained NNs and robustly trained ones. For example, Wong
and Kolter [40] proposed the method to learn deep ReLU-based classifiers that are
provably robust against norm-bounded adversarial perturbations on the training
data.
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Exact Certification

There were some works proposing exact certification which is very straightforward:
just take a smoothed classifier g, and check if there exists a perturbation with a norm
lower than some r. Then we report whether the output corresponding to perturbed
input is the same as the output for original input. In that case, classifier is certifiably
robust for r. An example of such an approach was presented by Ehlers [10]. His
approach was used for the verification of feed-forward neural networks in which all
nodes have a piece-wise linear activation function. But the problem with such kinds
of methods is the lack of possibility to scale to large NNs. Tjeng et al. [38] formulated
verification as a mixed-integer program and were able to speed up computations
and certify networks with over 100 000 ReLUs to determine the exact adversarial
accuracy on MNIST to perturbations with bounded ℓ∞ norm ϵ = 0.1. But even this
and some other recent achievements do not scale to the SOTA networks working
with harder datasets such as CIFAR10 [20] or ImageNet [7].

Conservative Certification

Then conservative methods come here which are usually utilizing the global or local
Lipshitz constants of the network and are more scalable but they are computation-
ally hard for modern networks. Tsuzuku et al. [39] presented an efficient calcula-
tion technique to lower-bound the size of adversarial perturbations that can deceive
networks from the relationship between the Lipschitz constants and prediction mar-
gins. Hein and Andriushchenko [15] gave the formal guarantees on the robustness of
a classifier by giving instance-specific lower bounds on the norm of the input manip-
ulation required to change the classifier decision and proposed the Cross-Lipschitz
regularization functional.

Generally, there are two corner problems for both mentioned categories of certi-
fication: poor scalability for exact methods and conservative methods are too expan-
sive.

2.2.3 Randomized Smoothing

This type of certified adversarial robustness is used in many modern pieces of re-
search as well as in our thesis. Everything began in 2019 with a paper proposed by
Lecuyer et al. [23] and their defense called PixelDP. The authors proposed the first
certified defense that both scales to large networks and datasets (such as Google’s
Inception network [34] for ImageNet [7]) and applies broadly to arbitrary model
types. They successfully used the techniques from differential privacy where ran-
domness is introduced into the computation. In this work, Laplacian noise was
added to the inputs which enjoy ℓ1 certification and the result was proved to be
constant with average classifier prediction. These ideas were later improved for the
ℓ2 certification by Cohen et al. [6] for smoothing with Gaussian noise. In their work,
the authors showed how to turn any classifier that classifies well under Gaussian
noise into a new classifier that is certifiably robust to adversarial perturbations un-
der the ℓ2 norm. Later there were some other papers that showed the proofs for
ℓ1 (Teng et al. [37]), ℓ0 (Levine and Feizi [25]) , ℓ∞ (Zhang et al. [43]) and even ℓp
norm (Yang et al. [41], Dvijotham et al, [9]). Those mentioned methods were proven
to find near-optimal certification regions in different norms, but the problem is that
the certification was still very small. To resolve this problem Mohapatra et al. [28]
in 2020 proposed higher-order certification with a method to calculate the certified
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safety region using zeroth-order and first-order information for Gaussian-smoothed
classifiers, but still did not provide a closed-form solution.

In 2019 Cohen et al. [5] paper gave a good start for the deep research in the field
of randomized smoothing. While a lot of recent papers achieved different good cer-
tification results with various smoothing distributions, their parameters were previ-
ously always set as a global hyperparameter. Alfarra et al. [1] have changed it and in
their work showed that the variance of the Gaussian distribution can be optimized
at each input so as to maximize the certification radius for the construction of the
smooth classifier. With such revisited technique they were able to achieve 9% and
6% improvement over the certified accuracy of the strongest baseline for a radius of
0.5 on CIFAR10 and ImageNet respectively. Later Eiras et al. [11] went even fur-
ther and extend the isotropic randomized smoothing ℓ1 and ℓ2 certificates to their
generalized anisotropic counterparts. The proposed framework called the ANCER
achieves SOTA ℓ1 and ℓ2 performance on the CIFAR-10 and ImageNet utilizing the
previous ideas of data dependant smoothing. The main idea is that previous ap-
proaches’ certification regions were limited by the worst-case adversaries because of
isotropic properties, but there can be other (potentially large) areas that can be dis-
covered by anisotropic counterparts. However the described anisotropic case is still
limited by the axis alignment and can extend only in a predefined set of direction,
so in our thesis, we overcome this and propose an improved extended version that
will not be aligned and can find larger safe regions in any direction.
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Chapter 3

Theoretical Background On
Randomized Smoothing

3.1 Randomized Smoothing

3.1.1 Smoothed Classifier

Assuming we have a usual classification setup. Let x be the input (x ∈ Rd) and y be
the corresponding labels (y ∈ Y = 1, . . . , k). Our base classifier f is parameterized by
θ, fθ : Rd → P(Y) where P(Y) is a probability simplex over k labels. And our goal
is to construct a smoothed classifier g out of base classifier such that it will return
the label which the base classifier is most likely to return when the input where
perturbed by the Gaussian noise ε ∼ N

(
0, σ2 I

)
:

gθ(x) = Eϵ∼N (0,σ2 I) [ fθ(x + ϵ)] (3.1)

In a practical setup, it is impossible to evaluate the exact prediction of the smoothed
classifier, so as proposed in Cohen et al. [5] we will use the Monte Carlo algorithm
for sampling the output which is by definition incorrect with some (small in our
case) probability.

3.1.2 Robustness Guarantee

The key theorem for the proof of the robustness guarantee was presented and proved
by Cohen et al. [5]:

FIGURE 3.1: Evaluating the smoothed classifier at an input x. Source:
[5]
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Theorem 1 Source: [5]. Let f : Rd → Y be any deterministic or random function, and let
ε ∼ N

(
0, σ2 I

)
. Let g be defined as in (3.1). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P ( f (x + ε) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P( f (x + ε) = c) (3.2)

Then g(x + δ) = cA for all ∥δ∥2 < R, where

R =
σ

2

(
Φ−1

(
pA

)
−Φ−1 (pB)

)
(3.3)

Utilizing this theorem, suppose that the smoothed classifier g returned the predic-
tion cA with a probability pA and the second top class cA with probability pB:

Eϵ

[
f cA
θ (x + ϵ)

]
= pA ≥ pB = max

c ̸=cA
Eϵ [ f c

θ (x + ϵ)] . (3.4)

The Φ−1 is the inverse of the standard Gaussian cumulative distribution function
(CDF). A smoothed classifier g is robust in the area bounded by some radius g(x +
δ) = g(x)∀∥δ∥2 ≤ R with R calculated by the formula mentioned in Theorem 1. In
the original theorem lower bound for pA and upper bound for pB was used, mean-
ing PA ≤ PA and PB ≥ PB because they are only approximations by Monte Carlo
sampling, theoretically result still holds for both settings.

