
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Creating a cross-platform application
for children with cancer

Author:
Viacheslav
BERNADZIKOVSKYI

Supervisor:
Serhii MISKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Viacheslav BERNADZIKOVSKYI, declare that this thesis titled, “Creating a cross-
platform application
for children with cancer” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Heart is what separates the good from the great”

Michael Jordan

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Creating a cross-platform application
for children with cancer

by Viacheslav BERNADZIKOVSKYI

Abstract

An objective of the project is to create volunteer charity platform while investigating
all of the stages of mobile and web software development. The expectation is that
both children and volunteers will find theirs benefits on the platform. Main project
stages include creating a design system, development of a RESTful API and devel-
opment of website, Android and iOS applications. Back end part is written with
FastAPI on Python, while front end one is written with Flutter on Dart. The imple-
mentation code can be accessed until September 2022 here:
Server
UI

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://bitbucket.org/vbernadzikovskiy/care4child_server/src/develop/
https://bitbucket.org/vbernadzikovskiy/care4child_ui/src/develop/

iv

Acknowledgements
First of all, I want to thank my team, those people were with me through the whole
course of the project: Mariia Moskalyk, Karyna Volokhatiuk, Inna Alanbousi and
Ievgeniia Iurevych. Secondly, I am obliged to the university and everyone, who
has contributed into Computer Sciences program for all the knowledge I gathered
during my 4-year studies at Ukrainian Catholic University. I am grateful to all the
teachers of the university, in particular my supervisor Serhii Miskiv, for his time and
guidance in the project. . .

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Problem . 1
1.2 Idea . 1
1.3 Implementation Steps . 2

1.3.1 Devising Requirements . 2
1.3.2 Estimating Work . 2
1.3.3 Design System Elaboration . 2
1.3.4 Database Establishing . 2
1.3.5 Backend API Development . 2
1.3.6 Frontend Interface Development 2
1.3.7 Testing . 2
1.3.8 Deployment . 2
1.3.9 Further Development . 3

2 Requirements 4
2.1 Events . 4
2.2 Posts . 4
2.3 Roles . 4

2.3.1 Regular User . 4
2.3.2 Volunteer . 5
2.3.3 Child-care specialist . 5
2.3.4 Estimation . 5

3 Design 6
3.1 Tool . 6
3.2 Brand Book . 6

3.2.1 Colors . 6
3.2.2 Rounded Corners . 7
3.2.3 Logo . 7

3.3 Mock-up . 7
3.4 Final Appearance . 8

4 Database 9
4.1 Choosing a Database . 9

4.1.1 SQL vs NoSQL . 9
4.1.2 Which SQL DB to use? . 9

4.2 Establishing a Database . 10

vi

5 Backend Development 13
5.1 REST APIs . 13
5.2 FastAPI . 13
5.3 Connection with Database . 13

5.3.1 Database toolkit . 13
5.3.2 Migration tool . 14

5.4 Access . 14
5.4.1 Authorization . 14
5.4.2 Authentication . 14

5.5 Result . 15

6 Frontend Development 16
6.1 Flutter . 16
6.2 State Management . 17

6.2.1 Stateful Widget . 17
6.2.2 BLoC . 18
6.2.3 Hooks . 19

6.3 Adaptive and Responsive Layout . 19

7 Testing 22
7.1 Unit tests . 22
7.2 Physical Testing . 22

8 Conclusion 23
8.1 Summary . 23
8.2 Further steps . 23

vii

List of Figures

3.1 Care 4 Child Logo . 7
3.2 Mobile Design Mock-up . 7
3.3 Final Mobile Design . 8
3.4 Final Website Design . 8

4.1 Database Structure . 12

5.1 JWT Structure . 15

6.1 Simplified stateful widget lifecycle . 17
6.2 BLoC Pattern Schema . 18
6.3 IPhone 7 and IPhone 13 Pro Max Screen Sizes 20
6.4 Screen Division with Grid . 20

viii

List of Tables

4.1 Fivetran. PostgreSQL vs MySQL . 10

ix

List of Abbreviations

API App Program Interface
BLoC Business Logic Component
CRUD Create Read Update Delete
JIT Just-In-Time
DB DataBase
JSON JavaScript Object Notation
JWT JSON Web Token
MVP Minimum Viable Product
NCRU National Cancer Registry of Ukraine
ORM Object Relational Mapping
REST REpresentational State Transfer
SQL Structured Query Language
UI User Interface
URL Uniform Resource Locator
UX User EXperience

x

Dedicated to my friends and family. . .