3.2 Data Dependent Smoothing

In previously mentioned approaches σ was set as a global hyperparameter of the
smoothed classifier and played a huge role in the accuracy/robustness trade-off.
One can argue that increasing σ will significantly increase the certification radius R
and will be correct as it is in the numerator in Equation 3.3. But the main goal is to
increase the certified accuracy for some σ instead of radius. For the classifier g and a
similar to previous examples dataset with samples x ∈ Rd and labels y ∈ Y = 1, ..., k
and a radius R. Each ith sample will have the identifier if the prediction is not only
robust but also correct, lets call this correctness identifier ci and define it as follows:

ci = 1 [g (xi + δ) = yi∀∥δ∥2 < R] . (3.5)

With such setting certified accuracy will be calculated 1
dl ∑dl

i=1 ci where dl is the length
of the dataset. And if the radius R will be huge enough the smoothed classifier will
be more robust but at the same time may change the prediction causing a drop in
the certified accuracy. This is what the accuracy/robustness trade-off means.

Alfarra et al. [1] analyzed the existing knowledge and utilized a logical prop-
erty that the certification region R varies for different samples when σ is fixed as a
global hyperparameter, so for a given fθ different samples x can enjoy different op-
timal σ∗x as a local optimal value. With this idea, they proposed a framework that
optimizes a variance of Gaussian distribution σ at each sample to maximize the cer-
tification radius and increase certified accuracy (because previously some samples
close to decision boundaries were wrongly classified with too big σ leading to drop
in accuracy.

For a given smooth classifier with the initial σ0, with a specific case where σ0 =
0 leading to the base classifier fθ in the initial setup the authors construct a new
smoothed classifier with parameter σ∗x unique for every sample which was picked
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FIGURE 3.2: From fixed to data dependent smoothing. Source: [1]

in the manner to maximize the certification radius for that sample. With the initial σ0
and cA = arg maxc Eϵ∼N (0,σ0 I) [ f c(x + ϵ)] being the top prediction of fθ(x), for every
sample they apply an optimization procedure for σ directly optimizing the radius:

σ∗x = argmax
σ

σ

2

(
Φ−1

(
Eϵ∼N (0,σ2 I)

[
f cA
θ (x + ϵ)

])
−Φ−1

(
max
c ̸=cA

Eϵ∼N (0,σ2 I) [ f c
θ (x + ϵ)]

))
.

(3.6)
While constructing the objective, they were inspired by Zhai et al. [42] who were also
maximizing the certified radius (instead of setting it as a model hyperparameter) but
as a global value for all samples. To optimize it we will also need Monte Carlo sam-
pling for the expectation approximation and stochastic gradient ascent (SGA) as a
solver. But as mentioned by the authors it suffers from high variance due to the de-
pendence of the expectation on the optimization variable σ that parameterizes the
smoothing distribution N

(
0, σ2 I

)
. Fortunately, Kingma and Welling [18] showed

that a reparameterization of the variational lower bound yields a lower bound es-
timator that can be straightforwardly optimized using standard stochastic gradient
methods. The key idea is to get rid of the optimization variable σ from the expecta-
tion (Monte Carlo sampling). For this we replace ϵ = σϵ̂ where ϵ̂ ∼ N (0, I) (instead
of N

(
0, σ2 I

)
) and the objective becomes:

σ∗x = argmax
σ

σ

2

(
Φ−1

(
Eϵ̂∼N (0,I)

[
f cA
θ (x + σϵ̂)

])
−Φ−1

(
max
c ̸=cA

Eϵ̂∼N (0,I) [ f c
θ (x + σϵ̂)]

))
.

(3.7)
With this setup, the gradient of the objective will have a lower variance than pre-
viously. The optimization is done iteratively with K steps of SGA, where K is a
hyperparameter.

3.2.1 Memory-Based Certification

One of the serious drawbacks of the data dependent smoothing is caused by the
variance of σ. It was constant for all samples in previous approaches and could
be directly certified with a help of Monte Carlo sampling, as was proposed by Co-
hen et al. [5]. But with different sigmas the problem arises. For example, we have
some random sample point xi and Ri is the certification radius for it obtained with
a smoothed classifier gΘ and another point xj with the corresponding radius Rj.
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FIGURE 3.3: Memory-based certification of the data dependent clas-
sifier. Source: [1]

There is a possibility that point xj is located inside the certification region, mean-
ing

∥∥xi − xj
∥∥

2 ≤ Ri and the data dependent smoothing does not take this into ac-
count. The problem occurs when gΘ predicts xj to belong to the class different from
xi and when the second belongs to the certification region of the first. This breaks
the soundness of certification.

So in general the authors [1] propose a postprocessing step with a general mem-
ory where the reassigned regions will be added called memory-based certification
with three possible scenarios when certified regions intersect. See Figure 3.3: (1)
Left: Query sample point x2 have the intersection of the corresponding certification
region with the point x1 already present in memory and the predictions are the same
meaning ∥x2 − x1∥2 ≤ R1 and C1 = C2. In this lucky case, we just add a new point
to the memory. (2) Middle: A new sample is located inside the certification region of
the point from memory and has a different class prediction. Here we will change the
prediction of the query point x2 to the C1 and will bound its certification region R2
to be the largest subset of the certification region R1, R2 ⊂ R1 and add it to mem-
ory. (3) Right: A query point is located outside the certification region of a point
from memory, but their certification regions overlap and have different predictions.
In this case, the query x2 will preserve its original prediction C2, but the certification
region R2 will be bounded to the largest region which does not intersect with R1.
So with this setting, we will preserve initial results without intersection regions and
change results with such problem resolving the issue with the soundness of certifi-
cation.

3.3 ANCER

All previous approaches were built based on the knowledge that the nature of the
certified region has to be isotropic. This fact was supported by the assumption that
usual smoothing distributions are identically distributed. For example, Lee et al.
[24] explicitly mentioned the addition of isotropic Gaussian noise to the input exam-
ple. They were focusing on generalizing to the broader classes of the distributions
(Uniform, Discrete) but still not mentioning the anisotropic counterparts. Sampling
for example from ℓ2 anisotropic distribution is not so hard but the interesting thing
is how we can certify such regions. Eiras et al. [11] did an important contribution
by providing an analysis on the way how we can certify the anisotropic regions
characterized by any norm and holding prior art as a special case. The authors also
introduced an evaluation framework to compare the methods that certify general re-
gions and they proposed the framework called ANCER that utilizes Data Dependent
Certification but in the anisotropic case.
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3.3.1 Lipschitz Constant

We use the definition from the book by Houshang H. Sohrab called "Basic real anal-
ysis" [33] where Lipschitz function is defined as follows: Let f : Rn → R. Then, we
say that f is Lipschitz (or satisfies a Lipschitz condition) if there is a constant L > 0
such that ∣∣ f (x)− f

(
x′
)∣∣ ≤ L∥x− x′∥ ∀x, x′ ∈ Rn. (3.8)

Geometrically, if f : R → R satisfies the Lipschitz condition then for any x, x′ ∈
I, x ̸= x′, the inequality

| f (x)− f (x′)|
∥x− x′∥ ≤ L (3.9)

indicates that the slope of the chord joining the points (x, f (x)) and (x′, f (x′)) on the
graph of f is bounded by L. Later, Jordan and Dimakis [16] published a paper related
to the exact computation of the local Lipschitz constant, which is a very descriptive
metric in robustness theory. And following those mentioned arguments, Eiras et al.
[11] proposed a general certification analysis described as follows:

Proposition 1. Source: [11]. Consider a differentiable function g : Rn → R. If
sup ∥x∥ g(x)∥ ≤ L where ∥ · ∥∗ has a dual norm ∥z∥ = max xz⊤x s.t. ∥x∥ ≤ 1, then
g is L-Lipschitz under norm ∥ · ∥∗, that is |g(x)− g(y)| ≤ L∥x− y∥.

With a mentioned proposition the authors formalize ∥ · ∥ certification as follows:

Theorem 2 Source: [11]. Let g : Rn → RK, gi be L-Lipschitz continuous under norm
∥ · ∥∗∀i ∈ {1, . . . , K}, and cA = argmaxi gi(x). Then, we have arg max igi(x + δ) = cA
for all δ satisfying:

∥δ∥ ≤ 1
2L

(
gcA(x)−max

c
gc ̸=cA(x)

)
(3.10)

3.3.2 Certification

Now lets actually discuss how the certification is done for anisotropic regions. In
previously mentioned Theorem 2 we have the exact definition of ∥ · ∥ norm of robust-
ness certificates ready to use for any L-Lipschitz classifier under ∥ · ∥∗. This idea is
a key part for the development of anisotropic certificates. For the example, consider
the ellipsoid certification under ℓΣ

2 norm defined as ∥δ∥Σ,2 =
√

δ⊤Σ−1δ. It’s dual
norm is ∥δ∥Σ−1,2. In general notation, assume that we have a vector space X with
clearly defined norm ∥ · ∥, continuous linear function f and X∗ is the dual space for
X. The dual norm of f that belongs to X∗ is defined as ∥ f ∥ = sup{| f (x)| : ∥x∥ ≤
1, x ∈ X}. In such setting, ∥δ∥Σ,2 ≤ r and ∥δ∥Σ−1,2 ≤ r define an ellipsoid where the
smoothed classifier is defined as follows:

gΣ(x) = Eϵ∼N (0,Σ)[ f (x + ϵ)]. (3.11)

Utilizing the Theorem 2, the Lipschitz constant L is derived under ∥ · ∥Σ−1,2 norm and
Φ−1 (gΣ(x)) is 1-Lipschitz meaning L = 1. For more details and proofs, see Section B
in the supplementary materials of [11]. Then, the cetification for the anisotropic case
follows naturally. Let cA = argmaxig

i
Σ(x), then we have that argmaxig

i
Σ(x + δ) = cA

for all δ satisfying:
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∥δ∥Σ,2 ≤
1
2

(
Φ−1 (gcA

Σ (x)
)
−Φ−1

(
max

c
gc ̸=cA

Σ (x)
))

. (3.12)

3.3.3 ANCER Objective

Similar to the previously mentioned data dependant objective, the key idea here
is to maximize the volume of the certified region through the radius. Instead of
calculating the radius directly, the authors proposed to find the proxy radius. To
give the overview of the needed notations, lets take two certified regions: isotropic
R1 and anisotropicR2 defined as:

R1 = {δ : ∥δ∥2 ≤ σ̃r1} andR2 =
{

δ : ∥δ∥Σ,2 =
√

δ⊤Σ−1δ ≤ r2

}
, (3.13)

where r1, r2 > 0. In 2D case the maximum enclosed circle in the ellipse is defined by
the smaller of two radii. In larger dimensions we will have the maximum enclosed
ℓ2-ball defined as a minimum of all radii and in our specific case lets call it R3,
where R3 = {δ : ∥δ∥2 ≤ min iσir2} by the definition. This leads to R2 ⊇ R3 by
construction. So ifR3 ⊇ R1, thenR2 ⊇ R1 and as authors called it,R2 is a superior
certificate to theR1. With this setting proxy radius R̃ will be defined forR2 as:

R̃ = r2
n

√
n

∏
i

σi, (3.14)

and maximizing R̃ will lead to maximizing the certification regionR2 which we are
interested in.

To define the objective we need to present some other terms. Let Θ be a pa-
rameter for a smoothing distribution defined as Θ = diag

(
{θi}n

i=1
)
, an ℓp-norm

(p ∈ {1, 2}), and a gap value of rp ∈ R+. Here Θ is an anisotropic analogue of σ
in previous approaches. And the idea is to utilize the Data Dependant approach not
to set it as a global parameter but to optimize per each input sample. The goal for
the anisotropic ℓp case is to maximize the region

{
δ : ∥δ∥p ≤ θxrp (x, θx)

}
, which can

be achieved by maximizing radius θxrp (x, θx) through θx ∈ R+, obtaining r∗iso , and
rp (x, Θx) is the gap value. So with the described parameters the optimization from
ANCER framework was defined as follows:

arg max
Θx

rp (x, Θx) n

√
∏

i
θx

i s.t. min
i

θx
i rp (x, Θx) ≥ r∗iso . (3.15)
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3.3.4 Memory-Based Certification

Algorithm 1 Memory-Based Certification. Source: [11]
Input: point xN+1, certified regionRN+1, prediction CN+1, and memoryM
Result: Prediction for xN+1 and certified region at xN+1 that does not intersect with
any certified region inM.
for (xi, Ci,Ri) ∈ M do

if CN+1 ̸= Ci then
if xN+1 ∈ Ri then

return ABSTAIN, 0
else if MaxIntersect(RN+1,Ri) and Intersect(RN+1,Ri) then
R′N+1 = LargestOutSubset(Ri,RN+1) RN+1 ← R′N+1

end
add (xN+1, CN+1,RN+1) toM return CN+1,RN+1

In ANCER the memory-based certification procedure was modified as we are now
using ellipsoids. For the computational reasons they first check if the maximum
of the radii of query point x2 intersects with a maximum of radii of point already
present in the memory x1 (MaxIntersect from Algorithm 1). If there is no intersec-
tion of this minimum containing ℓ2 ball then everything is fine. Only if the intersec-
tion of balls is present, do we check the direct intersection of ellipsoids (Intersect)
which is more expansive in computations. The authors admit that the check if there
exists an intersection between ellipsoids is not trivial and they rely on the fundamen-
tal works of Ros et al. [31], and Gilitschenski and Hanebeck [12]. Having two diago-
nal matrices A and B with the corresponding diagonal values {Aii}n

i=1 and {Bii}n
i=1

being the optimized sigmas (different radii of the ellipsoids), we calculate K(t) de-
fined as:

K(t) = 1−
n

∑
i=1

(bi − ai)
2 t(1− t)AiiBii

tAii + (1− t)Bii
. (3.16)

With this setting, the Intersect function will return False if there exists t ∈ (0, 1)
such that K(t) < 0 meaning the ellipsoids do not intersect, and return True other-
wise. For more details and proofs check Appendix D in [11], or directly [31], [12].