1

Chapter 1

Introduction

1.1 Problem

It is not a secret for everyone that cancer remains a serious problem nowadays even
though understanding of the illness and its treatment has been significantly
improved over the last 50 years. Although, the progress is quite considerable, the
treatment still remains accessible for the minorities. In 2019, NCRU registered
137968 cases of malignant tumours in Ukraine, and while the disease is likely to hit
elder people, still 958 cases were detected in children aged below 19 years.

1.2 Idea

An importance of the problem caused establishing multiple cancer organisations
and charities. The most famous one, which comes from Ukraine, is Tabletochki
charity foundation. Their main goal is to prevent new cases of mortality and to
once make sure, that no Ukrainian child dies of cancer. There are 4 main directions
that the organisation is currently working in:

• Delivering support to children with cancer and their families

• Systematic cooperation with children’s oncology departments.

• Protection of the rights of children with cancer.

• Professional development and growth of medical staff.

Besides fundraising costs for treatment, Tabletochki also engage volunteers for
organising a massive amount of educational and entertaining events for the
children of the foundation. They can offer different activities like:

• Field trips in different cities and countries.

• Meetings with celebrities and influencers.

• Celebrating holidays together.

• Bunch of various educational events online.

That is where the idea for the project comes up. The plan is to create a platform,
which is reachable for everyone no matter whether they use a laptop or mobile
phone, iOS or Android. There, different volunteer occasions and actions could be
published and highlighted, so that no one could miss them and everyone interested
could join.

Chapter 1. Introduction 2

1.3 Implementation Steps

1.3.1 Devising Requirements

On that stage every single desired functionality of the project vision should be de-
scribed. All the requirements should be covered by carefully thought-out features,
part of which would be included into a minimum viable product.

1.3.2 Estimating Work

After concluding the requirements, work should be estimated for few reasons:

• Team should know where to prepare for release.

• Estimation is reported to sponsors and partners.

• Deadlines are followed and met easier when work is estimated.

1.3.3 Design System Elaboration

Independent of writing code stage where UX should be scrupulously constructed
and UI should be correspondingly painted.

1.3.4 Database Establishing

The stage includes selecting a proper DB should be selected, configured and pre-
pared for work.

1.3.5 Backend API Development

Here is developed all the logic, that allows a database and an application to com-
municate with one another. Mostly, here is maintained a part, that a user doesn’t
see.

1.3.6 Frontend Interface Development

On this stage, web and mobile applications for Android and iOS should be covered.
Since it is an opposite to the previous step, user sees and also interacts with every-
thing, which is developed here.

1.3.7 Testing

Besides writing tests for the code, application should also be checked by people.
During a testing sessions errors could be spotted and documented as bugs. Fixing
all the defects is also covered in the step.

1.3.8 Deployment

When everything is ready and tested, the application is ready for it’s first release.
Website should be hosted and mobile apps should be pushed to Google Play Market
and App Store.

Chapter 1. Introduction 3

1.3.9 Further Development

After the first release the development is not stopped. Basically, almost all the steps,
described earlier are combined into a cycle, except 1.3.4 Database Establishing.
While database demands only running new migrations, the requirements for a new
version should be established, which adds a new part of work in every step of the
cycle. The development continues until all the requirements are met.

4

Chapter 2

Requirements

Application should support three types of entities:

• User.

• Event.

• Post.

2.1 Events

An entity, which is displayed in a calendar. Should be named, have a description
(where location and format details would be specified), and appointed for a date and
exact time. Optional: events could have tags for location or format, since options for
that are given.