After finding the intersection we have to decrease the query point radius R2
(similar to the original procedure in Figure 3.3). Still, finding the maximum ellipsoid
that does not intersect with certification region R1 of a point x1 present in memory
with a different prediction is a difficult problem, so the authors found the maxi-
mum enclosing ℓ2 ball such that it does not intersect with the ellipsoid region from
memory and utilizes the same procedure as in [1]. For this the authors formulated
the problem of the projection of a vector y = b − a, where b is the sample already
present in memory and a is a query point. . It should be projected to the ellipsoid
with the same shape asRA. Such a problem can be solved with the help of optimiza-
tion analog for matrix A defined previously:

min
x

1
2
∥x− y∥2

2 s.t. x⊤Ax ≤ 1. (3.17)

With the help of Lagrangian formulation and utilizing the fact that A and B are
diagonal, the authors proposed a simplified scalar optimization problem (for more
details check supplementary D.4 from [11]):
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f (λ) =
n

∑
i=1

y2
i Aii

(1 + 2λAii)
2 − 1 = 0. (3.18)

The authors were optimizing for x∗ and after obtaining it, the maximum radius of
the ℓ2 ball with a center in b will be:

r∗ = ∥(x∗ + a)− b∥2 − ϵ, (3.19)

where ϵ is a very small number.
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Chapter 4

Proposed Solution

4.1 RANCER: Non-Axis Aligned Anisotropic Certification

In this chapter, we propose a non-axis aligned anisotropic certification extension for
the previous SOTA method - ANCER. We dub our new approach RANCER where
“R" refers to rotations. We will first provide a general theoretical intuition on how to
extend ramdomized smoothing to a generalized non-axis aligned region for a given
fixed orthogonal transformation. Then, we will proceed by showing how to choose
the such an orthogonal transformation matrix towards larger certified regions. The
detailed pipeline algorithm is proposed in Algorithm 2.
Recall, in the smoothed classifier in Equation 3.1, the Gaussian noise was sampled
as ε ∼ N

(
0, σ2 I

)
, where σ2 I is the diagonal matrix with σ controlling the strength

of the noise. For ANCER as per Equation 3.11, the noised was then sampled from
a more general anisotropic Gaussian distribution ε ∼ N (0, Σ), where Σ was a gen-
eral diagonal matrix. Towards general non-axis aligned anisotropic certification, we
construct a smooth classifier that samples Gaussian noise from a general Gaussian
distribution. To wit, unlike in [1] where the gaussian covariance is ADDS = σ2 I and
where AANCER = Σ for ANCER [11], we consider a general Gaussian smoothing
with dense covariance positive-definite A. Note that a proper covariance matrix is
symmetric and therefore can be orthogonally diagonalzied, i.e. A = UΣ‘U⊤, where
U and Σ‘ are the set eigenvectors and eigenvalues, respectively. Note thatADDS and
AANCER are special cases of A for when U is an identity matrix. To that end, we
propose the following new smooth classifier:

gA(x) = Eϵ∼N (0,A) [ f (x + ϵ)] . (4.1)

We propose the following reparameterization. Let ϵ
′
= Uϵ where U is the

eigenvectors matrix of A and similarly to ANCER ϵ ∼ N (0, Σ), then we have that
ϵ
′ ∼ N

(
0, UΣU⊤

)
which is exactly ϵ

′ ∼ N (0, A). Therefore, the summarized repa-
rameterization is summarized as:

ϵ ∼ N (0, Σ) → ϵ
′
= Uϵ → ϵ

′ ∼ N
(

0, UΣU⊤
)

. (4.2)

With previously defined matrix A and those simple transformations presented in
Equation 4.2, currently, the smoothed classifier can be written as in Equation 4.1
which is equivalent to:

gΣ(x) = Eϵ∼N (0,Σ) [ fθ(x + Uϵ)] . (4.3)

In this setting, the only thing different from the ANCER is the noise multiplication
by U. For the case where the input is two-dimensional, n = 2 from Rn, it will simply
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Algorithm 2 Non-Axis Aligned Anisotropic Certification
Function OptimizeRANCERSigmas( fθ , x, α, σ0, n, num_iters, LossFunction, clip_di f f _min,
clip_di f f _max):

Initialize: σ0
x ← σ0;

base_classi f ier_output = fθ(x);
H = CalculateHessian(LossFunction, base_classi f ier_output);
Σ
′
, U = EigenDecomposition(H);

for i = 0 . . . num_iters do
sample ϵ̂1, . . . ϵ̂n ∼ N (0, Σ)
ψ(σi

x) =
1
n ∑n

j=1 fθ(x + σi
x(Uϵ̂j))

EA(σ
i
x) = maxc ψc; yA = argmaxc ψc;

EB(σ
i
x) = maxc ̸=yA ψc

R(σi
x) =

σi
x

2
(
Φ−1(EA)−Φ−1(EB)

)
σi+1

x ← σi
x + α∇σi

x
R(σi

x)

σi+1
x ← min

(
max

(
σi+1

x , σ0(1− clip_di f f _min)
)

, σ0(1 + clip_di f f _max)
)

end
σ∗x ← σnum_iters

x
return σ∗x

be the rotation matrix that rotates the ellipsoid (ℓ2) making it now not axis-aligned.
For higher dimensions instead, it will be just a transformation matrix for the noise ϵ.

While doing the multiplication by U we will get our optimized δ, where δ⊤Aδ ≤
r (r is a radius). We rewrite is as δ⊤UΣU⊤δ ≤ r and with y = U⊤δ : y⊤Σy ≤ r. In
this setting the ellipsoid will be axis aligned in thy y coordinates and to interpret it
as axis-aligned in the original domain: δ = Uy. Let’s also define the new certifica-
tion for a non-axis aligned setting with the analogy from Equation 3.12 utilizing the
notions defined above:

∥δ∥Σ,2 ≤
1
2

(
Φ−1

(
Eϵ∼N (0,Σ)

[
f cA
θ (x + Uϵ)

])
−Φ−1

(
max
c ̸=cA

Eϵ∼N (0,Σ) [ f c
θ (x + Uϵ)]

))
.

(4.4)
In the setting with two-dimensional input, we used the rotation matrix as previ-
ously mentioned U. To make things handcrafted by visual approximation we can
hardcode the value of rotation angle θ and use it to construct the rotation matrix U.
Multiplication by it results to the new version of the noise:

Uϵ =

[
cos θ − sin θ
sin θ cos θ

] [
ϵ1
ϵ2

]
=

[
ϵ1 cos θ − ϵ2 sin θ
ϵ1 sin θ + ϵ2 cos θ

]
. (4.5)

Such an approach will not work in higher dimensions and for the automated algo-
rithm, so the key idea is to construct the matrix U automatically in a way that will
maximize the "safe" certification region.

4.2 Transformation Matrix Construction

The first logical idea was to add the U term directly to the optimization procedure
but due to its high dimension (square of the original input image), such an approach
adds a lot of overhead to the certification and does not guarantee to converge to
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the good suboptimal result. Therefore we focused on the direct estimation of the
transformation matrix.

In 2019 Moosavi-Dezfooli et al. [29] presented a paper about adversarial ro-
bustness via curvature regularization where they provided theoretical evidence that
there exists a strong relation between large robustness and a small curvature. For
this, they used a quadratic approximation of a loss function, denoted as a Taylor ex-
pansion. Let L be the function representing the loss of our classifier or a general NN
model, this function can be locally approximated with a quadratic function:

L(x + ϵ) ≈ L(x) +∇L(x)⊤ϵ +
1
2

ϵ⊤Hϵ, (4.6)

where ϵ is a very small nearby region of the query point x, ∇L(x) are gradients of
L with respect to x and H is a Hessian matrix of L at x. While gradients are the
first-order derivatives, Hessian is a square symmetric matrix of second-order partial
derivatives of a scalar function (loss function in our case) and if we have sample
image x such that x ∈ Rd then the Hessian matrix will be denoted as:

H =

(
∂2L

∂xi∂xj

)
∈ Rd×d. (4.7)

In the Equation 4.7, xi, . . . , xd are the corresponding image pixels or for the 2D input
case just two features. So in the case of the CIFAR-10 [20] dataset with image sizes
of 32x32x3 the shape of the Hessian will be 32x32x3x32x32x3 and for the 2D case, it
will be 2x2 matrix.

Moosavi-Dezfooli et al. [29] in the original work introduced the term curvature
profile, so in our work, we will also operate it. And it will be calculated as a set
of eigenvalues of the Hessian matrix. The curvature profile is the direct way to
analyze a curvature in a small neighborhood region near the sample point. Small
eigenvalues indicate a small curvature of the decision boundary near point x. By the
way, by the term small we mean the absolute values because negative values with
large absolute values also describe high curvature. For example, small values tell us
that the classifier is almost linear in a small local area and when they are exactly zero
it will result in a flat surface. And the large eigenvalues have the opposite effect.
This intuition will be beneficial for our framework and will be discussed later.

The mentioned work analyzed the curvature profile which indicates the metric
of how curvature the neighborhood area is. But our main idea was to find the par-
ticular transformation matrix which in the 2D case was rotation. So we need to find
the directions of safe regions, "rotate" our sampling distribution to that region and
expand in that particular direction. Remember previously mentioned matrix factor-
ization. We had matrix A and did eigendecomposition of it: A = UΣ‘U⊤. The key
indicator of curvature profile was Σ‘ in this case, but the main idea for our solution is
to use matrix U. With described Hessian notations we set matrixA to be the Hessian
A = H and with this U will be a matrix of eigenvectors of H describing the direc-
tions of the safe regions in a local area corresponding to the decision boundaries.

With those ideas the pipeline of the non-axis aligned part of our solution is pretty
straightforward, and is divided into three main steps: 1) compute the Hessian matrix
of the loss corresponding to the input; 2) do eigendecomposition of Hessian and set
matrix U to be eigenvectors of the H; 3) sample noise from the new non-axis aligned
distribution. The third step does the new sampling in two steps, first, we sample the
noise exactly the same as in ANCER, and then we just multiply it by U transforming
or "rotating" it.
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4.3 Safe Region Directions Magnitude

4.3.1 Use Isotropic Sigmas

In this setup, we used only Hessian eigenvectors to find the directions of the safe
regions and then used isotropic sigmas as the initial values for the optimization sim-
ilarly as was proposed in ANCER. Based on our experiments it was the best way to
increase the certified accuracy.

4.3.2 Use Hessian Eigenvalues As Initial Values

Here we were also trying to use the eigenvalues of the Hessian as the initial values
for the optimization instead of using isotropic ones. This idea was tested based on
the prior knowledge of Hessian eigenvalues properties describing the curvature pro-
file for the sample. By utilizing this idea we were able to totally omit the step of cal-
culating data dependant isotropic sigmas and save a lot of time but the drawback of
such an approach is oversmoothing. See more about it in the section Postprocessing
even when initial eigenvalues were very large and optimization would try to de-
crease them, it would not be able to decrease it to a small enough optimal value due
to the lack of iterations.

4.3.3 Use Hessian Eigenvalues As Final Values For Sigmas

And the last logical test was to get rid of the optimization at all. Instead of opti-
mizing sigmas with ANCER’s objective to maximize the volume of the certification
region, we were using eigenvalues directly to decrease the computation time and let
the pipeline be more simple and straightforward. With this setup, we would get rid
of not only data dependent computation but also optimization. But the drawback is
also oversmoothing. In the previous setup, we had a chance that optimization will
overcome it for some samples, but now we have not.

4.4 Postprocessing

4.4.1 Motivation

Similar to ANCER our main setup used the isotropic sigmas as the initial value for
new non-axis aligned anisotropic sigmas computation. But in our research, we also
discovered a problem of ANCER that sometimes it suffered from oversmoothing
issue. This could happen when in the local neighborhood the safe direction seemed
to have a large magnitude but actually, it was exceeding the bounds of the safe region
and started sampling points from different classes leading to a large certification
radius in that particular direction but in the same time the wrong prediction as we
can potentially be unlucky and start sampling more points from the wrong class (see
Figure 5.8). The original data dependant isotropic solution didn‘t have such an issue
as it was bounded by the worst-case direction that didn‘t let it increase in the other
direction and sample the wrong point.

So based on the trust in the isotropic sigmas but still preserving the anisotropic
directions we introduce a postprocessing step that bounds the new non-axis aligned
anisotropic sigmas to be not larger than some fixed percentage value of isotropic
ones. Based on our experiments this step overcomes the issue of oversmoothing
and still increases the certification region as it will definitely be not worth (or usu-
ally much better) than data dependent results. And with this setup, we slightly
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decreased the potential of certification region volume but significantly increased the
correctness of smoothed classifier prediction without the problem of oversmoothing.

4.4.2 Sigma Clipping During Optimization

Based on the experiments with getting the magnitude of the directions of the smooth-
ing region, our main algorithm was chosen to be the data dependant isotropic values
as initialization for optimization. With such a setup, we are able to utilize those val-
ues to do clipping based on them. We set two hyperparameters λ1 and λ2 to be the
minimum and maximum percentage difference between the isotropic DDS result
and our newly obtained σ. With the described setting the proposed procedure can
be written as:

σf inal = min
(
max

(
σoptimized, σisotropic ∗ (1− λ1)

)
, σisotropic ∗ (1 + λ2)

)
, (4.8)

where σoptimized is a value of σ after or during optimization procedure, σisotropic is the
value from DDS isotropic result. Another setting was to omit sigma clipping during
the optimization and just do it in the final step before the return, but this approach
gave worse certification results.