2.2 Posts

Sometimes, volunteers or child-care specialists can create posts with announcements
or results from the events. The post should be named and have a text, it’s creation
date should be displayed for the users. There should be an option to comment a post,
since users may have questions about events. Optional: posts could have various
tags.

2.3 Roles

Final application should have three types of users:

• Regular User (Child or Parent).

• Volunteer.

• Child-care specialist.

2.3.1 Regular User

A user with no additional permissions. Should be able to:

• Register and log in to the account.

• See events in a calendar and apply to them, and cancel applications.

• Search for events, with filters.

• Ask for help from a child-care.

Chapter 2. Requirements 5

2.3.2 Volunteer

Middle-privileged user. In addition to a regular user abilities also should be able to:

• Create an event, edit and delete own events.

• See applications for own events. Accept or deny them.

• Create a post if child-care specialist approves, edit and delete own posts.

2.3.3 Child-care specialist

The most privileged user on the platform. Basically, is an administrator and has a
full access to the database. In addition to abilities, mentioned earlier, should also be
able to:

• Do CRUD operations on users. However, no WRITE permission on other
child-care specialist.

• Do CRUD operations on events.

• Do CRUD operations on posts.

• Do CRUD operations on comments.

• Do CRUD operations on posts.

• Apply or deny volunteer actions, that need an approval.

2.3.4 Estimation

These requirements are approved with the team on March 1st 2022, and non-optional
part is estimated to be finished by June 20th 2022.

6

Chapter 3

Design

3.1 Tool

Consistent design systems should be responsive, scalable and provide meaningful
and relevant experiences to the users. All of those qualities could be reached with a
design tool like, Sketch, Adobe XD, and so on. There is a huge variety of design tools,
so which one suits the case in a best way? The answer is Figma...

All of the mentioned tools have multiple features in common, however there is
something that makes Figma a more pleasant choice:

• Works directly in a browser. That option allows a quick setup and convenient
use.

• Real-time collaboration. The tool was designed with a collaboration in mind,
which makes it a good fit, because the design team consists of two people.

• Considered to be a beginner-friendly, which is preferable option, because the
author, who is a part of the design team, has no knowledge of UI/UX.

• Figma offers more flexibility when it comes to a vector manipulation. That is a
result of using vector networks, which allow a user to connect multiple lines
to a single point.

• Prototyping of the application.

Besides all the advantages listed above, Figma has a free subscription. However,
there is also a disadvantage of the tool, since it comes with a high productivity
requirement. If the network connection is poor or computer characteristics are low,
Figma might be annoying to work with.

3.2 Brand Book

Since Tabletochki foundation takes part of a main partner the project’s brand book
also looks similar.

3.2.1 Colors

There are three primary colors:

• Light blue (hex: 67C6D7)

• Dark blue (hex: 046493)

• Red (hex: FF3600)

Chapter 3. Design 7

3.2.2 Rounded Corners

• Regular border radius is 20 logical pixels.

• Doubled border radius is 40 logical pixels.

Regular size rounded corners is used almost everywhere.

3.2.3 Logo

FIGURE 3.1: Care 4 Child Logo

3.3 Mock-up

For analyzing user and improving user experience was agreed to design a mock-up
firstly. After few testing sessions with the target audience and other volunteers, that
is how the first mock-up for the mobile application looked:

FIGURE 3.2: Mobile Design Mock-up

The goal is to provide maximal amount of the information while keeping a dis-
traction on its minimum. Final version was considered as the most user-friendly.

Chapter 3. Design 8

3.4 Final Appearance

The final step of the stage was to paint mock-ups, using contents from the brand
book:

FIGURE 3.3: Final Mobile Design

FIGURE 3.4: Final Website Design

9

Chapter 4

Database

4.1 Choosing a Database

4.1.1 SQL vs NoSQL

When it comes to choosing a database, first step of the stage is to decide whether
it should be SQL or not. Besides using different query languages, there is a huge
amount of differences between those two:

• Relativity. Relational databases save data in tables, while non-relational - in
documents, which is something more of a list.

• Schema. SQL databases use predefined schema for tables, while NoSQL use
dynamic - for documents. In the first case is much more easier to parse, which
becomes especially sensitive when a database grows larger. Second case allows
to store documents with different fields inside a single collection.

• Scalability. Horizontal scalability for first and vertical - for second. SQL
databases productivity can only be improved by boosting physical character-
istics (CPU, RAM). NoSQL can also use sharding, which is a type of database
partitioning, what in turn allows dividing large slow databases into a smaller
faster and better-performing ones.

After comparing two types of databases with characteristics above the final choice
is to use SQL DB. Potential data analysis session opened few reasons for that.
Firstly, the data can be separated into collections with fixed fields. Second reason is
that database entities require tight connection between each other which is easily
achieved with tables.

4.1.2 Which SQL DB to use?

Within the scope of the project three relational databases were analyzed:

• SQLite.

• MySQL.

• PostgreSQL.

SQLite. It is a library, which provides a small, high-reliability and fast SQL DB
engine, written in C. The authors claim it to be the most used database engine in
the world, since it is built into most mobile phones and computers, meaning it is
used a lot on a daily basis. However, it is serverless, meaning no access to the
network provided, what in turn means users can’t share mutual data. The size of

Chapter 4. Database 10

the database also doesn’t support scaling large amount of a data. Conclusion for
SQLite is that it could be used for testing or data caching in some future releases.

The other two databases, being MySQL and PostgreSQL are said to be top 2 free
open-source databases, which serve for a long period of time and are widely
involved for using in a huge variety of commercial, open-source or corporative
mobile/web applications. Those two have much in common, however also there is
a bunch of features that are different for them.

TABLE 4.1: Fivetran. PostgreSQL vs MySQL

PostgreSQL MySQL
Architecture Object-relational Relational
Data Types Numeric, date/time, character,

boolean, enumerated, geometric,
network address, JSON, XML,
HSTORE, arrays, ranges, com-
posite

Numeric, date/time, character,
spatial, JSON

Performance Suitable for applications with
high volume of both reads and
writes

Suitable for applications with
high volume of reads

Security Access control, multiple en-
crypted connection

Access control, encrypted con-
nections

Support Community support. Compa-
nies that have their own release
of PostgreSQL may offer support
around it

Community support, plus
vendor-provided support con-
tracts

From the table above one can make a conclusion that PosgreSQL seems to be a
better choice, since it offers a little bit more than MySQL, even though also requires
more effort in return...

4.2 Establishing a Database

Since the choice is to work with a relational database, second step, being establish-
ing the database, is about designing tables and connections between them. After
analyzing potential data one more time, it is divided into such collections:

• Users.

• Events.

• Applications to events.

• Posts.

• Comments.

• Notifications.

Connections between the tables are called associations or relationships. There are
three types of them:

Chapter 4. Database 11

• One-to-One. The easiest type of an association, record of first table can be
connected to a single record of second one.

• One-to-Many. A record of first table can be connected to many records of
second one, while second table’s instances are still related to a single first
table’s record.

• Many-to-Many. A record of first table can be connected to many records and
vice versa. Is achieved by creating an intermediate table, which has a
Many-to-One association with both tables.

Most used type of connection in the project is a One-to-Many relationship.
Many-to-Many is established once, and no usage of One-to-One.

Chapter 4. Database 12

FIGURE 4.1: Database Structure

The structure of the database is presented on the figure above. Besides, all of the
entities mentioned earlier, it also contains a table UserEventAssociation which
establishes a Many-to-Many connection between User and Event tables.

13

Chapter 5

Backend Development

5.1 REST APIs

Main goal of that stage is a development of a service, that would allow to transfer the
data between the database and platform. Such services are called application pro-
gram interfaces (APIs). They introduce a standardized way for its clients to receive
and send data of different types. There is a massive variety of approaches to create
the interface, however most popular and effective one is a REST API. Key reasons
to make an API to be REST are flexibility, meaning using different types of data and
requests, and scalability - an ability to increase a number of requests easily and fast.
Also, such interfaces are hosted, which makes them easy to use, because every piece
of functionality can be reached by providing a URL. All together, that makes REST
API a good choice for developing web and mobile applications.