4.5 Certification

In our solution, we use exactly the same certification procedure as ANCER’s. All the
theorems and characteristics are preserved. The only difference is the noise sampling
procedure. Recall Equation 3.12 which has a similar to original DDS structure with
origins from Theorem 1, but smoothed classifier gΣ(x) is defined in a different way
because of changed noise sampling distribution from ϵ ∼ N

(
0, σ2 I

)
to ϵ ∼ N (0, Σ).

And for our case it is the only thing we have changed to be ϵ ∼ N (0, A) (still in
preserved format) and obtained the certification defined in Equation 4.4. Generally,
changes were made only for noise sampling and certification remained exactly the
same.

4.6 Memory-Based Certification

For RANCER the logic of memory based certification procedure is also exactly the
same as in Algorithm 1 but the hard part is the intersection calculation in Intersect
function. As was mentioned previously the test on ellipsoids intersection is a com-
putationally hard problem. In ANCER the authors were able to simplify the calcu-
lations significantly by taking into account only diagonal values of A and B from
Equation 3.16. We cannot afford the same thing as we are working with a general
version of rotated ellipsoids and we should calculate K(t) in a general way with
possible identical forms:

(1) K(t) = 1− ta⊤Aa− (1− t)b⊤Bb + m⊤Etm
(2) K(t) = 1− t(1− t)(b− a)⊤BE−1

t A(b− a)
(3) K(t) = 1− (b− a)⊤

( 1
1−t B−1 + 1

t A−1)−1
(b− a)

(4.9)

In our implementation we used Equation 4.9 (3). Which was proved to be convex in
the t ∈ (0, 1) domain by [31] and [12]. Matrices A and B will also have a different
form and not be diagonal any longer. As previously we will use optimized sigmas in
diagonal matrix Σ, but will apply the found eigenvectors of Hessian to it. And in this
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way A = U⊤ΣU where U are the eigenvectors of H. Another change was applied
to LargestOutSubset from Algorithm 1 where we are now working with generalized
ellipsoids forms, so diagonal simplification is not reasonable in our case (as was used
in Equation 3.18). In this way the problem is defined as:

f (λ) = y⊤(2λA + I)−⊤A(2λA + I)−1y− 1 = 0, (4.10)

and has a more computationally expensive optimization but solves the projection
exactly the same as previously.
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Chapter 5

Experiments and Results

In this chapter, we describe the datasets, evaluation metrics, and setup which was
used to study the performance of the proposed algorithm.

5.1 Datasets

5.1.1 Intuition-Gathering 2D Dataset

“Only those who have patience to do simple things perfectly ever acquire the skill to do
difficult things easily.”

James J. Corbett

The best way to understand the performance of previous and proposed approaches
is to analyze it in the simplest case in 2D. So for this, we proposed a bunch of dif-
ferent toy datasets so-called "intuition-gathering" because they helped a lot to un-
derstand the algorithm’s behavior in different edge cases. To collect such data we
used a visual creation tool drawdata1 and its Jupyter extension 2 and just painted
the interesting distributions of 2D data with positional coordinates features x and
y and binary or 3-class classification labels 0 or 1, and possibly 2. Different vari-
ants include donut-shaped, axis-aligned, and non axis-aligned linearly-separable,
and many other classes as you can see in the Figure 5.1 with 2 classes and 5.2 with
3 classes. In total, we have 30 different versions with 300 samples (binary) and 1200
samples (3 classes) each.

5.1.2 CIFAR-10

In the related literature overview, we mentioned that an important factor in the suc-
cess of the defenses against adversarial attacks is the scalability of the method to
deep models and large datasets. So it is critical to report algorithm performance
on the more complex data and for this we used the CIFAR-10 dataset presented by
Krizhevsky [20]. It consists of 60 thousand square colored images 32 by 32 pixels
each. They are generally divided into 10 classes containing animals (dog, horse, etc.)
and man-made transportation (car, ship, etc.), check Figure 5.3. The dataset is al-
ready divided into train and test split containing 50 thousand (split by 5 batches)
and 10 thousand samples respectively. Another important thing is that all classes
are totally mutually exclusive and as mentioned by the authors there is no overlap
between them, for example, automobile and truck. The automobile contains sedans,
and SUVs while the truck has only big trucks. There is no something in the middle

1https://drawdata.xyz/
2https://pypi.org/project/drawdata/

https://drawdata.xyz/
https://pypi.org/project/drawdata/
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FIGURE 5.1: Examples of different versions of binary 2D Toy Dataset
decision boundaries

FIGURE 5.2: Examples of different versions of 2D Toy Dataset with 3
classes (decision boundaries and sample points)

like pickup trucks. This is an important fact for the adversarial robustness as we
have prior knowledge that classes should not overlap.

5.2 Evaluation Metrics

The evaluation procedure for robust classifiers was crystallized in the pioneering
works such as Cohen et al. [5], Salman et al. [32] and Zhai et al. [42]. It was pro-
posed to use a pretrained network (usual training without adversarial) therefore we
use ResNet-18 [14] as a baseline classifier for CIFAR-10 and custom small network
for toy dataset. Our proposed generalized framework can be applied to different
(ℓ1, ℓ2, ℓp) norms but in the proposed thesis we concentrated only on ℓ2 certification.
In that way our main metric is ℓ2 certified accuracy. Usually for some fixed val-
ues of radius R and proxy radius R̃ we compute a certified accuracy as the portion
of dataset samples which were correctly classified by the smoothed classifier and
in the same time had an ℓ2 certification radius bigger than R or R̃. We follow the
definition of proxy radius from ANCER. With the Definition 1 from [11] describing
the superior certificates and the formula to calculate the volume of certified region:
V (R) = rn

√
πn/Γ (n/2 + 1)∏n

i=1 σi [17], the authors directly defined proxy radius
for certification the same as in Equation 3.14 for given r. This holds because for
larger ellipsoids volumes we will obtain larger R̃. In that case R̃ can be assumed as
a generalization to the certified radius R.
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FIGURE 5.3: Examples of dataset images perturbed with random
noise parameterized by optimal sigmas for RANCER and ANCER.

The other two important metrics are the average certified radius (ACR) and av-
erage certified proxy radius (ACR̃) defined as following:

Ex,y∼Dt [Rx1(g(x) = y)] and Ex,y∼Dt

[
R̃x1(g(x) = y)

]
, (5.1)

whereDt is a test set Rx, R̃x are the corresponding radius and proxy radius at sample
point x with corresponding ground truth label y and 1 is the indicator function.