5.2 FastAPI

Team’s choice of a development tool for the REST API fell on FastAPI. It is a mod-
ern, high-performance web-framework for building app program interfaces with
Python. Main advantages of the framework are:

• Performance. One of the fastest Python frameworks, also allows asynchronous
programming, since can be run with Unicorn

• Code Writing. Framework makes it fast, short and easy.

• Documentation. FastAPI automatically generates a Swagger docs for every re-
quest that a user writes.

The framework also can be used combined with a lot of different Python packages,
for example, using Pydantic allows declaring a request’s body using standard
Python types. Various famous international companies use FastAPI for own
services, among them Microsoft, Uber, Netflix and so on.

5.3 Connection with Database

5.3.1 Database toolkit

The most popular SQL database toolkit for Python is SQLAlchemy. It allows to con-
nect to the database, make all available types of requests and retrieve subsets of
information with object relational mappers. SQLAlchemy considers the database to
be a relational algebra engine, not just a collection of tables. Rows can be selected
from not only tables but also joins and other select statements; any of these units can

Chapter 5. Backend Development 14

be composed into a larger structure. SQLAlchemy’s expression language builds on
this concept from its core. Tool description basically divides it into two parts:

• Core. All the functionality for reading, creating, modifying and deleting data is
stored here. DB setup also belongs to the part, creating an engine, establishing
a connection and so on.

• ORM. Object Relational Mapping allows retrieving the data from each table
as a collection of Python classes. Moreover, it also simplifies a procedure of
creating, updating and deleting table instances making it close to modifying a
regular Python list.

Such division allows users to use the parts separately and independently, for
example, getting rid of the mapper, since it is an additional layer of functionality
and vice versa, using it without core features, which is a popular approach
according to SQLAlchemy team’s reports.

5.3.2 Migration tool

SQL Database Migration is a process of changing a schema of any table and then
adjusting the data to the new format. That operation can be done manually, however
it becomes bulky and it is easy to make a mistake, especially when database grows
bigger and bigger. The solution is to use a migration tool. There is a package, which
is written as a migration tool for using together with SQLAlchemy, it is called Alembic.
It provides a change management system, where every version of the schema is
called revision. The procedure is relatively easy and requires few steps:

• Creating a revision.

• Writing a Python function, which is triggered when a user upgrades to current
revision.

• Writing a Python function, which is triggered when a user downgrades current
revision. This and previous functions use SQLAlchemy package inside.

Every revision has an id, and the previous revision’s id. So after the procedure, user
can safely move in both directions along the chain.

5.4 Access

5.4.1 Authorization

Authorization to the API is quite easy, user should provide something unique for
identification (phone number for current case) and a password. During a registration
process user is created inside of the database and also the password is specified.
However, to add an additional layer of security the password record is hashed with
PBKDF2 derivation function, which at the moment has no known security issues.

5.4.2 Authentication

Since the API contains data, that is personal for every user, there is a necessity
in adding an authentication process, so that data could be read and written se-
curely. Most common way of authentication to the interfaces, which are used for

Chapter 5. Backend Development 15

web/mobile development is API or access token. Access token is something of a
key to the interface, which is sent to user, after password authorization is success-
fully completed.

FIGURE 5.1: JWT Structure

JWT is a popular token format, which consists of three parts:

• Header. Basically containing metadata. Token format, creation algorithms
and so on.

• Payload. Contains an information, which is needed for the app programming
interface. User identification, permissions, token expiration time.

• Signature. Part, that verifies the user. Header and payload are taken together
with provided secret and signed with an encryption algorithm.

Those three parts base-64 encoded and put into a single string, divided by dots.
Token cryptographic algorithm, used in the project is HS256 and secret for it is
saved as an environment variable of the server.

5.5 Result

In result, current version of the API for MVP, mainly contains Create, Read,
Update, Delete operations for the database tables. However, it also has requests
with more complicated logic, for example, accepting/denying an application for an
event should also cause a new notification for the applicator, and established
procedure of authorization/authentication.

16

Chapter 6

Frontend Development

6.1 Flutter

Since the task is to develop applications for web, iOS and Android all at the same
time, a choice of the tool fell on Flutter. It is an open-source UI software development
kit, introduced by Google in May 2017. This tool is a declarative framework, which is
written in Dart (The language is also introduced by Google).Flutter is used to create
mobile, web and desktop applications, all from the same codebase. Besides being
multi-platform it also has a lot of different advantages presented during the 5 years
of production. These are the frameworks strengths:

• Writing a code. Writing a UI with Flutter becomes easier and faster over the
time as community grows. New packages and elements are added on a weekly
basis.

• Perfomance. The framework offers close to native development perfomance,
with using ahead-of-time compilation on release mode.

• Debug mode. While an application is in a stage of development, programmers
can use a debug-mode where the project is compilated at a run-time (JIT com-
pilation). Since it is a declarative framework, UI is rendered as a tree of wid-
gets, what allows reloads after changes in a very short time. The tool provides
hot-reload and hot-restart options, where application is refreshed with current
state or restarted completely.

• Complex, animated UI. From the beginning Flutter was a tool, which people
used for own small projects or playgrounds. Now, however, users can create
complex and compound UI, which is as flexible as the one, written with na-
tive approaches. One more huge plus of the framework is a decent support
of a variety of animation types, which make an interface feel more intuitive,
beautiful, and improve user experience.

• Widget Catalog. Everything in Flutter is a widget. If interface is puzzle, then
every piece of it is a widget. Flutter provides a material package which is full of
predefined widgets like:

– Buttons, bars and dialogs.

– Texts, and inputs.

– Rows and Columns.

– Tables, grids and cards.

– Bunch of different scroll views.

Chapter 6. Frontend Development 17

6.2 State Management

6.2.1 Stateful Widget

The framework provides an interface with multiple approaches for creating custom
widgets. One of them are Stateless and Stateful widgets. First type can have own
properties, however they are immutable. Stateful widgets, as opposite, can change
their state, by rebuilding all the descendants.

FIGURE 6.1: Simplified stateful widget lifecycle

Such state-managing approach is good for creating small independent widgets,
which should function separately and have personal state. When an application
and states grow large, that approach is uncomfortable. Stateful widgets are rarely
used for the platform.

Chapter 6. Frontend Development 18

6.2.2 BLoC

Native tools for developing UI software widely use an imperative paradigm of pro-
gramming, meaning describing how the program should behave by explicitly or-
dering every single step. Flutter developers specify what should program without
delivering a control flow. It is a relatively new approach for UI software develop-
ment and that resulted in emerging of software pattern named BLoC. BLoC stands
for Business Logic Component and it allows to separate a busineess logic from the
user interface completely. The pattern consists of such parts:

• UI. Ordered collection of widgets with interaction.

• BLoC. Bussiness Logic Component, which manages a state accordingly to dif-
ferent events.

• Event.

• State.

• Action (implicit).

FIGURE 6.2: BLoC Pattern Schema

For better understanding of the logic, here are two quick step-by-step examples of
using the pattern:

• Offline. Let the task is to create a button with number below and every time
user taps the button - value increases by 1.

1. First of all bloc generates an initial state with starting value of 0. UI reads
it and displays a button and 0 below.

2. User taps the button.

3. UI generates an event, that button is tapped, and passes it to the BLoC.

4. Bloc processes the event, and increases the value by 1. Then passes a new
updated state to UI.

5. UI reads it and displays a button and 1 below.

Chapter 6. Frontend Development 19

• Online. Let the task is to authorize user..

1. User interacts with UI, enters credentials taps a sign-in-button.

2. UI creates a sign in event with credentials and sends it to the BLoC.

3. BLoC validates the credentials, if valid - request to get a token is sent to
the server, else error-state is created and sent to UI, which displays the
error, user moves backwards to step 1.

4. Server sends response back to BLoC.

5. If credentials are correct, state with success is created and user is moved to
next screen, otherwise error-state is created and sent to UI, which displays
the error, user moves backwards to step 1.