For our specific method, we also report two more metrics. The first is called
average radius improvement (ARI) and indicates how much the RANCER certifica-
tion radius improved from the previous SOTA approach and another called average
proxy radius improvement (AR̃I) indicates the proxy radius improvement. The pro-
posed additional metrics will be also calculated based only on the correctly predicted
samples.

5.3 Certified Architectures

In our research, we concentrated on two model architectures. For the case with the
toy dataset, we trained our own shallow classifier and for the CIFAR-10 dataset we
used pre-trained ResNet-18 architecture.

5.3.1 ResNet-18

In 2015, He et al. [14] provided an analysis of the difficulties of training deep NNs
and proposed a residual learning framework to ease the training of networks that are
substantially deeper than those used previously. In the original work, the authors
performed training on CIFAR-10. The inputs are 32x32 images which are passed to
the 3x3 convolutions in the first layer followed by a bunch of 6n layers with the same
convolutions performed on the feature maps with size 32,16,8 with 2n layers for each
size of the feature map. convolutions with stride 2 were used for the subsampling
and we have global average pooling, a 10-classes FC layer and a So f tmax activation
function in the end. Exactly the same architecture (Figure 5.4) was used in our work
with the original pre-trained weights.
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FIGURE 5.4: ResNet-18 architecture. Source: [14]

FIGURE 5.5: Custom shallow classifiers architectures

5.3.2 Custom Shallow Classifiers Architectures

For the proof of concept, we used previously described versions of toy datasets
with 2 or 3 possible classes. Consequently, we trained two shallow architectures
for them, described in Figure 5.5. For the binary classification task, the simple classi-
fier with two hidden layers was used. We used the LogSo f tmax activation function
and trained it with the NLLLoss criterion and stochastic gradient descent optimizer.
For the harder dataset, we used four hidden layers with more neurons, So f tmax ac-
tivation function and Adam optimizer as can be seen in the figure. This helped us to
practically test two simple models with different activation functions, criteria, and
optimizers.

5.4 Safe Directions Approximation

In our experiments, we calculate the Hessian of the loss function corresponding to
the inputs following the similar setup as proposed in [29]. For the 2D case, we con-
ducted different experiments on how good the safe approximation is based on the
difference between the original and second-order approximation of the loss function.
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FIGURE 5.6: Safe directions approximation via Hessian eigenvectors

An example of safe directions approximation can be seen in Figure 5.6. A sample
point with a "red" class was used here, it is located in the middle of the certification
ellipsoid on (c) and is marked as a red dot in (a). The violet "valley" (a, b, d, e) rep-
resents the points where the loss function value is small for this class, while yellow
points correspond to higher values of loss (standard "viridis" colormap from Mat-
plotlib Python library 3). On (b) and (e) we can see the safe directions represented
as red arrows. It seems that the violet region is flat and cannot be representative of
local curvature, but in reality, there is a small curvature, which is better visible in a
small neighborhood area presented in (b).

The main idea is to have a representative (can be very small) curvature in a small
region near the sample point. The approximation correctness is not critical here, be-
cause for example in the case with a flat region (far away from the decision bound-
ary) we will have a close to perfect estimation of the plate, but in that case, Hessian
safe directions will not be useful.

5.5 Toy Dataset Certification Results

To calculate our main set of previously described evaluation metrics we are using
already mentioned Toy Datasets from Figures 5.1 and 5.2. Based on them we are
conducting the experiments in exactly the same setup as in [1] and [11]. The com-
parison of fixed and data dependent ℓ2 isotropic balls, ℓΣ

2 anisotropic ellipsoids and
rotated anisotropic ellipsoids certificates is done with a Gaussian smoothing frame-
work with the custom (same for all methods) networks. In Figure 5.7 we report the
distribution of certified accuracy of the proposed approach compared to previous
SOTA methods (a, b) - without memory-based certification, (c, d) - with. The corre-
sponding tabular results are presented in Table 5.1 and 5.2 (for proxy radius).

3https://matplotlib.org/

https://matplotlib.org/
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We conducted these experiments on all proposed toy dataset versions but in the
thesis, we report metrics only for the dataset from Figure 5.2 (a) as it is the fairest
for all approaches. Compared to other cases, for example, we have extremely bene-
ficial (g) and worst-performance (e) datasets from Figure 5.1. The first has constant
rotation for decision boundary and the other has no rotation. As the main goal of
toy experiments was to test different hypotheses and gain intuition, we will not re-
port the metrics for all other versions as it will be the overhead for the thesis. The
proposed version, according to experiments, is the most representative.

Based on the conducted experiments we analyzed that fixed σ has significantly
better certified accuracy results with memory-based certification. We must admit
that the results in Figure 5.7 (a) and (b) are not representative, because they were ob-
tained without memory-based certification. However, the problem of a huge differ-
ence in results with and without memory-based certification is present only for the
low dimensional data because there is a high chance of different samples regions’
intersection. In practice, with images represented as high-dimensional vectors, this
problem neglects, so for CIFAR-10 experiments the results have to be much better.

The main goal of our setup was to improve the performance of ANCER and as
reported in Tables 5.1 and 5.2 the proposed solution achieves better results than the
previous best method - ANCER for all tested radii.

RANCER Run Clarification

As was mentioned in the analysis of the safe directions, RANCER method depends
on the curvature profile of the loss function, when there is no curvature or it increases
very fast (faster than quadratic), safe directions approximation may fail, leading to
worse than ANCER performance. To mitigate this issue we run both approaches
and return better results. In this manner, RANCER performance will be at least as
good as ANCER and in Figure 5.7 we can see that it always has better or the same
result as ANCER.

Method r = 0.1 r = 0.3 r = 0.5
Fixed 0.96 0.90 0.00

Isotropic 0.33 0.33 0.32
ANCER 0.18 0.12 0.04

RANCER 0.27 0.17 0.06

TABLE 5.1: Comparison of top-1 certified accuracy at different ℓ2 radii

Method r = 0.1 r = 0.3 r = 0.5
Fixed 0.96 0.90 0.00

Isotropic 0.32 0.30 0.26
ANCER 0.18 0.13 0.07

RANCER 0.27 0.19 0.11

TABLE 5.2: Comparison of top-1 certified accuracy at different ℓ2
proxy radii
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FIGURE 5.7: Distribution of top-1 certified accuracy as a function of
ℓ2 (a,c) radius, (b,d) proxy radius obtained with different approaches

(a, b) without and (c, d) with memory based certification.

5.5.1 Optimization Convergence

In Figure 5.8 we present the optimization convergence analysis for four different
examples from the same dataset. (a) final RANCER certification region is close to
ANCER, (b, c) ANCER result has bigger certification region, (d) RANCER has bigger
region.