Using the pattern allows to completely separate a bussiness logic from the user
interface, which results in a clean separated structure event when the code base is
large, that is the reason why state in the project is mostly managed by BLoC.

6.2.3 Hooks

Flutter Hooks are a clean way to improve a management of a widget life cycle, while
promoting reusing of a code and decreasing level of duplication. Flutter provides a
huge amount of widget, which have any kind of a controller, which should be prop-
erly initialized, disposed and managed during the widget time being in a widget-
tree. Using those, not only forces developer to have StatefulWidget a lot, but increases
code duplication. Hooks allow to manage those controllers automatically with call-
ing the only function, which returns an instance of the desired controller. Since,
using of BLoC makes all of custom widgets to be a StatelessWidget, Flutter Hooks are
a nice addition to the pattern.

6.3 Adaptive and Responsive Layout

Initial idea is to use single code base for web and mobile application, but even if
layouting for web and smartphones is separated, each of them still has multiple
versions of screen sizes. Figure 6.3 illustrates the difference in rendering of a square
sized 300px/300px on two Iphones, while second one could easily contain 2 such
squares, aligned vertically, first IPhone would need a scroll for that:

Chapter 6. Frontend Development 20

FIGURE 6.3: IPhone 7 and IPhone 13 Pro Max Screen Sizes

Such size mismatch can lead to different overlay errors and while one smartphone
shows a perfect layout, other one can break it completely. But how can a single
code satisfy all of available screen sizes? Well, that is a simple mathematics. Firstly,
let’s divide screen into a grid:

FIGURE 6.4: Screen Division with Grid

Every cell of the grid is now a logical block, which would help a user to align sizes.
A screen has height of 20 blocks and width of 10 blocks. After that we can calculate

Chapter 6. Frontend Development 21

height and width of a single logical block. The width is screen width / 10, and
height - screen height divided by 20. Finally, we can create a red container, which is
10 logical block’s heights vertical and 5 logical block’s widths horizontal, in result
there will be no visible difference on various screens. The platform uses a package
Flutter Screen Util, which has already implemented a logic described earlier,
however provides a wider scope of features.

22

Chapter 7

Testing

7.1 Unit tests

Unit test is a small code which checks single piece of functionality if it gives a cor-
rect output for all the possible inputs. During implementing the platform logic and
writing a code, developer should definitely cover second with unit tests. There are
few reasons for that:

• Team can be calm about the product quality. There are some cases which can-
not be spotted even with human eye.

• The code base is changing and supplementing all the time, what might lead
to new errors or break some of the old features. Running single file with all
the tests is much more faster and easier than checking every connected feature
yourself.

• Flutter API provides it’s users a way to write unit tests for widgets.

All of the unit tests for the platform are written with flutter test package and can be
found in the project repository.

7.2 Physical Testing

After all of the features from requirements are implemented, before the release plat-
form should be checked 5-10 users, since the more people test it, the bigger is chance
to find a flaw. If any bugs are found, they are followed with such procedure:

• Documenting a bug with steps to reproduce.

• Finding it and fixing.

• Writing regression unit tests.

• Delivering for review one more time.

23

Chapter 8

Conclusion

8.1 Summary

The main goal of the project was to research and implement main levels of web/mobile
software development, while delivering a useful volunteering service. During the
work such software development stages were researched:

• Planning.

• Designing.

• Creating a RESTful API.

• Developing and delivering web and mobile applications.

Huge advantage of the work is that fast modern comfortable tools are found for
every technical stage of the project and every one of them is now known by the
author in-depth, meaning that half of the main goal is already achieved. There could
be a little downside, that if every of those phases would be developed by a separate
person in the team, the platform would be finished in a more short terms, however,
research of every tool also took quite a time. What is really hard in such projects for
one developer is switching between those stages.

8.2 Further steps

Since the project is in an early phase of development, there is a lot of to do and
improve in a future. However, ideas for the next release are these:

• Technical. Adding optional functionality from the requirements. To be more
specific, it is really important to add a support of the images for users, posts
and events on the platform.

• Social. Since Russia launched a full-scale invasion of Ukraine on February 24
2022 a lot of women with children were forced to leave the country. The idea
is to attract new volunteers into the platform, who would organise different
relevant events of various types for them. Simplest example of such events is
psychological support.

24

Bibliography

Bayer, Michael (2006). SQLAlchemy Website. URL: https://www.sqlalchemy.org/
(visited on 05/29/2022).

Cambi, Daniele (2019). Flutter — Effectively scale UI according to different screen sizes.
URL: https://medium.com/flutter-community/flutter-effectively-scale-
ui-according-to-different-screen-sizes-2cb7c115ea0a (visited on 05/29/2022).

Fivetran (2021). Comparison of PostgreSQL and MySQL. URL: https://www.fivetran.
com/blog/postgresql-vs-mysql#:~:text=PostgreSQL%20is%20an%20object%
2Drelational , %2C % 20ACID % 2Dcompliant % 20storage % 20engine. (visited on
05/29/2022).

Google (2017). Flutter Website. URL: https://flutter.dev/ (visited on 05/29/2022).
Kudynenko, Olha (2009). Tabletochki Website. URL: https://tabletochki.org (vis-

ited on 05/29/2022).
National Cancer Registry, Ukraine (2019a). Cancer in Ukraine, 2018 - 2019, All malig-

nant tumours. URL: http://www.ncru.inf.ua/publications/BULL_21/PDF_E/
10-11-all.pdf (visited on 05/29/2022).

— (2019b). Cancer in Ukraine, 2018 - 2019, All malignant tumours (Children). URL:
http://www.ncru.inf.ua/publications/BULL_21/PDF_E/70-71-dity.pdf
(visited on 05/29/2022).

Ramírez, Sebastián (2018). FastAPI Website. URL: https://fastapi.tiangolo.com/
(visited on 05/29/2022).

https://www.sqlalchemy.org/
https://medium.com/flutter-community/flutter-effectively-scale-ui-according-to-different-screen-sizes-2cb7c115ea0a
https://medium.com/flutter-community/flutter-effectively-scale-ui-according-to-different-screen-sizes-2cb7c115ea0a
https://www.fivetran.com/blog/postgresql-vs-mysql#:~:text=PostgreSQL%20is%20an%20object%2Drelational,%2C%20ACID%2Dcompliant%20storage%20engine.
https://www.fivetran.com/blog/postgresql-vs-mysql#:~:text=PostgreSQL%20is%20an%20object%2Drelational,%2C%20ACID%2Dcompliant%20storage%20engine.
https://www.fivetran.com/blog/postgresql-vs-mysql#:~:text=PostgreSQL%20is%20an%20object%2Drelational,%2C%20ACID%2Dcompliant%20storage%20engine.
https://flutter.dev/
https://tabletochki.org
http://www.ncru.inf.ua/publications/BULL_21/PDF_E/10-11-all.pdf
http://www.ncru.inf.ua/publications/BULL_21/PDF_E/10-11-all.pdf
http://www.ncru.inf.ua/publications/BULL_21/PDF_E/70-71-dity.pdf
https://fastapi.tiangolo.com/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem
	Idea
	Implementation Steps
	Devising Requirements
	Estimating Work
	Design System Elaboration
	Database Establishing
	Backend API Development
	Frontend Interface Development
	Testing
	Deployment
	Further Development

	Requirements
	Events
	Posts
	Roles
	Regular User
	Volunteer
	Child-care specialist
	Estimation

	Design
	Tool
	Brand Book
	Colors
	Rounded Corners
	Logo

	Mock-up
	Final Appearance

	Database
	Choosing a Database
	SQL vs NoSQL
	Which SQL DB to use?

	Establishing a Database

	Backend Development
	REST APIs
	FastAPI
	Connection with Database
	Database toolkit
	Migration tool

	Access
	Authorization
	Authentication

	Result

	Frontend Development
	Flutter
	State Management
	Stateful Widget
	BLoC
	Hooks

	Adaptive and Responsive Layout

	Testing
	Unit tests
	Physical Testing

	Conclusion
	Summary
	Further steps