For the data dependent isotropic method [1] the goal is to maximize the isotropic
ℓ2 region via the gap. It is calculated as R in the formula from Theorem 1. At the
same time, ANCER’s objective is to maximize the proxy volume of the certified re-
gion which can be done by maximizing the proxy radius. In the Figure 5.8 we can
see the changes in the three mentioned terms through the iteration procedure. Sigma
volume is computed as a product of all sigmas of certification ellipsoid and proxy
radius is the sigma volume multiplied by a gap. The optimizer tries to maximize
that radius by optimizing sigmas.

In the shown examples we intentionally included (b) and (c) to note the problem
of oversmoothing where ANCER included the red region inside the certification re-
gion for the blue point. The figures ideally describe why the result of memory-based
certificates is much worse than without this procedure. If we sample this blue point
first, then all the points in the red region will have to change the prediction to the
blue (by the design of memory-based certification) leading to a significant accuracy
drop. RANCER is less vulnerable to this (c) due to the postprocessing with clipping,
but it still oversmooths the regions (b) and has also dropped in certified accuracy
performance.
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FIGURE 5.8: Optimization convergence analysis for the compared ap-
proaches based on 4 examples.

5.6 CIFAR-10 Certification Results

The experimental setup for CIFAR-10 experiments is exactly the same as described
previously. We report the final certified accuracy metrics (after memory-based certi-
fication) in Table 5.3 and 5.4 for proxy radius. The corresponding visual comparison
is present in Figure 5.9. The important fact is that we used 1000 uniformly dis-
tributed random samples from CIFAR-10 and obtained the same results as in [11]
where the experiments were performed on 5000 samples. The reported results fol-
low the same logic as previously stated by [11].

The newly proposed metrics ARI and AR̃I create the additional value as we are
now able to analyze the exact improvement in terms not only of the certified accu-
racy but also of the certification region itself. With the conducted experiments we
obtained ARI = 0.0517 and AR̃I = 0.0395 compared to ANCER. Thus, on average
RANCER has bigger certification radii letting it increase the certified accuracy.

Finally, based on the experiments and intuition gained from toy datasets we were
able to perform certification for CIFAR-10. As expected, RANCER has better results
in terms of all proposed metrics (see also Table 5.5 for ACR and AC̃R) and outper-
forms previous SOTA in certified accuracy for CIFAR-10.

Method r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5
Fixed 0.55 0.00 0.00 0.00 0.00 0.00
DDS 0.39 0.18 0.08 0.02 0.00 0.00

ANCER 0.77 0.45 0.24 0.08 0.00 0.00
RANCER 0.81 0.49 0.27 0.10 0.00 0.00

TABLE 5.3: Comparison of top-1 certified accuracy at different ℓ2 radii
on CIFAR-10 dataset



Chapter 5. Experiments and Results 31

FIGURE 5.9: Distribution of top-1 certified accuracy as a function of
ℓ2 (a) radius, (b) proxy radius obtained with different approaches

Method r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5
Fixed 0.55 0.00 0.00 0.00 0.00 0.00
DDS 0.39 0.18 0.08 0.02 0.00 0.00

ANCER 0.79 0.64 0.46 0.34 0.19 0.13
RANCER 0.82 0.68 0.47 0.35 0.20 0.13

TABLE 5.4: Comparison of top-1 certified accuracy at different ℓ2
proxy radii on CIFAR-10 dataset

Method ACR ACR̃
Fixed 0.27 0.27
DDS 0.26 0.26

ANCER 0.48 0.76
RANCER 0.52 0.79

TABLE 5.5: Comparison of ACR and ACR̃ on CIFAR-10 dataset for
different methods

Fixed DDS ANCER RANCER
4.2s 4.9s 7.65s 19.1s

TABLE 5.6: Certification time comparison per sample for each
method.

5.7 Computational Resources And Runtime Analysis

We used NVIDIA GeForce RTX 2080 Super with Max-Q Design for our experiments.
It has a total memory of 8 Gb and 48 multiprocessors. Previous SOTA ([1], [11]) ap-
proaches have significantly improved certified accuracy but with a cost of runtime.
Those methods are based on sample-wise optimization which requires additional
time complexity compared to older approaches with fixed σ. Please check the time
comparison in Table 5.6. The main complexity of RANCER optimization comes from
the hard procedure of safe directions calculation as it involves calculating Hessian
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and performing eigendecomposition. Another overhead is caused due to a more
general check of ellipsoids intersection compared to the simplified version in AN-
CER. We believe that improved certification results are more significant than runtime
performance but we will still work on the ways to optimize it.
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Chapter 6

Conclusion

6.1 Results Summary

In our bachelor thesis, we presented the deep analysis of certified adversarial ro-
bustness for the shallow and large-scale neural networks. With the help of already
acquired theoretical foundations of the world’s most promising works in the rele-
vant field, we succeeded in providing the theoretical extension to the anisotropic
data dependant randomized smoothing and presenting its generalized counterpart
- non-axis aligned anisotropic certification framework. With the obtained results we
provide a practical clue of the performance of our solution. It was experimentally
proven that our generalized framework outperforms recent works and shows better
results in the l2 certified accuracy for the academic CIFAR-10 dataset. Thereby, all
the goals which were set for this thesis were achieved at the same time giving the
vast research opportunity for future work.

6.2 Algorithm Limitations

As was already mentioned, the main drawback of data dependent certification is the
variance of σ which breaks the soundness of certification. The original solution to
this problem (memory-based certification) was proposed in [1] and later modified
in [11]. But such a solution raises a new problem - memory and runtime complex-
ity by its definition. In our framework, the complexity increases even more in three
bottleneck places. Firstly. we were able to remove the transformation matrix op-
timization procedure and replace it with the straightforward hessian eigenvectors
computation but it is still a computationally hard procedure. Secondly, the runtime
of some particular functions was increased for example checking the intersection of
rotated ellipsoids. And finally, we need to store the transformation matrices for cer-
tification. For CIFAR-10 with 32x32x3 image sizes, the transformation matrix will
have a size of 32x32x3x32x32x3. There are some potential improvement methods to
reduce the memory consumption and speed up the process (for example k-d trees)
but they were not in the scope of this thesis.

Notwithstanding these limitations, we believe that our approach will be benefi-
cial for the safety-critical applications where a high robustness guarantee is needed
and inference time complexity is not critical.

6.3 Future Improvements

The theoretical part of our thesis has proved that we can obtain a more robust clas-
sifier by utilizing the ideas of non-axis aligned anisotropic certification. At the same
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time there are two more directions of further research that are being tested by us and
can be extended by other researchers:

Theoretical Improvements

This direction includes providing the certification regions for different norms, for
example l1 or lp. And another important potential theoretical improvement is an au-
tomated selection of the samples for which the Hessian safe directions are definitely
well-approximated.

Practical Improvements

Here the researchers can aim to optimize the time and memory complexity of the
algorithm to be more suitable for the inference time dependant applications. For
this, one can use previously mentioned k-d trees or propose some new ideas. And
another important task is to discover a faster way to find the safe directions for
example do not compute the Hessian directly but find its approximation.
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